Tools and Workflows for Grassroots Li–Cs–Ta (LCT) Pegmatite Exploration
Abstract
:1. Introduction
2. An Overview of LCT Pegmatites and Implications for Mineral Exploration
2.1. Definition and Classification
2.2. Formation, Rare Metal Enrichment, and Geodynamic Setting
2.3. Composition, Grade/Tonnage and Geometry
2.4. Regional and Internal Zoning
3. Suggested Grassroots Exploration Strategy
3.1. Literature and Desktop Study
3.2. Review of GIS Public Domain Datasets and Regional Target Selection
3.3. Targeted Fieldwork, Sampling, Mineralogy and Follow-Up
3.4. Drilling
4. Case Studies of LCT Pegmatite Exploration
4.1. Conceptual Target Generation, Field Mapping and Petrogenetic Exploration Indicators
4.2. Till Geochemistry, Geophysical Surveys and Petrology
5. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Černý, P. Exploration strategy and methods for pegmatite deposits of tantalum. In Lanthanides, Tantalum, and Niobium; Moller, P., Černý, P., Saupe, F., Eds.; Springer: New York, NY, USA, 1989; pp. 274–302. [Google Scholar]
- Linnen, R.L.; Van Lichterfelde, M.; Černý, P. Granitic Pegmatites as Sources of Strategic Metals. Elements 2012, 8, 275–280. [Google Scholar] [CrossRef]
- London, D. Ore–forming processes within granitic pegmatites. Ore Geol. Rev. 2018, 101, 349–383. [Google Scholar] [CrossRef]
- Simmons, W.; Falster, A.; Webber, K.; Roda-Robles, E.; Boudreaux, A.P.; Grassi, L.R.; Freeman, G. Bulk composition of Mt. Mica Pegmatite, Maine, USA: Implications for the origin of an LCT type pegmatite by anatexis. Can. Mineral. 2016, 54, 1053–1070. [Google Scholar] [CrossRef]
- Barros, R.; Menuge, J.F. The origin of spodumene pegmatites associated with the Leinster Granite in southeast Ireland. Can. Mineral. 2016, 54, 847–862. [Google Scholar] [CrossRef]
- Kaeter, D.; Barros, R.; Menuge, J.F.; Chew, D.M. The magmatic–hydrothermal transition in rare–element pegmatites from southeast Ireland: LA–ICP–MS chemical mapping of muscovite and columbite–tantalite. Geochim. Cosmochim. Acta 2018, 240, 98–130. [Google Scholar] [CrossRef]
- Ballouard, C.; Poujol, M.; Boulvais, P.; Branquet, Y.; Tartèse, R.; Vigneresse, J.L. Nb-Ta fractionation in peraluminous granites: A marker of the magmatic–hydrothermal transition. Geology 2016, 44, 231–234. [Google Scholar] [CrossRef]
- Breiter, K.; Škoda, R. Zircon and whole–rock Zr/Hf ratios as markers of the evolution of granitic magmas: Examples from the Teplice caldera (Czech Republic/Germany). Mineral. Petrol. 2017, 111, 435–457. [Google Scholar] [CrossRef]
- Breiter, K.; Ďurišová, J.; Hrstka, T.; Korbelová, Z.; Vašinová Galiová, M.; Müller, A.; Simons, B.; Shail, R.K.; Williamson, B.J.; Davies, J.A. The transition from granite to banded aplite–pegmatite sheet complexes: An example from Megiliggar Rocks, Tregonning topaz granite, Cornwall. Lithos 2018, 302, 370–388. [Google Scholar] [CrossRef]
- Dill, H.G. Pegmatites and aplites: Their genetic and applied ore geology. Ore Geol. Rev. 2015, 69, 417–561. [Google Scholar] [CrossRef]
- Roda, E.; Pesquera, A.; Velasco, F.; Fontan, F. The granitic pegmatites of the Fregeneda area (Salamanca, Spain): Characteristics and petrogenesis. Mineral. Mag. 1999, 63, 535–558. [Google Scholar] [CrossRef]
- Romer, R.L.; Kroner, U. Phanerozoic tin and tungsten mineralization—Tectonic controls on the distribution of enriched protoliths and heat sources for crustal melting. Gondwana Res. 2016, 31, 60–95. [Google Scholar] [CrossRef]
- Müller, A.; Romer, R.L.; Pedersen, R.-B. The Sveconorwegian Pegmatite Province—Thousands of Pegmatites Without Parental Granites. Can. Mineral. 2017, 55, 283–315. [Google Scholar] [CrossRef]
- Müller, A.; Ihlen, P.M.; Snook, B.; Larsen, R.B.; Flem, B.; Bingen, B.; Williamson, B.J. The Chemistry of Quartz in Granitic Pegmatites of Southern Norway: Petrogenetic and Economic Implications. Econ. Geol. 2015, 110, 1737–1757. [Google Scholar] [CrossRef]
- Dittrich, T.; Seifert, T.; Schulz, B.; Hagemann, S.; Gerdes, A.; Pfänder, J. Archean Rare-Metal Pegmatites in Zimbabwe and Western Australia: Geology and Metallogeny of Pollucite Mineralisations, 1st ed.; Springer: Heidelberg, Germany, 2019; 125p. [Google Scholar]
- Hulsbosch, N.; Van Daele, J.; Reinders, N.; Dewaele, S.; Jacques, D.; Muchez, P. Structural control on the emplacement of contemporaneous Sn–Ta–Nb mineralized LCT39] pegmatites and Sn bearing quartz veins: Insights from the Musha and Ntunga deposits of the Karagwe–Ankole Belt, Rwanda. J. Afr. Earth Sci. 2017, 134, 24–32. [Google Scholar] [CrossRef]
- Lehmann, B.; Halder, S.; Munana, J.R.; Ngizimana, J.d.l.P.; Biryabarema, M. The geochemical signature of rare–metal pegmatites in Central Africa: Magmatic rocks in the Gatumba tin–tantalum mining district, Rwanda. J. Geochem. Expl. 2014, 144, 528–538. [Google Scholar] [CrossRef]
- Melcher, F.; Graupner, T.; Oberthür, T.; Schütte, P. Tantalum-(niobium-tin) mineralisation in pegmatites and rare-metal granites of Africa. S. Afr. J. Geol. 2017, 120, 77–100. [Google Scholar] [CrossRef]
- Heng, C.L.; Chand, F.; Singh, S.D. Primary Tin Mineralization in Malaysia: Aspects of Geological Setting and Exploration Strategy. In Geology of Tin Deposits in Asia and the Pacific; Hutchison, C.S., Ed.; Springer: Berlin/Heidelberg, Germany, 1988; pp. 593–613. [Google Scholar]
- Partington, G.A.; McNaughton, N.J.; Williams, I.S. A review of the geology, mineralization, and geochronology of the Greenbushes Pegmatite, Western Australia. Econ. Geol. 1995, 90, 616–635. [Google Scholar] [CrossRef]
- Sweetapple, M.T. Granitic pegmatites as mineral systems: Examples from the Archaean. NGF Abstr. Proc. 2017, 2, 139–142. [Google Scholar]
- Sweetapple, M.; Collins, P.L.F. Genetic Framework for the Classification and Distribution of Archean Rare Metal Pegmatites in the North Pilbara Craton, Western Australia. Econ. Geol. 2002, 97, 873–895. [Google Scholar] [CrossRef]
- Cardoso-Fernandes, J.; Teodoro, A.C.; Lima, A. Remote sensing data in lithium (Li) exploration: A new approach for the detection of Li–bearing pegmatites. Int. J. Appl. Earth Obs. Geoinf. 2019, 76, 10–25. [Google Scholar] [CrossRef]
- Dimmell, P.M.; Morgan, J.A. The Aubry Pegmatites: Exploration for Highly Evolved Lithium-Cesium-Tantalum Pegmatites in Northern Ontario. Explor. Min. Geol. 2005, 14, 45–59. [Google Scholar] [CrossRef]
- Möller, P.; Morteani, G. Geochemical exploration guide for tantalum pegmatites. Econ. Geol. 1987, 82, 1888–1897. [Google Scholar] [CrossRef]
- Selway, J.B.; Breaks, F.W.; Tindle, A.G. A Review of Rare–Element (Li–Cs–Ta) Pegmatite Exploration Techniques for the Superior Province, Canada, and Large Worldwide Tantalum Deposits. Explor. Min. Geol. 2005, 14, 1–30. [Google Scholar] [CrossRef]
- Dill, H.G.; Weber, B.; Melcher, F.; Wiesner, W.; Müller, A. Titaniferous heavy mineral aggregates as a tool in exploration for pegmatitic and aplitic rare-metal deposits (SE Germany). Ore Geol. Rev. 2014, 57, 29–52. [Google Scholar] [CrossRef]
- Steiner, B. Using Tellus stream sediment geochemistry to fingerprint regional geology and mineralisation systems in southeast Ireland. Ir. J. Earth Sci. 2018, 36, 45–61. [Google Scholar]
- Steiner, B.M. W and Li–Cs–Ta signatures in I–type granites—A case study from the Vosges Mountains, NE France. J. Geochem. Expl. 2019, 197, 238–250. [Google Scholar] [CrossRef]
- Galeschuk, C.R.; Vanstone, P.J. Exploration Techniques for Rare-Element Pegmatite in the Bird River Greenstone Belt, Southeastern Manitoba. In Proceedings of Exploration 07: Fifth Decennial International Conference on Mineral Exploration; Milkereit, B., Ed.; Decennial Mineral Exploration Conferences: Toronto, ON, Canada, 2007; pp. 823–839. [Google Scholar]
- Scogings, A.; Porter, R.; Jeffress, G. Reporting Exploration Results and Mineral Resources for lithium mineralised pegmatites. AIG News Issue 2016, 125, 32–36. [Google Scholar]
- Dessemond, C.; Lajoie-Leroux, F.; Soucy, G.; Laroche, N.; Magnan, J.-F. Spodumene: The Lithium Market, Resources and Processes. Minerals 2019, 9, 334. [Google Scholar] [CrossRef]
- Kesler, S.E.; Gruber, P.W.; Medina, P.A.; Keoleian, G.A.; Everson, M.P.; Wallington, T.J. Global lithium resources: Relative importance of pegmatite, brine and other deposits. Ore Geol. Rev. 2012, 48, 55–69. [Google Scholar] [CrossRef]
- London, D. Pegmatites. Can. Mineral. 2008, 10, 368. [Google Scholar]
- Fuchsloch., W.C.; Nex, P.A.M.; Kinnaird, J.A. Classification, mineralogical and geochemical variations in pegmatites of the Cape Cross-Uis pegmatite belt, Namibia. Lithos 2018, 296, 79–95. [Google Scholar] [CrossRef]
- Konzett, J.; Schneider, T.; Nedyalkova, L.; Hauzenberger, C.; Melcher, F.; Gerdes, A.; Whitehouse, M. Anatectic Granitic Pegmatites from the Eastern Alps: A Case of Variable Rare-Metal Enrichment During High-Grade Regional Metamorphism–I: Mineral Assemblages, Geochemical Characteristics, and Emplacement Ages. Can. Mineral. 2018, 56, 555–602. [Google Scholar] [CrossRef]
- Konzett, J.; Hauzenberger, C.; Ludwig, T.; Stalder, R. Anatectic Granitic Pegmatites from the Eastern Alps: A Case of Variable Rare Metal Enrichment During High-Grade Regional Metamorphism. II: Pegmatite Staurolite As an Indicator of Anatectic Pegmatite Parent Melt Formation—A Field and Experimental Study. Can. Mineral. 2018, 56, 603–624. [Google Scholar] [CrossRef]
- Schuster, R.; Ilickovic, T.; Mali, H.; Huet, B.; Schedl, A. Permian pegmatites and spodumene pegmatites in the Alps: Formation during regional scale high temperature/low pressure metamorphism. NGF Abstr. Proc. 2017, 2, 122–125. [Google Scholar]
- Simmons, W.B.; Webber, K.L. Pegmatite genesis: State of the art. Eur. J. Mineral. 2008, 20, 421–438. [Google Scholar] [CrossRef]
- Zagorsky, V.Y.; Vladimirov, A.G.; Makagon, V.M.; Kuznetsova, L.G.; Smirnov, S.Z.; D’yachkov, B.A.; Annikova, I.Y.; Shokalsky, S.P.; Uvarov, A.N. Large fields of spodumene pegmatites in the settings of rifting and postcollisional shear–pull-apart dislocations of continental lithosphere. Russ. Geol. Geophys. 2014, 55, 237–251. [Google Scholar] [CrossRef]
- Müller, A.; Simmons, W.; Beurlen, H.; Thomas, R.; Ihlen, P.M.; Wise, M.; Roda-Robles, E.; Neiva, A.M.R.; Zagorsky, V. A proposed new mineralogical classification system for granitic pegmatites; Part I, History and the need for a new classification. Can. Mineral. 2018, 56, 1–25. [Google Scholar] [CrossRef]
- London, D. A petrologic assessment of internal zonation in granitic pegmatites. Lithos 2014, 184, 74–104. [Google Scholar] [CrossRef]
- Černý, P.; Ercit, T.S. The classification of granitic pegmatites revisited. Can. Mineral. 2005, 43, 2005–2026. [Google Scholar] [CrossRef]
- Černý, P.; London, D.; Novak, M. Granitic pegmatites as reflections of their sources. Elements 2012, 8, 289–294. [Google Scholar] [CrossRef]
- Steiner, B. Rwanda Pegmatites and Exploration Strategy; Unpublished Report Mila Resources; 2018; 23p. [Google Scholar]
- London, D. Granitic pegmatites: An assessment of current concepts and directions for the future. Lithos 2005, 80, 281–303. [Google Scholar] [CrossRef]
- Snook, B.R. Towards Exploration Tools for High Purity Quartz: An Example from the South Norwegian Evje-Iveland Pegmatite Belt. Ph.D. Thesis, Camborne School of Mines, University of Exeter, Exeter, UK, 2013. Unpublished. 284p. [Google Scholar]
- Linnen, R.L.; Keppler, H. Columbite solubility in granitic melts: Consequences for the enrichment and fractionation of Nb and Ta in the Earth’s crust. Contrib. Mineral. Petrol. 1997, 128, 213–227. [Google Scholar] [CrossRef]
- Fujimaki, H. Partition-coefficients of Hf, Zr, and REE between zircon, apatite and liquid. Contrib. Mineral. Petrol. 1986, 94, 42–45. [Google Scholar] [CrossRef]
- Shaw, R.A.; Goodenough, K.M.; Roberts, N.M.W.; Horstwood, M.S.A.; Chenery, S.R.; Gunn, A.G. Petrogenesis of rare-metal pegmatites in high-grade metamorphic terranes: A case study from the Lewisian Gneiss Complex of north-west Scotland. Precambrian Res. 2016, 281, 338–362. [Google Scholar] [CrossRef] [Green Version]
- Černý, P. Fertile granites of Precambrian rare-element pegmatite fields: Is geochemistry controlled by tectonic setting or source lithologies? Precambrian Res. 1991, 51, 429–468. [Google Scholar] [CrossRef]
- Wyborn, L.A.I.; Heinrich, C.A.; Jaques, A.L. Australian Proterozoic Mineral Systems: Essential Ingredients and Mappable Criteria. In The AusIMM Annual Conference; The Australasian Institute of Mining and Metallurgy: Carlton, Australia, 1994; pp. 109–115. [Google Scholar]
- Stilling, A.; Černý, P.; Vanstone, P.J. The Tanco pegmatite at Bernic Lake, Manitoba. XVI. Zonal and bulk compositions and their petrogenetic significance. Can. Mineral. 2006, 44, 599–623. [Google Scholar] [CrossRef]
- Trueman, D.L.; Černý, P. Exploration for rare-metal granitic pegmatites. In Granitic Pegmatites in Science and Industry; Cerný, P., Ed.; Short Course Handbook; Mineralogical Association of Canada: Quebec, QC, Canada, 1982; pp. 463–493. [Google Scholar]
- Bradley, D.C.; McCauley, A.D.; Stillings, L.M. Mineral-Deposit Model for Lithium-CesiumTantalum Pegmatites. In Scientific Investigations Report 2010–5070–O; US Geological Survey: Reston, WV, USA, 2017; 32p. [Google Scholar]
- Ahtola, T.; Kuusela, J.; Käpyaho, A.; Kontoniemi, O. Overview of lithium pegmatite exploration in the Kaustinen area in 2003–2012. In Report of Investigation 220; Geological Survey of Finland: Espoo, Finland, 2015; 28p. [Google Scholar]
- London, D.; Morgan, G.B., VI. Experimental Crystallization of the Macusani Obsidian, with Applications to Lithium-rich Granitic Pegmatites. J. Petrol. 2017, 58, 1005–1030. [Google Scholar] [CrossRef] [Green Version]
- Rasilainen, K.; Eilu, P.; Ahtola, T.; Halkoaho, T.; Kärkkäinen, N.; Kuusela, J.; Lintinen, P.; Törmänen, T. Quantitative Assessment of Undiscovered Resources in Lithium–Caesium–Tantalum Pegmatite-Hosted Deposits in Finland; Geological Survey of Finland: Espoo, Finland, 2018; 31p. [Google Scholar]
- Ontario Geological Survey. Recommendations for Exploration 2017–2018; OGS Resident Geologist Program; Ontario Geological Survey: Thunder Bay, ON, Canada, 2018; 100p. [Google Scholar]
- Kalinowski, A.; Oliver, S. ASTER Mineral Index Processing Manual. Remote Sens. Appl. Geosci. Aust. 2004, 37, 36. [Google Scholar]
- Cook, S.E.; Corner, R.J.; Groves, P.R.; Grealish, G.J. Use of airborne gamma radiometric data for soil mapping. Aust. J. Soil Res. 1996, 34, 183–194. [Google Scholar] [CrossRef]
- Schetselaar, E.; Chung, C.-J.F.; Kim, K.E. Integration of Landsat TM, Gamma–Ray, Magnetic, and Field Data to Discriminate Lithological Units in Vegetated Granite–Gneiss Terrain. Remote Sens. Environ. 2000, 71, 89–105. [Google Scholar] [CrossRef]
- Hakku Data Service. Available online: https://hakku.gtk.fi/en (accessed on 15 May 2019).
- Morton, C. Geochemical Anomaly Mapping along the Southern Flank of the Carnmenellis Granite, Cornwall, UK. Master’s Thesis, Camborne School of Mines, University of Exeter, Exeter, UK, 2017. Unpublished. 45p. [Google Scholar]
- Knights, K.V.; Heath, P.J. Quality control statistical summaries of Tellus stream sediment regional geochemical data. In Tellus Project Report; Geological Survey of Ireland: Dublin, Ireland, 2016; 252p. [Google Scholar]
- O’Connor, P.J.; Reimann, C. Multielement regional geochemical reconnaissance as an aid to target selection in Irish Caledonian terrains. J. Geochem. Expl. 1993, 47, 63–87. [Google Scholar] [CrossRef]
- Faria, C.; Gomes, C.L. Structure of the Granitic Pegmatite Field of the Northern Coast of Portugal—Inner Pegmatite Structures and Mineralogical Fabrics. Heritage 2019, 2, 315–330. [Google Scholar] [CrossRef]
- Breiter, K.; Škoda, R.; Uher, P. Nb-Ta-Ti-W-Sn-oxide minerals as indicators of a peraluminous P- and F-rich granitic system evolution: Podlesí, Czech Republic. Mineral. Petrol. 2007, 91, 225–248. [Google Scholar] [CrossRef]
- Knésl, I.; Jandova, T.; Rambousek, P.; Breiter, K. Calibration of portable XRF spectrometer in Sn-W ore-bearing granites: Application in the Cínovec deposit (Erzgebirge/Krušně Hory Mts., Czech Republic). Inżynieria Mineral. 2015, 16, 67–72. [Google Scholar]
- Dehaine, Q.; Filippov, L.O.; Glass, H.J.; Rollinson, G. Rare-metal granites as a potential source of critical metals: A geometallurgical case study. Ore Geol. Rev. 2019, 104, 384–402. [Google Scholar] [CrossRef]
- Hoal, K.O.; Stammer, J.G.; Appleby, S.K.; Botha, J.; Ross, J.K.; Botha, P.W. Research in quantitative mineralogy: Examples from diverse applications. Mineral. Eng. 2009, 22, 402–408. [Google Scholar] [CrossRef]
- Sandmann, D.; Gutzmer, J. Use of Mineral Liberation Analysis (MLA) in the Characterization of Lithium-Bearing Micas. J. Mineral. Mater. Charact. Eng. 2013, 1, 285–292. [Google Scholar] [CrossRef] [Green Version]
- Sousa, R.; Simons, B.; Bru, K.; Botelho de Sousa, A.; Rollinson, G.; Andersen, J.; Martin, M.; Machado Leite, M. Use of mineral liberation quantitative data to assess separation efficiency in mineral processing—Some case studies. Mineral. Eng. 2018, 127, 134–142. [Google Scholar] [CrossRef]
- Simons, B.; Rollinson, G.K.; Andersen, J.C.Ø. Characterisation of lithium minerals in granite-related pegmatites and greisens by SEM-based automated mineralogy. Poster Presentation. In Proceedings of the Mineral Deposits Study Group Winter Meeting, Brighton, UK, 4 January 2018. [Google Scholar]
- Hale, M.; Plant, J.A. (Eds.) Drainage geochemistry. In Handbook of Exploration Geochemistry; Elsevier: Amsterdam, The Netherlands, 1994; Volume 6. [Google Scholar]
- McMartin, I.; McClenaghan, M.B. Till geochemistry and sampling techniques in glaciated shield terrain: A review. In Drift Exploration in Glaciated Terrain; McClenaghan, M.B., Bobrowsky, P.T., Hall, G.E.M., Cook, S.J., Eds.; Special Publications; Geological Society of London: London, UK, 2001; Volume 185, pp. 19–43. [Google Scholar]
- Turner, D.J.; Young, I. Geological Assessment Report on the SELWYN 1–10 Claims, Victoria, British Columbia, Canada; War Eagle Mining Company: Vancouver, BC, Canada, 2008. Available online: http://yma.gov.yk.ca/095100.pdf (accessed on 18 July 2019).
- Joint Ore Reserves Committee (JORC). The JORC Code. 2012 Edition. Available online: http://jorc.org/docs/jorc_code2012.pdf (accessed on 19 August 2019).
- BRGM. InfoTerre. Available online: http://www.infoterre.brgm.fr (accessed on 14 August 2019).
- Korsman, K.; Koistinen, T.; Kohonen, J.; Wennerström, M.; Ekdahl, E.; Honkamo, M.; Idman, H.; Pekkala, Y. (Eds.) Suomen Kallioperäkartta—Berggrundskarta över Finland-Bedrock Map of Finland 1:1 000 000; Geological Survey of Finland: Espoo, Finland, 1997. [Google Scholar]
© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Steiner, B.M. Tools and Workflows for Grassroots Li–Cs–Ta (LCT) Pegmatite Exploration. Minerals 2019, 9, 499. https://doi.org/10.3390/min9080499
Steiner BM. Tools and Workflows for Grassroots Li–Cs–Ta (LCT) Pegmatite Exploration. Minerals. 2019; 9(8):499. https://doi.org/10.3390/min9080499
Chicago/Turabian StyleSteiner, Benedikt M. 2019. "Tools and Workflows for Grassroots Li–Cs–Ta (LCT) Pegmatite Exploration" Minerals 9, no. 8: 499. https://doi.org/10.3390/min9080499