Next Article in Journal
Dating Oceanic Subduction in the Jurassic Bangong–Nujiang Oceanic Arc: A Zircon U–Pb Age and Lu–Hf Isotopes and Al-in-Hornblende Barometry Study of the Lameila Pluton in Western Tibet, China
Next Article in Special Issue
Critical Elements in Supergene Phosphates: The Example of the Weathering Profile at the Gavà Neolithic Mines, Catalonia, Spain
Previous Article in Journal
Luminescence of Agrellite Specimen from the Kipawa River Locality
Previous Article in Special Issue
Indium Mineralization in the Volcanic Dome-Hosted Ánimas–Chocaya–Siete Suyos Polymetallic Deposit, Potosí, Bolivia
Open AccessArticle

Mineralogy and Distribution of Critical Elements in the Sn–W–Pb–Ag–Zn Huanuni Deposit, Bolivia

1
Departament de Mineralogia, Petrologia i Prospecció Geològica, Facultat de Ciències de la Terra, Universitat de Barcelona, Carrer de Martí i Franquès s/n, 08028 Barcelona, Spain
2
Instituto de Geología, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán 04510, CDMX, Mexico
3
Geological Engineering Program, Faculty of Sciences and Engineering, Pontifical Catholic University of Peru (PUCP), Av. Universitaria 1801, San Miguel, Lima 15088, Peru
4
ARC Centre of Excellence for Core to Crust Fluid Systems (CCFS) and GEMOC, Department of Earth and Planetary Sciences, Macquarie University, North Ryde, NSW 2109, Australia
5
Centres Científics i Tecnològics, Universitat de Barcelona, Carrer de Martí i Franquès s/n, 08028 Barcelona, Spain
6
Departement des Sciences de la Terre, Université de Genève, Rue des Maraîchers 13, 1205 Genève, Switzerland
7
Departament de Mineralogia, Museu de Ciències Naturals de Barcelona, Passeig Picasso s/n, 08003 Barcelona, Spain
8
Departament d’Enginyeria Minera, Industrial i TIC, Escola Tècnica Superior d’Enginyeria de Mines de Manresa, Universitat Politècnica de Catalunya, Avinguda de les Bases de Manresa 61–73, 08242 Manresa, Spain
9
Colegio de Geólogos de Bolivia, Edificio Señor de la Exaltación Nro. 4683, Av. Hernando Siles entre calles 1 y 2, Zona de Obrajes, Casilla 8941, La Paz, Bolivia
10
Eloro Resources Ltd. Av. La Floresta 497, Of. 101, San Borja, Lima 15037, Peru
*
Author to whom correspondence should be addressed.
Minerals 2019, 9(12), 753; https://doi.org/10.3390/min9120753
Received: 28 August 2019 / Revised: 26 November 2019 / Accepted: 28 November 2019 / Published: 4 December 2019
(This article belongs to the Special Issue Mineral Deposits of Critical Elements)
The polymetallic Huanuni deposit, a world-class tin deposit, is part of the Bolivian tin belt. As a likely case for a “mesothermal” or transitional deposit between epithermal and porphyry Sn types (or shallow porphyry Sn), it represents a case that contributes significantly to the systematic study of the distribution of critical elements within the “family” of Bolivian tin deposits. In addition to Sn, Zn and Ag, further economic interest in the area resides in its potential in critical elements such as In, Ga and Ge. This paper provides the first systematic characterisation of the complex mineralogy and mineral chemistry of the Huanuni deposit with the twofold aim of identifying the mineral carriers of critical elements and endeavouring plausible metallogenic processes for the formation of this deposit, by means of a multi-methodological approach. With In concentrations consistently over 2000 ppm, the highest potential for relevant concentrations in this metal resides in widespread tin minerals (cassiterite and stannite) and sphalerite. Hypogene alteration assemblages are hardly developed due to the metasedimentary nature of host rocks, but the occurrence of potassium feldspar, schorl, pyrophyllite and dickite as vein material stand for potassic to phyllic or advanced argillic alteration assemblages and relatively high-temperature (and low pH) mineralising fluids. District-scale mineralogical zonation suggests a thermal zonation with decreasing temperatures from the central to the peripheral areas. A district-scale zonation has been also determined for δ34SVCDT values, which range −7.2‰ to 0.2‰ (mostly −7‰ to −5‰) in the central area and −4.2‰ to 1.0‰ (mainly constrained between −2‰ and 1‰) in peripheral areas. Such values stand for magmatic and metasedimentary sources for sulfur, and their spatial zoning may be related to differential reactivity between mineralising fluids and host rocks, outwardly decreasing from the central to the peripheral areas. View Full-Text
Keywords: critical elements; indium; gallium; germanium; tin; silver; cerium; hydrothermal; bolivian tin belt critical elements; indium; gallium; germanium; tin; silver; cerium; hydrothermal; bolivian tin belt
Show Figures

Figure 1

MDPI and ACS Style

Cacho, A.; Melgarejo, J.-C.; Camprubí, A.; Torró, L.; Castillo-Oliver, M.; Torres, B.; Artiaga, D.; Tauler, E.; Martínez, Á.; Campeny, M.; Alfonso, P.; Arce-Burgoa, O.R. Mineralogy and Distribution of Critical Elements in the Sn–W–Pb–Ag–Zn Huanuni Deposit, Bolivia. Minerals 2019, 9, 753.

Show more citation formats Show less citations formats
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map by Country/Region

1
Back to TopTop