TiO2 Supported on Kaolinite via Sol–Gel Method for Thermal Stability of Photoactivity in Ceramic Tile Produced by Single-Firing Process
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Experimental Procedure
2.3. Characterization Techniques
Photocatalytic Activity in Ceramic Coating
- (1)
- Pre-irradiation to decompose any potential residual organic contaminants through photocatalytic oxidation on the tested materials surface;
- (2)
- Pre-adsorption of the solution onto the surface of the ceramic coatings;
- (3)
- Photocatalytic test.
3. Results
3.1. FE-SEM Study
3.2. Powder Samples X-Ray Diffraction
3.3. Powder Samples Raman Spectroscopy
3.4. Ceramic Tile Contact Angle
3.5. Microstructure and Composition of the Ceramic Tile Surface
Fourier Transform Infrared Spectroscopy
3.6. Photocatalytic Activity
3.6.1. Reference and Trial Photocatalytic Experiments
3.6.2. Photocatalytic Experiment with 12% TiO2 Glazed Products
3.6.3. Surface Aspect Before and After MB Degradation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AIF | Iberian Photocatalysis Association |
ART | Anatase-to-rutile phase transformation |
MB | Methylene blue |
MO | Methyl orange |
FT-Raman | Raman spectroscopy |
XRD | X-Ray diffraction |
XPS | X-ray Photoelectron Spectroscopy |
FEG-SEM | Field Emission Scanning Electron Microscopy |
FTIR | Fourier Transform Infrared |
UV-A | Ultraviolet A |
UV-Vis | Ultraviolet–visible |
ISO | International Standardization Organization |
EDS | Energy Dispersive X-ray Spectroscopy |
References
- Phromma, S.; Wutikhun; Kasamechonchung, T.; Eksangsri, T.; Sapcharoenkun, C. Effect of Calcination Temperature on Photocatalytic Activity of Synthesized TiO2 Nanoparticles via Wet Ball Milling Sol-Gel Method. Appl. Sci. 2020, 10, 993. [Google Scholar] [CrossRef]
- Coser, E.; Moritz, V.F.; Krenzinger, A.; Ferreira, C.A. Development of paints with infrared radiation reflective properties. Polímeros 2015, 25, 305–310. [Google Scholar] [CrossRef]
- Chen, X.; Mao, S.S. Titanium Dioxide Nanomaterials: Synthesis, Properties, Modifications, and Applications. Chem. Rev. 2007, 107, 2891–2959. [Google Scholar] [CrossRef]
- Adler, C.; Mitoraj, D.; Krivtsov, I.; Beranek, R. On the importance of catalysis in photocatalysis: Triggering of photocatalysis at well-defined anatase TiO2 crystals through facet-specific deposition of oxygen reduction cocatalyst. J. Chem. Phys. 2020, 152, 244702. [Google Scholar] [CrossRef]
- Haider, A.J.; Jameel, Z.N.; Al-Hussaini, I.H.M. Review on: Titanium Dioxide Applications. Energy Procedia 2019, 157, 17–29. [Google Scholar] [CrossRef]
- Hanaor, D.A.H.; Sorrell, C.C. Review of the anatase to rutile phase transformation. J. Mater. Sci. 2011, 46, 855–874. [Google Scholar] [CrossRef]
- Asociación Ibérica de la Fotocatalisis. Nuevo Concepto de Construcción Sostenible con Impacto Ambiental Positivo. Available online: https://www.fotocatalisis.org/wp-content/uploads/2021/02/aif_triptico_modelo-8_v220517_1.pdf (accessed on 15 October 2023).
- ITALCEMENTI GROUP. Available online: https://unglobalcompact.org/what-is-gc/participants/140152 (accessed on 3 July 2025).
- MORDOR INTELLIGENCE, PHOTOCATALYST MARKET—GROWTH, TRENDS, COVID-19 IMPACT, AND FORECASTS (2022–2027). Available online: https://www.mordorintelligence.com/industry-reports/photocatalyst-market (accessed on 30 October 2023).
- Fujishima, A.; Zhang, X. Titanium dioxide photocatalysis: Present situation and future approaches. Comptes Rendus Chim. 2006, 9, 750–760. [Google Scholar] [CrossRef]
- Ganesh, V.A.; Raut, H.K.; Nair, A.S.; Ramakrishna, S. A review on self-cleaning coatings. J. Mater. Chem. 2011, 21, 16304–16322. [Google Scholar] [CrossRef]
- Tezza, V.B.; Scarpato, M.; Oliveira, L.F.S.; Bernardin, A.M. Effect of firing temperature on the photocatalytic activity of anatase ceramic glazes. Powder Technol. 2015, 276, 60–65. [Google Scholar] [CrossRef]
- da Silva, A.L.; Dondi, M.; Raimondo, M.; Hotza, D. Photocatalytic ceramic tiles: Challenges and technological solutions. J. Eur. Ceram. Soc. 2018, 38, 1002–1017. [Google Scholar] [CrossRef]
- Fujishima, A.; Rao, T.N.; Tryk, D.A. Titanium dioxide photocatalysis. J. Photochem. Photobiol. C Photochem. Rev. 2000, 1, 1–21. [Google Scholar] [CrossRef]
- da Silva, A.L.; Dondi, M.; Hotza, D. Self-cleaning ceramic tiles coated with Nb2O5-doped-TiO2 nanoparticles. Ceram. Int. 2017, 43, 11986–11991. [Google Scholar] [CrossRef]
- Padmanabhan, N.T.; John, H. Titanium dioxide based self-cleaning smart surfaces: A short review. J. Environ. Chem. Eng. 2020, 8, 104211. [Google Scholar] [CrossRef]
- Shan, A.Y.; Ghazi, T.I.M.; Rashid, S.A. Immobilisation of titanium dioxide onto supporting materials in heterogeneous photocatalysis: A review. Appl. Catal. A Gen. 2010, 389, 1–8. [Google Scholar] [CrossRef]
- Nishikawa, M.; Shiroishi, W.; Honghao, H.; Suizu, H.; Nagai, H.; Saito, N. Probability of Two-Step Photoexcitation of Electron from Valence Band to Conduction Band through Doping Level in TiO2. J. Phys. Chem. A 2017, 121, 5991–5997. [Google Scholar] [CrossRef]
- Reidy, D.J.; Holmes, J.D.; Morris, M.A. Preparation of a highly thermally stable titania anatase phase by addition of mixed zirconia and silica dopants. Ceram. Int. 2006, 32, 235–239. [Google Scholar] [CrossRef]
- Chen, B.; Zhang, H.; Gilbert, B.; Banfield, J.F. Mechanism of Inhibition of Nanoparticle Growth and Phase Transformation by Surface Impurities. Phys. Rev. Lett. 2007, 98, 106103. [Google Scholar] [CrossRef]
- Khlyustova, A.; Sirotkin, N.; Kusova, T.; Kraev, A.; Titov, V.; Agafonov, A. Doped TiO2: The effect of doping elements on photocatalytic activity. Mater. Adv. 2020, 1, 1193–1201. [Google Scholar] [CrossRef]
- Ribeiro, M.C.M.; Amorim, C.C.; Moreira, R.F.P.M.; Oliveira, L.C.A.; Henriques, A.B.; Leão, M.M.D. Development of Fe/Nb-based solar photocatalysts for water treatment: Impact of different synthesis routes on materials properties. Environ. Sci. Pollut. Res. 2018, 25, 27737–27747. [Google Scholar] [CrossRef] [PubMed]
- Lopes, O.F.; de Mendonça, V.R.; Silva, F.B.F.; Paris, E.C.; Ribeiro, C. Niobium oxides: An overview of the synthesis of nb2 o5 and its application in heterogeneous photocatalysis. Quim. Nova 2015. [Google Scholar] [CrossRef]
- Samadi, M.; Zirak, M.; Naseri, A.; Khorashadizade, E.; Moshfegh, A.Z. Recent progress on doped ZnO nanostructures for visible-light photocatalysis. Thin Solid Films 2016, 605, 2–19. [Google Scholar] [CrossRef]
- Tanabe, K.; Okazaki, S. Various reactions catalyzed by niobium compounds and materials. Appl. Catal. A Gen. 1995, 133, 191–218. [Google Scholar] [CrossRef]
- Castro-López, C.A.; Centeno, A.; Giraldo, S.A. Fe-modified TiO2 photocatalysts for the oxidative degradation of recalcitrant water contaminants. Catal. Today 2010, 157, 119–124. [Google Scholar] [CrossRef]
- Tenório, M.A.R. Avaliação dos Processos Oxidativos Avançados Como Tratamento Terciário do Efluente Líquido de uma Indústria de Pescado, Universidade Federal de Santa Catarina. 2016. Available online: https://tede.ufsc.br/teses/PENQ0669-D.pdf (accessed on 10 March 2024).
- Valadares, D.d.S. Estudos de Síntese e Dopagem de TiO2 Nanoparticulado. 2017, pp. 1–58. Available online: https://bdm.unb.br/handle/10483/17821 (accessed on 13 April 2024).
- Barbosa, L.V.; Marçal, L.; Nassar, E.J.; Calefi, P.S.; Vicente, M.A.; Trujillano, R.; Rives, V.; Gil, A.; Korili, S.A.; Ciuffi, K.J.; et al. Kaolinite-titanium oxide nanocomposites prepared via sol-gel as heterogeneous photocatalysts for dyes degradation. Catal. Today 2015, 246, 133–142. [Google Scholar] [CrossRef]
- da Silva, A.L.; Hotza, D.; Castro, R.H.R. Surface energy effects on the stability of anatase and rutile nanocrystals: A predictive diagram for Nb 2 O 5 -doped-TiO2. Appl. Surf. Sci. 2017, 393, 103–109. [Google Scholar] [CrossRef]
- Chen, K.Y.; Chen, Y.W. Synthesis of spherical titanium dioxide particles by homogeneous precipitation in acetone solution. J. Sol-Gel Sci. Technol. 2003, 27, 111–117. [Google Scholar] [CrossRef]
- Saikumari, N.; Dev, S.M.; Dev, S.A. Effect of calcination temperature on the properties and applications of bio extract mediated titania nano particles. Sci. Rep. 2021, 11, 1–17. [Google Scholar] [CrossRef]
- Wang, S.; Ang, H.M.; Tadé, M.O. Novel applications of red mud as coagulant, adsorbent and catalyst for environmentally benign processes. Chemosphere 2008, 72, 1621–1635. [Google Scholar] [CrossRef]
- Feltrin, J. Estabilização da Fase Anatase a Altas Temperaturas com Partículas Submicrométricas de Quartzo e Alumina. 2017. Available online: https://tede.ufsc.br/teses/PCEM0454-T.pdf (accessed on 24 August 2023).
- Feltrin, J.; De Noni, A.; Hotza, D.; Frade, J.R. Design guidelines for titania-silica-alumina ceramics with tuned anatase to rutile transformation. Ceram. Int. 2019, 45, 5179–5188. [Google Scholar] [CrossRef]
- Kumar, S.R.; Pillai, S.C.; Hareesh, U.S.; Mukundan, P.; Warrier, K.G.K. Synthesis of thermally stable, high surface area anatase–alumina mixed oxides. Mater. Lett. 2000, 43, 286–290. [Google Scholar] [CrossRef]
- Chong, M.N.; Vimonses, V.; Lei, S.; Jin, B.; Chow, C.; Saint, C. Synthesis and characterisation of novel titania impregnated kaolinite nano-. Microporous Mesoporous Mater. 2009, 117, 233–242. [Google Scholar] [CrossRef]
- da Silva Dassoler, T.; de Sousa Cordeiro, E.; Hotza, D.; De Noni Junior, A. Photocatalytic activity of ceramic tiles coated with titania supported on kaolinite. Open Ceram. 2023, 13, 100331. [Google Scholar] [CrossRef]
- Robichaud, C.O.; Uyar, A.E.; Darby, M.R.; Zucker, L.G.; Wiesner, M.R. Estimates of Upper Bounds and Trends in Nano-TiO2 Production as a Basis for Exposure Assessment. Environ. Sci. Technol. 2009, 43, 4227–4233. [Google Scholar] [CrossRef] [PubMed]
- Nico, C.; Monteiro, T.; Graça, M.P.F. Niobium oxides and niobates physical properties: Review and prospects. Prog. Mater. Sci. 2016, 80, 1–37. [Google Scholar] [CrossRef]
- Martins, M.A.; de Lima, B.O.; Ferreira, L.P.; Colonetti, E.; Feltrin, J.; De Noni, A. Preparation and photocatalytic activity of chemically-bonded phosphate ceramics containing TiO2. Appl. Surf. Sci. 2017, 404, 18–27. [Google Scholar] [CrossRef]
- ISO 10678:2010; Fine Ceramics (Advanced Ceramics, Advanced Technical Ceramics)—Determination of Photocatalytic Activity of Surfaces in an Aqueous Medium by Degradation of Methylene Blue. ISO: Geneva, Switzerland, 2010.
- Cheng, H.; Liu, Q.; Yang, J.; Ma, S.; Frost, R.L. The thermal behavior of kaolinite intercalation complexes-A review. Thermochim. Acta 2012, 545, 1–13. [Google Scholar] [CrossRef]
- de Faria, E.H.; Lima, O.J.; Ciuffi, K.J.; Nassar, E.J.; Vicente, M.A.; Trujillano, R.; Calefi, P.S. Hybrid materials prepared by interlayer functionalization of kaolinite with pyridine-carboxylic acids. J. Colloid Interface Sci. 2009, 335, 210–215. [Google Scholar] [CrossRef]
- Abegunde, S.M.; Idowu, K.S.; Adejuwon, O.M.; Adeyemi-adejolu, T. Resources, Environment and Sustainability A review on the influence of chemical modification on the performance of adsorbents. Resour. Environ. Sustain. 2020, 1, 100001. [Google Scholar] [CrossRef]
- Becker, E.; Jiusti, J.; Minatto, F.D.; Delavi, D.G.G.; Montedo, O.R.K.; de Noni, A., Jr. Use of mechanically-activated kaolin to replace ball clay in engobe for a ceramic tile. Cerâmica 2017, 63, 295–302. [Google Scholar] [CrossRef]
- Djaoued, Y.; Badilescu, S.; Ashrit, P.V.; Bersani, D.; Lottici, P.P.; Robichaud, J. Study of Anatase to Rutile Phase Transition in Nanocrystalline Titania Films. J. Sol-Gel Sci. Technol. 2002, 24, 255–264. [Google Scholar] [CrossRef]
- Frost, R.L.; Tran, T.H.; Kristof, J. The structure of an intercalated ordered kaolinite—A Raman microscopy study. Clay Miner. 1997, 32, 587–596. [Google Scholar] [CrossRef]
- Barata, M.S. Aproveitamento dos Resíduos Cauliníticos das Indústrias de Beneficiamento de Caulim da Região Amazônica Como Matéria-Prima Para Fabricação de um Material de Construção (Pozolanas). 2007. Available online: https://repositorio.ufpa.br/jspui/handle/2011/14634 (accessed on 15 September 2023).
- Ion, R.-M.; Fierăscu, R.C.; Teodorescu, S.; Fierăscu, I.; Bunghez, I.R.; Ţurcanu-Caruţiu, D.; Ion, M.-L. Ceramic Materials Based on Clay Minerals in Cultural Heritage Study, in Clays, Clay Minerals and Ceramic Materials Based on Clay Minerals; InTech: Vienna, Austria, 2016. [Google Scholar] [CrossRef]
- Santos, L.M.D. Síntese e Caracterização de TiO2 com Modificações Superficiais para Aplicação em Fotocatálise Heterogênea. Universidade Federal de Uberlândia, Uberlândia. 2019. Available online: https://repositorio.ufu.br/bitstream/123456789/19192/1/SinteseCaracterizacaoTiO2.pdf (accessed on 17 September 2023).
- Kim, A.; Debecker, D.P.; Devred, F.; Dubois, V.; Sanchez, C.; Sassoye, C. Nanostructured Ru/TiO2 catalysts for CO2 methanation. Appl. Catal. B Environ. 2016, 220, 615–625. [Google Scholar] [CrossRef]
- Rachmawati, R.; Sartika, N.; Putra, N.R.M.; Suwarno, S. The Study on Leakage Current Characteristics and Electrical Properties of Uncoated Ceramic, RTV Silicon Rubber Coated Ceramic, and Semiconducting Glazed Outdoor Insulators, International. Int. J. Electr. Eng. Inform. 2018, 10, 318–336. [Google Scholar] [CrossRef]
- Bagheri, S.; Shameli, K.; Hamid, S.B.A. Synthesis and Characterization of Anatase Titanium Dioxide Nanoparticles Using Egg White Solution via Sol-Gel Method. J. Chem. 2013, 2013, 1–5. [Google Scholar] [CrossRef]
- Mital, G.S.; Manoj, T. A review of TiO2 nanoparticles. Chin. Sci. Bull. 2011, 56, 1639–1657. [Google Scholar] [CrossRef]
- Wang, R.; Hashimoto, K. Light-induced amphiphilic surfaces. Nature 1997, 388, 431–432. [Google Scholar] [CrossRef]
- Tauc, J. Optical Properties and Electronic Structure of Amorphous Ge and Si. Mater. Res. Bull. 1968, 3, 37–46. [Google Scholar] [CrossRef]
Run | Photocatalyst | Description |
---|---|---|
0 | PE | Reference commercial glazed ceramic tile, no self-cleaning effect |
1 | K0hT0SFV | Pure Kaolin, 0 h activation, 0%wt. TiO2, no glassy phase (SFV) |
2 | K0hT12SFV | Kaolin, 0 h activation, 12%wt. TiO2, no glassy phase |
3 | K1hT0SFV | Kaolin, 1 h activation, 0%wt. TiO2, no glassy phase |
4 | K3hT0SFV | Kaolin, 3 h activation, 0%wt. TiO2, no glassy phase |
5 | K3hT3SFV | Kaolin, 3 h activation, 3%wt. TiO2, no glassy phase |
6 | K3hT6SFV | Kaolin, 3 h activation, 6%wt. TiO2, no glassy phase |
7 | K3hT12SFV | Kaolin, 3 h activation, 12%wt. TiO2, no glassy phase |
8 | K1hT12 | Kaolin, 1 h activation, 12%wt. TiO2, with glassy phase |
9 | K2hT12 | Kaolin, 2 h activation, 12%wt. TiO2, with glassy phase |
10 | K3hT12 | Kaolin, 3 h activation, 12%wt. TiO2, with glassy phase |
11 | K3hT12-1C | Kaolin, 3 h activation, 12%wt. TiO2, with glassy phase, 1× polishing |
12 | K3hT12-2C | Kaolin, 3 h activation, 12%wt. TiO2, with glassy phase, 2× polishing |
13 | K1hT12N5 | Kaolin, 1 h activation, 12%wt. TiO2, 5% wt. Nb2O5, with glassy phase |
14 | K1hT12N5-1C | Kaolin, 1 h activation, 12%wt. TiO2, 5% wt. Nb2O5, with glassy phase, 1× polishing |
15 | K1hT12N5-2C | Kaolin, 1 h activation, 12%wt. TiO2, 5% wt. Nb2O5, with glassy phase, 2× polishing |
16 | P25 | Commercial TiO2, Degussa P25 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cordeiro, E.d.S.; Feltrin, J.d.S.; Vieira, M.G.A.; De Noni Junior, A. TiO2 Supported on Kaolinite via Sol–Gel Method for Thermal Stability of Photoactivity in Ceramic Tile Produced by Single-Firing Process. Minerals 2025, 15, 845. https://doi.org/10.3390/min15080845
Cordeiro EdS, Feltrin JdS, Vieira MGA, De Noni Junior A. TiO2 Supported on Kaolinite via Sol–Gel Method for Thermal Stability of Photoactivity in Ceramic Tile Produced by Single-Firing Process. Minerals. 2025; 15(8):845. https://doi.org/10.3390/min15080845
Chicago/Turabian StyleCordeiro, Eloise de Sousa, Jucilene de Souza Feltrin, Melissa Gurgel Adeodato Vieira, and Agenor De Noni Junior. 2025. "TiO2 Supported on Kaolinite via Sol–Gel Method for Thermal Stability of Photoactivity in Ceramic Tile Produced by Single-Firing Process" Minerals 15, no. 8: 845. https://doi.org/10.3390/min15080845
APA StyleCordeiro, E. d. S., Feltrin, J. d. S., Vieira, M. G. A., & De Noni Junior, A. (2025). TiO2 Supported on Kaolinite via Sol–Gel Method for Thermal Stability of Photoactivity in Ceramic Tile Produced by Single-Firing Process. Minerals, 15(8), 845. https://doi.org/10.3390/min15080845