Assessment of Nontoxic Surfactant-Modified Kaolinite for Potential Application as an Adsorbent for Mycotoxins
Abstract
1. Introduction
2. Materials and Methods
2.1. Starting Material and Preparation of Organokaolinites
2.2. Characterization of Adsorbents
2.3. Adsorption of Mycotoxins by Organokaolinites
2.4. Acute Oral Toxicity Study in Rats
3. Results and Discussion
3.1. Characterization of Organokaolinites
3.1.1. XRPD Analysis
3.1.2. Textural Properties of Kaolin and Organokaolinites
3.1.3. Thermal Analysis
3.1.4. FTIR Analysis
3.1.5. SEM Analysis
3.1.6. The Point of Zero Charge
3.1.7. The Zeta Potential
3.2. Adsorption of Mycotoxins
3.3. Acute Oral Toxicity Study in Rats
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Guerre, P. Worldwide Mycotoxins Exposure in Pig and Poultry Feed Formulations. Toxins 2016, 8, 350. [Google Scholar] [CrossRef] [PubMed]
- Makkar, H.P.S. Animal Nutrition in a 360-Degree View and a Framework for Future R&D Work: Towards Sustainable Livestock Production. Anim. Prod. Sci. 2016, 56, 1561–1568. [Google Scholar] [CrossRef]
- Elliott, C.T.; Connolly, L.; Kolawole, O. Potential Adverse Effects on Animal Health and Performance Caused by the Addition of Mineral Adsorbents to Feeds to Reduce Mycotoxin Exposure. Mycotoxin Res. 2020, 36, 115–126. [Google Scholar] [CrossRef] [PubMed]
- Colović, R.; Puvača, N.; Cheli, F.; Avantaggiato, G.; Greco, D.; Ðuragić, O.; Kos, J.; Pinotti, L. Decontamination of Mycotoxin-Contaminated Feedstuffs and Compound Feed. Toxins 2019, 11, 617. [Google Scholar] [CrossRef]
- Sanchis, V.; Magan, N. Environmental Conditions Affecting Mycotoxins. In Mycotoxins in Food Detection and Control; Woodhead Publishing: Cambridge, UK, 2004; pp. 174–189. [Google Scholar]
- Neme, K.; Mohammed, A. Mycotoxin Occurrence in Grains and the Role of Postharvest Management as a Mitigation Strategies. A Review. Food Control. 2017, 78, 412–425. [Google Scholar] [CrossRef]
- Vila-Donat, P.; Marín, S.; Sanchis, V.; Ramos, A.J. A Review of the Mycotoxin Adsorbing Agents, with an Emphasis on Their Multi-Binding Capacity, for Animal Feed Decontamination. Food Chem. Toxicol. 2018, 114, 246–259. [Google Scholar] [CrossRef]
- Mannaa, M.; Kim, K.D. Influence of Temperature and Water Activity on Deleterious Fungi and Mycotoxin Production during Grain Storage. Mycobiology 2017, 45, 240–254. [Google Scholar] [CrossRef]
- Avantaggiato, G.; Havenaar, R.; Visconti, A. Assessment of the Multi-Mycotoxin-Binding Efficacy of a Carbon/Aluminosilicate-Based Product in an in Vitro Gastrointestinal Model. J. Agric. Food Chem. 2007, 55, 4810–4819. [Google Scholar] [CrossRef]
- Srivastava, P.; Singh, B.; Angove, M. Competitive Adsorption Behavior of Heavy Metals on Kaolinite. J. Colloid Interface Sci. 2005, 290, 28–38. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; He, M.C. Theoretical Study of Heavy Metal Cd, Cu, Hg, and Ni(II) Adsorption on the Kaolinite(0 0 1) Surface. Appl. Surf. Sci. 2014, 317, 718–723. [Google Scholar] [CrossRef]
- Deng, L.; Yuan, P.; Liu, D.; Annabi-Bergaya, F.; Zhou, J.; Chen, F.; Liu, Z. Effects of Microstructure of Clay Minerals, Montmorillonite, Kaolinite and Halloysite, on Their Benzene Adsorption Behaviors. Appl. Clay Sci. 2017, 143, 184–191. [Google Scholar] [CrossRef]
- Lu, Y.; Li, Y.; Liu, D.; Ning, Y.; Yang, S.; Yang, Z. Adsorption of Benzene Vapor on Natural Silicate Clay Minerals under Different Moisture Contents and Binary Mineral Mixtures. Colloids Surf. A Physicochem. Eng. Asp. 2020, 585, 124072. [Google Scholar] [CrossRef]
- Aragaw, T.A.; Alene, A.N. A Comparative Study of Acidic, Basic, and Reactive Dyes Adsorption from Aqueous Solution onto Kaolin Adsorbent: Effect of Operating Parameters, Isotherms, Kinetics, and Thermodynamics. Emerg. Contam. 2022, 8, 59–74. [Google Scholar] [CrossRef]
- Shaban, M.; Sayed, M.I.; Shahien, M.G.; Abukhadra, M.R.; Ahmed, Z.M. Adsorption Behavior of Inorganic- and Organic-Modified Kaolinite for Congo Red Dye from Water, Kinetic Modeling, and Equilibrium Studies. J. Sol-Gel Sci. Technol. 2018, 87, 427–441. [Google Scholar] [CrossRef]
- Obradović, M.; Daković, A.; Smiljanić, D.; Ožegović, M.; Marković, M.; Rottinghaus, G.E.; Krstić, J. Ibuprofen and Diclofenac Sodium Adsorption onto Functionalized Minerals: Equilibrium, Kinetic and Thermodynamic Studies. Microporous Mesoporous Mater. 2022, 335, 111795. [Google Scholar] [CrossRef]
- Yang, Y.; Zhong, Z.; Li, J.; Du, H.; Li, Z. Efficient with Low-Cost Removal and Adsorption Mechanisms of Norfloxacin, Ciprofloxacin and Ofloxacin on Modified Thermal Kaolin: Experimental and Theoretical Studies. J. Hazard. Mater. 2022, 430, 128500. [Google Scholar] [CrossRef]
- Hounfodji, J.W.; Kanhounnon, W.G.; Kpotin, G.; Atohoun, G.S.; Lainé, J.; Foucaud, Y.; Badawi, M. Molecular Insights on the Adsorption of Some Pharmaceutical Residues from Wastewater on Kaolinite Surfaces. Chem. Eng. J. 2021, 407, 127176. [Google Scholar] [CrossRef]
- Kang, F.; Ge, Y.; Hu, X.; Goikavi, C.; Waigi, M.G.; Gao, Y.; Ling, W. Understanding the Sorption Mechanisms of Aflatoxin B1 to Kaolinite, Illite, and Smectite Clays via a Comparative Computational Study. J. Hazard. Mater. 2016, 320, 80–87. [Google Scholar] [CrossRef]
- Ogbebor, O.J.; Okieimen, F.E.; Ogbeifun, D.E.; Okwu, U.N. Organo-Modifikovani Kaolin Kao Punilac Prirodnog Kaučuka. Chem. Ind. Chem. Eng. Q. 2015, 21, 477–484. [Google Scholar] [CrossRef]
- Mi, F.; He, Z.; Fang, B.; Ning, F.; Jiang, G. Molecular Insights into the Effects of Surface Property and Pore Size of Non-Swelling Clay on Methane Hydrate Formation. Fuel 2022, 311, 122607. [Google Scholar] [CrossRef]
- Hu, P.; Yang, H. Insight into the Physicochemical Aspects of Kaolins with Different Morphologies. Appl. Clay Sci. 2013, 74, 58–65. [Google Scholar] [CrossRef]
- Zhang, X.; Lin, S.; Chen, Z.; Megharaj, M.; Naidu, R. Kaolinite-Supported Nanoscale Zero-Valent Iron for Removal of Pb2+ from Aqueous Solution: Reactivity, Characterization and Mechanism. Water Res. 2011, 45, 3481–3488. [Google Scholar] [CrossRef] [PubMed]
- Moya, J.S.; Cabal, B.; Lopez-Esteban, S.; Bartolomé, J.F.; Sanz, J. Significance of the Formation of Pentahedral Aluminum in the Reactivity of Calcined Kaolin/Metakaolin and Its Applications. Ceram. Int. 2024, 50, 1329–1340. [Google Scholar] [CrossRef]
- Bougeard, D.; Smirnov, K.S.; Geidel, E. Vibrational Spectra and Structure of Kaolinite: A Computer Simulation Study. J. Phys. Chem. B 2000, 104, 9210–9217. [Google Scholar] [CrossRef]
- Turer, D. Effect of Heavy Metal and Alkali Contamination on the Swelling Properties of Kaolinite. Environ. Geol. 2007, 52, 421–425. [Google Scholar] [CrossRef]
- Li, Y.; Zeng, L.; Zhou, Y.; Wang, T.; Zhang, Y. Preparation and Characterization of Montmorillonite Intercalation Compounds with Quaternary Ammonium Surfactant: Adsorption Effect of Zearalenone. J. Nanomater. 2014, 2014, 7. [Google Scholar] [CrossRef]
- Bish, D.L. Rietveld Refinement of the Kaolinite Structure at 1.5 K. Clays Clay Miner. 1993, 41, 738–744. [Google Scholar] [CrossRef]
- Momma, K.; Izumi, F. VESTA 3 for Three-Dimensional Visualization of Crystal, Volumetric and Morphology Data. J. Appl. Cryst. 2011, 44, 1272–1276. [Google Scholar] [CrossRef]
- Zenasni, M.A.; Meroufel, B.; Merlin, A.; George, B. Adsorption of Congo Red from Aqueous Solution Using CTAB-Kaolin from Bechar Algeria. J. Surf. Eng. Mater. Adv. Technol. 2014, 04, 332–341. [Google Scholar] [CrossRef]
- Sharafee Shamsudin, M.; Taufik Mohd Din, A.; Sellaoui, L.; Badawi, M.; Bonilla-Petriciolet, A.; Ismail, S. Characterization, Evaluation, and Mechanism Analysis of the Functionalization of Kaolin with a Surfactant for the Removal of Diclofenac from Aqueous Solution. Chem. Eng. J. 2023, 465, 142833. [Google Scholar] [CrossRef]
- Spasojević, M.; Daković, A.; Rottinghaus, G.E.; Obradović, M.; Krajišnik, D.; Marković, M.; Krstić, J. Influence of Surface Coverage of Kaolin with Surfactant Ions on Adsorption of Ochratoxin A and Zearalenone. Appl. Clay Sci. 2021, 205, 106040. [Google Scholar] [CrossRef]
- Schulze-Makuch, D.; Pillai, S.D.; Guan, H.; Bowman, R.; Couroux, E.; Hielscher, F.; Totten, J.; Espinosa, I.Y.; Kretzschmar, T. Surfactant-Modified Zeolite Can Protect Drinking Water Wells from Viruses and Bacteria. Eos 2002, 83, 193–201. [Google Scholar] [CrossRef]
- Rakić, V.; Rajić, N.; Daković, A.; Auroux, A. The Adsorption of Salicylic Acid, Acetylsalicylic Acid and Atenolol from Aqueous Solutions onto Natural Zeolites and Clays: Clinoptilolite, Bentonite and Kaolin. Microporous Mesoporous Mater. 2013, 166, 185–194. [Google Scholar] [CrossRef]
- Spasojević, M.P.; Daković, A.; Rottinghaus, G.E.; Radosavljević-Mihajlović, A.S.; Marković, M.A.; Krajišnik, D.R. Zearalenone and Ochratoxin A: Adsorption by Kaolin Modified with Surfactant. Metall. Mater. Eng. 2019, 25, 39–45. [Google Scholar] [CrossRef] [PubMed]
- Sullivan, E.J.; Hunter, D.B.; Bowman, R.S. Fourier Transform Raman Spectroscopy of Sorbed HDTMA and the Mechanism of Chromate Sorption to Surfactant-Modified Clinoptilolite. Environ. Sci. Technol. 1998, 32, 1948–1955. [Google Scholar] [CrossRef]
- Rouquerol, F.; Rouquerol, J.; Sing, K. Adsorption by Powders and Porous Solids: Principles, Methodology and Applications; Academic Press: New York, NY, USA, 1999; ISBN 0125989202. [Google Scholar]
- Obradović, M.; Daković, A.; Smiljanić, D.; Marković, M.; Ožegović, M.; Krstić, J.; Vuković, N.; Milojević-Rakić, M. Bentonite Modified with Surfactants—Efficient Adsorbents for the Removal of Non-Steroidal Anti-Inflammatory Drugs. Processes 2024, 12, 96. [Google Scholar] [CrossRef]
- Jaćević, V.; Dumanović, J.; Lazarević, M.; Nepovimova, E.; Resanović, R.; Milovanović, Z.; Wu, Q.; Kuča, K. Antidotal Potency of the Novel, Structurally Different Adsorbents in Rats Acutely Intoxicated with the T-2 Toxin. Toxins 2020, 12, 643. [Google Scholar] [CrossRef]
- Jacevic, V.; Kuca, K.; Milovanovic, Z.; Bocarov-Stancic, A.; Rancic, I.; Bokonjic, D.; Dragojevic-Simic, V.; Segrt, Z. Gastroprotective Effects of Amifostine in Rats Treated by T-2 Toxin. Toxin Rev. 2018, 37, 123–127. [Google Scholar] [CrossRef]
- Litchfield, J.T.; Wilcoxon, F. A Simplified Method of Evaluating Dose-Effect Experiments. J. Pharmacol. Exp. Ther. 1948, 96, 99–113. [Google Scholar] [CrossRef]
- Xi, Y.; Mallavarapu, M.; Naidu, R. Preparation, Characterization of Surfactants Modified Clay Minerals and Nitrate Adsorption. Appl. Clay Sci. 2010, 48, 92–96. [Google Scholar] [CrossRef]
- Aroke, U.O.; Hamidu, L.A.J. Instrumental Characterization of Unmodified and HDTMA-Br Modified Kaolinite Clay: SEM-EDX, Quantachrome and TGA-DTA. Path Sci. 2020, 6, 2001–2009. [Google Scholar] [CrossRef]
- Mitrović, A.A.; Komljenović, M.M.; Ilić, B.R. Research of Possibilities for Use Domestic Kaolin Clays for Production of Metakaolin. Hem. Ind. 2009, 63, 107–113. [Google Scholar] [CrossRef]
- Wan, Q.; Rao, F.; Song, S. Reexamining Calcination of Kaolinite for the Synthesis of Metakaolin Geopolymers—Roles of Dehydroxylation and Recrystallization. J. Non-Cryst. Solids 2017, 460, 74–80. [Google Scholar] [CrossRef]
- Parker, R.W.; Frost, R.L. The Application of Drift Spectroscopy to the Multicomponent Analysis of Organic Chemicals Adsorbed on Montmorillonite. Clays Clay Miner. 1996, 44, 32–40. [Google Scholar] [CrossRef]
- Marković, M.; Daković, A.; Rottinghaus, G.E.; Petković, A.; Kragović, M.; Krajišnik, D.; Milić, J. Ochratoxin A and Zearalenone Adsorption by the Natural Zeolite Treated with Benzalkonium Chloride. Colloids Surf. A Physicochem. Eng. Asp. 2017, 529, 7–17. [Google Scholar] [CrossRef]
- Diehl, D.; Ellerbrock, R.H.; Schaumann, G.E. Influence of Drying Conditions on Wettability and DRIFT Spectroscopic C-H Band of Soil Samples. Eur. J. Soil Sci. 2009, 60, 557–566. [Google Scholar] [CrossRef]
- Liu, D.; Zhang, Y.; Zhou, A.; Nnachi, E.N.; Huo, S.; Zhang, Q. The Kaolinite Crystallinity and Influence Factors of Coal-measure Kaolinite Rock from Datong Coalfield, China. Minerals 2022, 12, 54. [Google Scholar] [CrossRef]
- Saikia, B.J.; Parthasarathy, G. Fourier Transform Infrared Spectroscopic Characterization of Kaolinite from Assam and Meghalaya, Northeastern India. J. Mod. Phys. 2010, 1, 206–210. [Google Scholar] [CrossRef]
- Tironi, A.; Trezza, M.A.; Irassar, E.F.; Scian, A.N. Thermal Treatment of Kaolin: Effect on the Pozzolanic Activity. Procedia Mater. Sci. 2012, 1, 343–350. [Google Scholar] [CrossRef]
- Wang, G.; Xi, Y.; Lian, C.; Sun, Z.; Zheng, S. Simultaneous Detoxification of Polar Aflatoxin B1 and Weak Polar Zearalenone from Simulated Gastrointestinal Tract by Zwitterionic Montmorillonites. J. Hazard. Mater. 2019, 364, 227–237. [Google Scholar] [CrossRef]
- Smiljanić, D.; Daković, A.; Obradović, M.; Ožegović, M.; Marković, M.; Rottinghaus, G.E.; de Gennaro, B. Influence of the Type and the Amount of Surfactant in Phillipsite on Adsorption of Diclofenac Sodium. Catalysts 2023, 13, 71. [Google Scholar] [CrossRef]
- Li, Z.; Gallus, L. Surface Configuration of Sorbed Hexadecyltrimethylammonium on Kaolinite as Indicated by Surfactant and Counterion Sorption, Cation Desorption, and FTIR. Colloids Surf. A Physicochem. Eng. Asp. 2005, 264, 61–67. [Google Scholar] [CrossRef]
- Kung, K.H.S.; Hayes, K.F. Fourier Transform Infrared Spectroscopic Study of the Adsorption of Cetyltrimethylammonium Bromide and Cetylpyridinium Chloride on Silica. Langmuir 1993, 9, 263–267. [Google Scholar] [CrossRef]
- Krajišnik, D.; Daković, A.; Milojević, M.; Malenović, A.; Kragović, M.; Bogdanović, D.B.; Dondur, V.; Milić, J. Properties of Diclofenac Sodium Sorption onto Natural Zeolite Modified with Cetylpyridinium Chloride. Colloids Surf. B Biointerfaces 2011, 83, 165–172. [Google Scholar] [CrossRef]
- Fidalgo, A.; Ilharco, L.M. Chemical Tailoring of Porous Silica Xerogels: Local Structure by Vibrational Spectroscopy. Chem.-A Eur. J. 2004, 10, 392–398. [Google Scholar] [CrossRef]
- Pires, J.; Pinto, M.; Estella, J.; Echeverría, J.C. Characterization of the Hydrophobicity of Mesoporous Silicas and Clays with Silica Pillars by Water Adsorption and DRIFT. J. Colloid Interface Sci. 2008, 317, 206–213. [Google Scholar] [CrossRef]
- Smiljanić, D.; Daković, A.; Obradović, M.; Ožegović, M.; Izzo, F.; Germinario, C.; de Gennaro, B. Application of Surfactant Modified Natural Zeolites for the Removal of Salicylic Acid—A Contaminant of Emerging Concern. Materials 2021, 14, 7728. [Google Scholar] [CrossRef]
- Daković, A.; Kragović, M.; Rottinghaus, G.E.; Sekulić, Ž.; Milićević, S.; Milonjić, S.K.; Zarić, S. Influence of Natural Zeolitic Tuff and Organozeolites Surface Charge on Sorption of Ionizable Fumonisin B1. Colloids Surf. B Biointerfaces 2010, 76, 272–278. [Google Scholar] [CrossRef]
- Hu, Y.; Yang, Q.; Kou, J.; Sun, C.; Li, H. Aggregation Mechanism of Colloidal Kaolinite in Aqueous Solutions with Electrolyte and Surfactants. PLoS ONE 2020, 15, e0238350. [Google Scholar] [CrossRef]
- Tombácz, E.; Szekeres, M. Surface Charge Heterogeneity of Kaolinite in Aqueous Suspension in Comparison with Montmorillonite. Appl. Clay Sci. 2006, 34, 105–124. [Google Scholar] [CrossRef]
- Schroth, B.; Sposito, G. Surface Charge Properties of Kaolinite. Clays Clay Miner. 1997, 45, 85–91. [Google Scholar] [CrossRef]
- Mudzielwana, R.; Gitari, M.W.; Ndungu, P. Performance Evaluation of Surfactant Modified Kaolin Clay in As(III) and As(V) Adsorption from Groundwater: Adsorption Kinetics, Isotherms and Thermodynamics. Heliyon 2019, 5, e02756. [Google Scholar] [CrossRef]
- Au, P.I.; Leong, Y.K. Rheological and Zeta Potential Behaviour of Kaolin and Bentonite Composite Slurries. Colloids Surf. A Physicochem. Eng. Asp. 2013, 436, 530–541. [Google Scholar] [CrossRef]
- Foo, K.Y.; Hameed, B.H. Insights into the Modeling of Adsorption Isotherm Systems. Chem. Eng. J. 2010, 156, 2–10. [Google Scholar] [CrossRef]
- Smiljanić, D.; de Gennaro, B.; Izzo, F.; Langella, A.; Daković, A.; Germinario, C.; Rottinghaus, G.E.; Spasojević, M.; Mercurio, M. Removal of Emerging Contaminants from Water by Zeolite-Rich Composites: A First Approach Aiming at Diclofenac and Ketoprofen. Microporous Mesoporous Mater. 2020, 298, 110057. [Google Scholar] [CrossRef]
- Saadi, R.; Saadi, Z.; Fazaeli, R.; Fard, N.E. Monolayer and Multilayer Adsorption Isotherm Models for Sorption from Aqueous Media. Korean J. Chem. Eng. 2015, 32, 787–799. [Google Scholar] [CrossRef]
- Ignjatovic, L.; Tasic, A.; Sredovic-Ignjatovic, I.; Nastasovic, A. Investigation of Phenol Adsorption on Macroporous Polymeric Adsorbents. Zast. Mater. 2015, 56, 199–205. [Google Scholar] [CrossRef]
- Ahmed, M.J.; Dhedan, S.K. Equilibrium Isotherms and Kinetics Modeling of Methylene Blue Adsorption on Agricultural Wastes-Based Activated Carbons. Fluid Phase Equilib. 2012, 317, 9–14. [Google Scholar] [CrossRef]
- Keren, Y.; Borisover, M.; Bukhanovsky, N. Sorption Interactions of Organic Compounds with Soils Affected by Agricultural Olive Mill Wastewater. Chemosphere 2015, 138, 462–468. [Google Scholar] [CrossRef]
Mass Loss (%) | |||||
---|---|---|---|---|---|
25–180 °C | 180–450 °C | 450–800 °C | 800–1100 °C | ∑(25–1100 °C) | |
Kaolin | 1.0 | 0.5 | 8.2 | 0.1 | 9.8 |
HKR-50 | 0.4 | 1.1 | 8.4 | 0.1 | 10.0 |
HKR-90 | 0.4 | 1.8 | 8.4 | 0.1 | 10.7 |
HKR-50 | HKR-90 | ||||
---|---|---|---|---|---|
Model | Parameters | pH 3 | pH 7 | pH 3 | pH 7 |
Experimental data | Qmexp (mg/g) | 5.1 | 2.3 | 6.4 | 3.7 |
Langmuir | Qm (mg/g) | 8.1 | 2.6 | 8.9 | 4.1 |
KL (L/mg) | 0.700 | 3.278 | 0.961 | 3.401 | |
r2 | 0.947 | 0.955 | 0.986 | 0.973 | |
SSE | 1.13 | 0.19 | 0.40 | 0.28 | |
Freundlich | n | 1.960 | 4.648 | 2.103 | 3.972 |
) | 3.253 | 1.870 | 4.214 | 2.938 | |
r2 | 0.947 | 0.911 | 0.996 | 0.970 | |
SSE | 1.22 | 0.37 | 0.10 | 0.31 | |
Sips | Qm (mg/g) | 8.1 | 2.4 | 8.9 | 5.7 |
KS (L/mg) | 0.700 | 5.850 | 0.961 | 1.171 | |
s | 1.002 | 0.817 | 1.004 | 0.512 | |
r2 | 0.973 | 0.956 | 0.996 | 0.976 | |
SSE | 1.22 | 0.16 | 0.10 | 0.20 |
HKR-50 | HKR-90 | ||||
---|---|---|---|---|---|
Model | Parameters | pH 3 | pH 7 | pH 3 | pH 7 |
Experimental data | Qmexp (mg/g) | 7.0 | 6.7 | 8.2 | 8.1 |
Langmuir | Qm (mg/g) | 13.2 | 8.5 | 13.4 | 10.8 |
KL (L/mg) | 0.482 | 1.190 | 0.870 | 1.502 | |
r2 | 0.984 | 0.980 | 0.955 | 0.989 | |
SSE | 0.59 | 0.62 | 2.44 | 0.53 | |
Freundlich | n | 1.589 | 2.279 | 1.823 | 2.240 |
4.186 | 4.415 | 5.993 | 6.169 | ||
r2 | 0.980 | 0.970 | 0.945 | 0.979 | |
SSE | 0.74 | 0.94 | 3.02 | 1.08 | |
Sips | Qm (mg/g) | 12.7 | 8.2 | 12.6 | 11.3 |
KS (L/mg) | 0.513 | 1.298 | 0.986 | 1.325 | |
s | 1.025 | 1.050 | 1.058 | 0.943 | |
r2 | 0.982 | 0.977 | 0.948 | 0.988 | |
SSE | 0.59 | 0.62 | 2.43 | 0.52 |
Treatment | Dose (mg/kg p.o.) | Total Number (Dead/Treated) | LD50 (mg/kg p.o.) | ||
---|---|---|---|---|---|
Male | Female | Male | Female | ||
kaolin | 700 | 0/5 | 0/5 | >2100 | >2100 |
1400 | 0/5 | 0/5 | |||
2100 | 0/5 | 0/5 | |||
HKR-90 | 800 | 0/5 | 0/5 | >2400 | >2400 |
1600 | 0/5 | 0/5 | |||
2400 | 0/5 | 0/5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ožegović, M.; Marković, M.; Daković, A.; Obradović, M.; Smiljanić, D.; Rottinghaus, G.E.; Jaćević, V.; Ignjatović, L.; Sredović Ignjatović, I. Assessment of Nontoxic Surfactant-Modified Kaolinite for Potential Application as an Adsorbent for Mycotoxins. Minerals 2025, 15, 731. https://doi.org/10.3390/min15070731
Ožegović M, Marković M, Daković A, Obradović M, Smiljanić D, Rottinghaus GE, Jaćević V, Ignjatović L, Sredović Ignjatović I. Assessment of Nontoxic Surfactant-Modified Kaolinite for Potential Application as an Adsorbent for Mycotoxins. Minerals. 2025; 15(7):731. https://doi.org/10.3390/min15070731
Chicago/Turabian StyleOžegović, Milica, Marija Marković, Aleksandra Daković, Milena Obradović, Danijela Smiljanić, George E. Rottinghaus, Vesna Jaćević, Ljubiša Ignjatović, and Ivana Sredović Ignjatović. 2025. "Assessment of Nontoxic Surfactant-Modified Kaolinite for Potential Application as an Adsorbent for Mycotoxins" Minerals 15, no. 7: 731. https://doi.org/10.3390/min15070731
APA StyleOžegović, M., Marković, M., Daković, A., Obradović, M., Smiljanić, D., Rottinghaus, G. E., Jaćević, V., Ignjatović, L., & Sredović Ignjatović, I. (2025). Assessment of Nontoxic Surfactant-Modified Kaolinite for Potential Application as an Adsorbent for Mycotoxins. Minerals, 15(7), 731. https://doi.org/10.3390/min15070731