Joint Inversion of 2D Gravity Gradiometry and Magnetotelluric Data in Mineral Exploration
Abstract
:1. Introduction
2. Forward Problem
2.1. Gravity and Gravity Gradiometry Forward Problem
2.2. MT Forward Problem
3. Joint Inversion Methodology
4. Synthetic Example
4.1. Compare Gravity and Gravity Gradiometry Data
4.2. Test the Partially Structurally Consistent and Inconsistent Model
4.3. Compare Joint Inversion of Model-Space and Data-Space
5. Field Example
5.1. Geologic Background of the Study Area
5.2. Data Acquisition and Inversion
5.3. Geological Interpretation
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Auken, E.; Pellerin, L.; Christensen, N.B. A survey of current trends in near-surface electrical and electromagnetic methods. Geophysics 2006, 71, G249–G260. [Google Scholar] [CrossRef]
- Kowalsky, M.B.; Chen, J.; Hubbard, S.S. Joint inversion of geophysical and hydrological data for improved subsurface characterization. Lead. Edge 2006, 25, 730–731. [Google Scholar] [CrossRef]
- Colombo, D.; De Stefano, M. Geophysical modeling via simultaneous joint inversion of seismic, gravity, and electromagnetic data: Application to prestack depth imaging. Lead. Edge 2007, 26, 326–331. [Google Scholar] [CrossRef]
- Alpak, F.O.; Torres-Verdin, C.; Habashy, T.M. Estimation of in situ petrophysical properties from wireline formation tester and induction logging measurements: A joint inversion approach. J. Pet. Sci. Eng. 2008, 63, 1–17. [Google Scholar] [CrossRef]
- Fregoso, E.; Gallardo, L.A. Cross-gradients joint 3D inversion with applications to gravity and magnetic data. Geophysics 2009, 74, L31–L42. [Google Scholar] [CrossRef]
- Linde, N.; Tryggvason, A.; Peterson, J.E. Joint inversion of cross hole radar and seismic traveltimes acquired at the South Oyster Bacterial Transport Site. Geophysics 2008, 73, G29–G37. [Google Scholar] [CrossRef]
- Moorkamp, M.; Lelièvre, P.G.; Linde, N.; Khan, A. Integrated Imaging of the Earth: Theory and Applications; John Wiley & Sons: New Jersey, NJ, USA, 2016. [Google Scholar]
- Moorkamp, M.; Heincke, B.; Jegen, M.; Roberts, A.W.; Hobbs, R.W. A framework for 3D joint inversion of MT, gravity and seismic refraction data. Geophys. J. Int. 2011, 184, 477–493. [Google Scholar] [CrossRef]
- Gallardo, L.A.; Meju, M.A. Structure-coupled multiphysics imaging in geophysical sciences. Rev. Geophys. 2011, 49, RG1003. [Google Scholar] [CrossRef]
- Tarantola, A. Inversion Problem Theory and Methods for Model Parameter Estimation; SIAM: Philadelphia, PA, USA, 2005. [Google Scholar]
- Yang, W.C. Theory and Methods of Geophysical Inversion; Geological Publishing House: Beijing, China, 1997. (In Chinese) [Google Scholar]
- Heincke, B.; Jegen, M.; Hobbs, R. Joint inversion of MT, gravity and seismic data applied to sub-basalt imaging. SEG Expand Abstr. 2006, 2006, 784–789. [Google Scholar]
- Gao, G.; Abubakar, A.; Habashy, T.M. Joint petrophysical inversion of electromagnetic and full-waveform seismic data. Geophysics 2012, 77, WA3–WA18. [Google Scholar] [CrossRef]
- Haber, E.; Oldenburg, D. Joint inversion: A structural approach. Inverse Probl. 1997, 13, 63–77. [Google Scholar] [CrossRef]
- Zhang, J.; Morgan, F.D. Joint seismic and electrical tomography. In Symposium on the Application of Geophysics to Engineering and Environmental Problems; SEG: Denver, CO, USA, 1997; pp. 391–396. [Google Scholar]
- Gallardo, L.A.; Meju, M.A. Characterization of heterogeneous near-surface materials by joint 2d inversion of dc resistivity and seismic data. Geophys. Res. Lett. 2003, 30, 1658. [Google Scholar] [CrossRef]
- Abubakar, A.; Gao, G.; Havashy, T.M.; Liu, J. Joint inversion approaches for geophysical electromagnetic and elastic full-waveform data. Inverse Probl. 2012, 28, 055016. [Google Scholar] [CrossRef]
- Hamdan, H.A.; Vafidis, A. Joint inversion of 2D resistivity and seismic travel time data to image saltwater intrusion over karstic areas. Environ. Earth Sci. 2013, 68, 1877–1885. [Google Scholar] [CrossRef]
- Li, T.L.; Zhang, R.Z.; Pak, Y.C. Joint Inversion of magnetotelluric and first-arrival wave seismic traveltime with cross-gradient constraints. J. Jilin Univ. Earth Sci. Ed. 2015, 45, 952–961. [Google Scholar]
- Gallardo, L.A.; Meju, M.A. Joint two-dimensional DC resistivity and seismic travel time inversion with cross-gradients constraints. J. Geophys Res. Solid Earth 2004, 109, B03311. [Google Scholar] [CrossRef]
- Gallardo, L.A.; Fontes, S.L.; Meju, M.A.; Buonora, M.P.; De Lugao, P.P. Robust geophysical integration through structure-coupled joint inversion and multispectral fusion of seismic reflection, magnetotelluric, magnetic, and gravity images: Example from santos basin, offshore brazil. Geophysics 2012, 77, B237–B251. [Google Scholar] [CrossRef]
- Li, T.L.; Zhang, R.Z.; Pak, Y.C. Multiple joint inversion of geophysical data with sub-region cross-gradient constraints. Chin. J. Geophys. 2016, 59, 2979–2988. [Google Scholar]
- Zhang, R.Z.; Li, T.L.; Deng, H. 2D joint inversion of MT, gravity, magnetic and seismic first-arrival traveltime with cross-gradient constraints. Chin. J. Geophys. 2019, 62, 2139–2149. [Google Scholar]
- Zhang, R.Z.; Li, T.L.; Zhou, S.; Deng, X.H. Joint MT and gravity inversion using structural constraints: A case study from the Linjiang copper mining area, Jilin, China. Minerals 2019, 9, 407. [Google Scholar] [CrossRef]
- Zhdanov, M.S.; Ellis, R.; Mukherjee, S. Three-dimensional regularized focusing inversion of gravity gradient tensor component data. Geophysics 2004, 69, 1–4. [Google Scholar] [CrossRef]
- Martinez, C.; Li, Y.; Krahenbuhl, R. 3D inversion of airborne gravity gradiometry data in mineral exploration: A case study in the Quadrilátero Ferrífero, Brazil. Geophysics 2013, 78, B1–B11. [Google Scholar] [CrossRef]
- Geng, M.; Huang, D.; Yang, Q. 3D inversion of airborne gravity-gradiometry data using cokriging. Geophysics 2014, 79, G37–G47. [Google Scholar] [CrossRef]
- Pilkington, M. Analysis of gravity gradiometer inverse problems using optimal design measures. Geophysics 2012, 77, G25–G31. [Google Scholar] [CrossRef]
- Pilkington, M. Evaluating the utility of gravity gradient tensor components. Geophysics 2014, 79, G1–G14. [Google Scholar] [CrossRef] [Green Version]
- Kivior, I.; Markham, S.; Hagos, F. Improved imaging of the subsurface geology in the Mowla Terrace, Canning Basin using gravity gradiometry data. ASEG Ext. Abstr. 2018, 2018, 1–10. [Google Scholar] [CrossRef]
- Siripunvaraporn, W.; Egbert, G. An efficient data-subspace inversion method for 2-D magnetotelluric data. Geophysics 2000, 65, 791–803. [Google Scholar] [CrossRef]
- Siripunvaraporn, W.; Egbert, G.; Lenbury, Y.; Uyeshima, M. Three–dimensional magnetotelluric inversion: Data-space method. Phys. Earth Planet. Inter. 2005, 150, 3–14. [Google Scholar] [CrossRef]
- Singh, B. Simultaneous computation of gravity and magnetic anomalies resulting from a 2D object. Geophysics 2002, 67, 801–806. [Google Scholar] [CrossRef]
- Won, I.J. Computing the gravitational and magnetic anomalies due to a polygon: Algorithms and Fortran subroutines. Geophysics 1987, 52, 202–205. [Google Scholar] [CrossRef]
- Wannamaker, P.E.; Stodt, J.A.; Rijo, L. A stable finite element solution for two-dimensional magnetotelluric modeling. Geophys. J. Int. 1987, 88, 277–296. [Google Scholar] [CrossRef]
- Menke, W. Geophysical Data Analysis: Discrete Inverse Theory, Revised Version: International Geophysics; Academic Press: San Diego, CA, USA, 1989. [Google Scholar]
- Tarantola, A. Inverse Problem Theory: Methods for Data Fitting and Model Parameter Estimation; Elsevier: New York, NY, USA, 1987. [Google Scholar]
- Constable, S.C.; Parker, R.L.; Constable, C.G. Occam’s inversion: A practical algorithm for generating smooth models from electromagnetic sounding data. Geophysics 1987, 52, 289–300. [Google Scholar] [CrossRef]
- deGroot-Hedlin, C. Removal of static shift in two dimensions by regularized inversion. Geophysics 1991, 56, 2102–2106. [Google Scholar] [CrossRef]
- deGroot-Hedlin, C.; Constable, S. Inversion of magnetotelluric data for 2D structure with sharp resistivity contrasts. Geophysics 2004, 69, 78–86. [Google Scholar] [CrossRef]
- Li, H.; Li, T.; Wu, L. Transformation of all-time apparent resistivity of CSAMT and analysis of its effect. Prog. Geophys. (In Chinese) 2015, 30, 0889–0893. [Google Scholar]
- ÖzgüArisoy, M.; Dikmen, Ü. Potensoft: MATLAB-based software for potential field data processing, modeling and mapping. Comput. Geosci. 2011, 37, 935–942. [Google Scholar]
Model-Space | Data-Space | |
---|---|---|
Computational Time | 13.15 h | 3.92 h |
Memory Storage | 4.1 GB | 0.62 GB |
Geological Time | Lithostratigraphic Units | Lithology | Unit | |
---|---|---|---|---|
Era | Period | Formation | ||
Cenozoic | Neogene | Manjiang (Qp1m) | Basalt | K |
Mesozoic | Triassic | (χργT3) | Medium and fine-grained alkali-feldspar granite | A |
Jurassic | Tuntianying (J3t) | Andesite | D | |
Dongfanghong (J1df) | Intermediate-acid volcanic rock | D | ||
(ηγJ2) | Medium-fine-grained monzonite granite | G | ||
Cretaceous | Dalazi (K1d) | Sandstone | C | |
Changcai (K1c) | Sandstone | C | ||
Proterozoic | Qingbaikouan | Diaoyutai (Nhd) | quartz sandstone | B |
Paleoproterozoic | Mayihe (Pt1m) | Marble | L | |
Archeozoic | (Ar3gnt) | Granodiorite gneiss | E |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, R.; Li, T. Joint Inversion of 2D Gravity Gradiometry and Magnetotelluric Data in Mineral Exploration. Minerals 2019, 9, 541. https://doi.org/10.3390/min9090541
Zhang R, Li T. Joint Inversion of 2D Gravity Gradiometry and Magnetotelluric Data in Mineral Exploration. Minerals. 2019; 9(9):541. https://doi.org/10.3390/min9090541
Chicago/Turabian StyleZhang, Rongzhe, and Tonglin Li. 2019. "Joint Inversion of 2D Gravity Gradiometry and Magnetotelluric Data in Mineral Exploration" Minerals 9, no. 9: 541. https://doi.org/10.3390/min9090541