Geochemistry of Sphalerite from the Permian Volcanic-Hosted Massive Sulphide (VHMS) Deposits in the Tasik Chini Area, Peninsular Malaysia: Constraints for Ore Genesis
Abstract
:1. Introduction
2. General Setting and Deposit Geology
3. Analytical Methods
4. Results
4.1. Sphalerite Types and Textures
4.2. Chemical Compositions of Sphalerite
4.2.1. Fe Content
4.2.2. Minor Element Contents
5. Discussion
5.1. Trace Element Variation and Substitution
5.2. Implications of Major and Trace Element Abundances in Sphalerite to Ore Genesis
6. Conclusions
- (1)
- The sphalerite chemistry studied by electron microprobe reveals that the Bukit Botol and Bukit Ketaya deposits display similarities in FeS concentrations in both massive sulphides and stringer zones.
- (2)
- Trends of FeS and other major or trace elements content in sphalerite either as a solid solution, nanoparticles and micro-inclusions are consistent with published results of VHMS deposits worldwide, and probably controlled by kinetic effects and substitution mechanisms.
- (3)
- Although the application of sphalerite alone as a geobarometer cannot be used because of the absence of sphalerite−pyrite−hexagonal pyrrhotite assemblage, the sphalerite composition data, such as Cd content and Zn/Cd ratios, are consistent with those exhibited in other VHMS deposits.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chon, H.T.; Shimazaki, H.; Sato, K. Compositional variation of sphalerites from some hydrothermal metallic ore deposits in the Republic of Korea. Min. Geol. 1981, 31, 337–343. [Google Scholar]
- Shimazaki, H.; Shimizu, M. Compositional variation of sphalerites from skarn deposits in Japan. J. Fac. Sci. Univ. Tokyo Sect. II 1984, 21, 1–37. [Google Scholar]
- Barton, P.B., Jr.; Bethke, P.M. Chalcopyrite disease in sphalerite: Pathology and epidemiology. Am. Mineral. 1987, 72, 451–467. [Google Scholar]
- Cook, N.J.; Ciobanu, C.L.; Pring, A.; Skinner, W.; Shimizu, M.; Danyushevsky, L.; Saini-Eidukat, B.; Melcher, F. Trace and minor elements in sphalerite: A LA-ICPMS study. Geochim. Cosmochim. Acta 2009, 73, 4761–4791. [Google Scholar] [CrossRef]
- Lockington, J.A.; Cook, N.J.A.; Ciobanu, C.L. Trace and minor elements in sphalerite from metamorphosed sulfide deposits. Mineral. Petrol. 2014, 108, 873–890. [Google Scholar] [CrossRef]
- Murakami, H.; Ishihara, S. Trace elements of Indium-bearing sphalerite from tin-polymetallic deposits in Bolivia, China and Japan: A femto-second LA-ICPMS study. Ore Geol. Rev. 2013, 53, 223–243. [Google Scholar] [CrossRef]
- Kullerud, G. The FeS-ZnS system, a geological thermometer. Nor. Geol. Tidsskr. 1953, 32, 61–147. [Google Scholar]
- Scott, S.D.; Barnes, H.L. Sphalerite geothermometry and geobarometry. Econ. Geol. 1971, 66, 653–669. [Google Scholar] [CrossRef]
- Hutchison, M.N.; Scott, S.D. Sphalerite geobarometry in the Cu–Fe–Zn–S system. Econ. Geol. 1981, 76, 143–153. [Google Scholar] [CrossRef]
- Moles, N.R. Sphalerite composition in relation to deposition and metamorphism of the Foss stratiform Ba-Zn-Pb deposit, Aberfeldy, Scotland. Mineral. Mag. 1983, 47, 487–500. [Google Scholar] [CrossRef] [Green Version]
- Sundblad, K. A genetic reinterpretation of the Falun and Ammeberg ore types, Bergslagen, Sweden. Miner. Depos. 1994, 29, 170–179. [Google Scholar] [CrossRef]
- Brill, B.A. Trace element contents and partitioning of elements in ore minerals from the CSA Cu–Pb–Zn deposit, Australia. Can. Mineral. 1989, 27, 263–274. [Google Scholar]
- Zaw, K.; Large, R.R. Petrology and geochemistry of sphalerite from the Cambrian VHMS deposits in the Roseberry Hercules district, Western Tasmania: Implications for gold mineralisation and Devonian metamorphic-metasomatic processes. Mineral. Petrol. 1996, 57, 97–118. [Google Scholar] [CrossRef]
- Wright, K.; Julian, G. A first principles study of the distribution of iron in sphalerite. Geochim. Cosmochim. Acta 2010, 74, 3514–3520. [Google Scholar] [CrossRef]
- Urabe, T. Iron content of sphalerite coexisting with pyrite from some Kuroko deposits. Soc. Min. Geol. Jpn. Spec. 1974, 377–384. [Google Scholar]
- Hannington, M.D.; Scott, S.D. Sulfidation equilibria as guides to gold mineralization in volcanogenic massive sulfides: Evidence from sulfide mineralogy and the composition of sphalerite. Econ. Geol. 1989, 84, 1978–1995. [Google Scholar] [CrossRef]
- Ames, D.E.; Franklin, J.M.; Hannington, M.D. Mineralogy and geochemistry of active and inactive chimneys and massive sulfide, Middle Valley, northern Juan de Fuca Ridge; an evolving hydrothermal system. Can. Mineral. 1993, 31, 997–1024. [Google Scholar]
- Hill, A.P. Structure, Volcanic Setting, Hydrothermal Alteration and Genesis of the Thalanga Massive Sulphide Deposit. Ph.D. Thesis, University of Tasmania, Hobart, TAS, Australia, 1996. [Google Scholar]
- Hannington, M.D.; Bleeker, W.; Kjarsgaard, I. Sulphide mineralogy, geochemistry, and genesis of the Kidd Creek deposit: Part I. North, Central, and South orebodies. Econ. Geol. Monogr. 1999, 10, 163–224. [Google Scholar]
- Hekinian, R.; Fevrier, M.; Bischoff, J.L.; Picot, P.; Shanks, W.C., III. Sulfide deposits from the East Pacific Rise near 21° N. Science 1980, 207, 1433–1444. [Google Scholar] [CrossRef]
- Peter, J.M.; Scott, S.D. Mineralogy, composition and fluid inclusion microthermometry of seafloor hydrothermal deposits in the southern trough of Guaymas Basin, Gulf of California. Can. Mineral. 1988, 26, 567–587. [Google Scholar]
- Moss, R.; Scott, S.D. Geochemistry and mineralogy of gold-rich hydrothermal precipitates from the eastern Manus Basin, Papua New Guinea. Can. Mineral. 2001, 39, 957–978. [Google Scholar] [CrossRef]
- Styrt, M.M.; Brackmann, A.J.; Holland, H.D.; Clark, B.C.; Pisutha-Arnond, V.; Eldridge, C.S.; Ohmoto, H. The mineralogy and the isotopic composition of sulfur in hydrothermal sulfide/sulfate deposits on the East Pacific Rise, 21° N latitude. Earth Planet. Sci. Lett. 1981, 53, 382–390. [Google Scholar] [CrossRef]
- Zierenberg, R.A.; Shanks, W.C., III; Bischoff, J.L. Massive sulfide deposits at 21° N, East Pacific Rise: Chemical composition, stable isotopes, and phase equilibria. Geol. Soc. Am. Bull. 1984, 95, 922–929. [Google Scholar] [CrossRef]
- Metcalfe, I. Tectonic evolution of the Malay Peninsula. J. Asian Earth Sci. 2013, 76, 195–213. [Google Scholar] [CrossRef]
- Gobbett, D.J.; Hutchison, C.S. Geology of the Malay Peninsula; Wiley-Interscience: New York, NY, USA, 1973; p. 438. [Google Scholar]
- Metcalfe, I. Permian Tectonic Framework and Paleogeography of SE Asia. J. Asian Earth Sci. 2002, 20, 551–566. [Google Scholar] [CrossRef]
- Hutchison, C.S. Geological Evolution of South-East Asia; Geological Society of Malaysia: Kuala Lumpur, Malaysia, 2007; p. 433. [Google Scholar]
- Ghani, A.A. Plutonism. In Geology of Peninsular Malaysia; Hutchison, C.S., Tan, D.N.K., Eds.; University of Malaya and the Geological Society of Malaysia: Kuala Lumpur, Malaysia, 2009; pp. 211–223. [Google Scholar]
- Ghani, A.A. Volcanism. In Geology of Peninsular Malaysia; Hutchison, C.S., Tan, D.N.K., Eds.; University of Malaya and the Geological Society of Malaysia: Kuala Lumpur, Malaysia, 2009; pp. 197–210. [Google Scholar]
- Searle, M.P.; Whitehouse, M.J.; Robb, L.J.; Ghani, A.; Hutchison, C.S.; Sone, M.; Ng, W.P.; Roselee, M.H.; Chung, S.L.; Oliver, G.J.H. Tectonic evolution of the Sibumasu-Indochina terrane collision zone in Thailand and Malaysia constraints from new U -Pb zircon chronology of SE Asian tin granitoids. J. Geol. Soc. Lond. 2012, 169, 489–500. [Google Scholar] [CrossRef]
- MacDonald, S. Geology and Mineral Resources of the Lake Chini-Sungei Bera-Sungei Jeram Area of South-Central Pahang, (Geological Survey Malaysia Map Bulletin 1); Ministry of Lands and Mines: Kuala Lumpur, Malaysia, 1970. [Google Scholar]
- Basori, M.B.I. Geology and Genesis of Volcanic-Hosted Massive Sulphide Deposits in the Tasik Chini District, Central Peninsular Malaysia. Ph.D. Thesis, University of Tasmania, Hobart, TAS, Australia, 2014. [Google Scholar]
- Basori, M.B.I.; Zaw, K.; Meffre, S.; Large, R.R. Geochemistry, geochronology, and tectonic setting of early Permian (~290 Ma) volcanic-hosted massive sulphide deposits of the Tasik Chini district, Peninsular Malaysia. Int. Geol. Rev. 2016, 58, 929–948. [Google Scholar] [CrossRef]
- Hutchinson, R.W. Massive sulphide deposits and their possible significant to other ores in Southeast Asia. Bull. Geol. Soc. Malaysia 1986, 19, 1–22. [Google Scholar] [CrossRef]
- Teh, G.H.; Shahrul, A.A.; Suhaimi, H.M.; Wood, A.K.H. Gold and REE distribution patterns in Tasik Cini volcanogenic massive sulphide deposits. War. Geol. 1991, 17, 159. [Google Scholar]
- Teh, G.H.; Osman, M.H.; Ahmad, S.A.; Aziz, J.H.A. Invisible gold in massive sulphides at Tasik Chini, Pahang. War. Geol. 2004, 30, 33–36. [Google Scholar]
- Basori, M.B.I.; Gilbert, S.; Large, R.R.; Zaw, K. Origin of Fe-Mn ± Si layers associated with the Permian volcanic-hosted massive sulphide deposits in the Tasik Chini district, Peninsular Malaysia. J. Asian Earth Sci. 2020, 192, 104260. [Google Scholar] [CrossRef]
- Sone, M.; Metcalfe, I. Parallel Tethyan sutures in mainland Southeast Asia: New insights for Palaeo-Tethys closure and implications for the Indosinian orogeny. Comptes Rendus Geosci. 2008, 340, 166–179. [Google Scholar] [CrossRef]
- Zaw, K.; Meffre, S.; Lai, C.K.; Santosh, M.; Burrett, F.C.; Graham, I.T.; Manaka, T.; Salam, A.; Kamvong, T.; Cromie, P. Tectonics and metallogeny of mainland SE Asia—A review and contribution. Special issue on tectonics and metallogeny of mainland SE Asia. Gondwana Res. 2014, 26, 5–30. [Google Scholar]
- Sevastjanova, I.; Clements, B.; Hall, R.; Belousova, E.A.; Griffin, W.L.; Pearson, N. Granitic magmatism, basement ages, and provenance indicators in the Malay Peninsula: Insights from detrital zircon U-Pb and Hf-isotope data. Gondwana Res. 2011, 19, 1024–1039. [Google Scholar] [CrossRef]
- Basori, M.B.I.; Zaw, K.; Large, R.R.; Hassan, W.F.W. Sulfur isotope characteristics of the Permian VHMS deposits in Tasik Chini district, Central Belt of Peninsular Malaysia. Turk. J. Earth Sci. 2017, 26, 91–103. [Google Scholar] [CrossRef]
- Basori, M.B.I.; Zaw, K.; Meffre, S.; Large, R.R.; Hassan, W.F.W. Pb-isotope compositions of the Tasik Chini volcanic-hosted massive sulfide deposit, Central Belt of Peninsular Malaysia: Implication for source region and tectonic setting. Isl. Arc. 2017, 26, e12177. [Google Scholar] [CrossRef]
- Basori, M.B.I.; Gilbert, S.; Large, R.R.; Zaw, K. Textures and trace element composition of pyrite from the Bukit Botol volcanic-hosted massive sulphide deposit, Peninsular Malaysia. J. Asian Earth Sci. 2018, 158, 173–185. [Google Scholar] [CrossRef]
- Basori, M.B.I.; Zaw, K.; Mernagh, T.P.; Large, R.R. Microthermometric evidence for the formation of Permian VHMS deposits in Tasik Chini district, Central Belt of Peninsular Malaysia. Ore Geol. Rev. 2019, 111, 102947. [Google Scholar] [CrossRef]
- Helsel, D.R. Nondetects and Data Analysis: Statistics for Censored Environmental Data; Wiley: New York, NY, USA, 2005. [Google Scholar]
- Whitney, D.L.; Evan, B.W. Abbreviations for names of rock-forming minerals. Am. Mineral. 2010, 95, 185–187. [Google Scholar] [CrossRef]
- Scott, S.D.; Kissin, S.A. Sphalerite composition in the Zn-Fe-S system below 300 °C. Econ. Geol. 1973, 68, 475–479. [Google Scholar] [CrossRef]
- Barton, P.B., Jr.; Skinner, B.J. Sulfide mineral stabilities. In Geochemistry of Hydrothermal Ore Deposits; Barnes, H.L., Ed.; Wiley Interscience: New York, NY, USA, 1979; pp. 278–403. [Google Scholar]
- Craig, J.R.; Vaughan, D.J. Ore Microscopy and Ore Petrography, 2nd ed.; Wiley: New York, NY, USA, 1994; p. 434. [Google Scholar]
- Huston, D.L.; Sie, S.H.; Suter, G.F.; Cooke, D.R.; Both, R.A. Trace elements in sulfide minerals from eastern Australian volcanic-hosted massive sulfide deposits: Part I. Proton microprobe analyses of pyrite, chalcopyrite, and sphalerite, and Part II. Selenium levels in pyrite: Comparison with δ34S values and implications for the source of sulfur in volcanogenic hydrothermal systems. Econ. Geol. 1995, 90, 1167–1196. [Google Scholar]
- Kojima, S.; Sugaki, A. Phase relations in the Cu-Fe-Zn-S system between 500° and 300 °C under hydrothermal conditions. Econ. Geol. 1985, 80, 158–171. [Google Scholar] [CrossRef]
- Ciobanu, C.L.; Cook, N.J.; Utsunomiya, S.; Pring, A.; Green, L. Focussed ion beam-transmission electron microscopy applications in ore mineralogy: Bridging micro- and nanoscale observations. Ore Geol. Rev. 2011, 42, 6–31. [Google Scholar] [CrossRef]
- Grammatikopoulos, T.A.; Valeyev, O.; Roth, T. Compositional variation in Hg-bearing sphalerite from the polymetallic Eskay Creek deposit, British Columbia, Canada. Chem. Erde 2006, 66, 307–314. [Google Scholar] [CrossRef]
- Ye, L.; Cook, N.J.; Ciobanu, C.L.; Liu, Y.; Zhang, Q.; Liu, T.; Gao, W.; Yang, Y.; Danyushevskiy, L. Trace and minor elements in sphalerite from base metal deposits in South China: A LA-ICPMS study. Ore Geol. Rev. 2011, 39, 188–217. [Google Scholar] [CrossRef]
- Radosavljević, S.; Stojanović, J.N.; Radosavljević-Mihajlović, A.S.; Vuković, N.S. (Pb–Sb)-bearing sphalerite from the Čumavići polymetallic ore deposit, Podrinje Metallogenic District, East Bosnia and Herzegovina. Ore Geol. Rev. 2016, 72, 253–268. [Google Scholar] [CrossRef]
- Keith, M.; Haase, K.M.; Schwarz-Schampera, U.; Klemd, R.; Petersen, S.; Bach, W. Effects of temperature, sulfur, and oxygen fugacity on the composition of sphalerite from submarine hydrothermal vents. Geology 2014, 42, 699–702. [Google Scholar] [CrossRef]
- Wohlgemuth-Ueberwasser, C.C.; Viljoen, F.; Petersen, S.; Vorster, C. Distribution and solubility limits of trace elements in hydrothermal black smoker sulfides: An in-situ LA-ICP-MS study. Geochim. Cosmochim. Acta 2015, 159, 16–41. [Google Scholar] [CrossRef]
- Schwartz, M.O. Cadmium in zinc deposits: Economic geology of a polluting element. Int. Geol. Rev. 2000, 42, 445–469. [Google Scholar] [CrossRef]
- Wen, H.; Zhu, C.; Zhang, Y.; Cloquet, C.; Fan, H.; Fu, S. Zn/Cd ratios and cadmium isotope evidence for the classification of lead-zinc deposits. Sci. Rep. 2016, 6, 25273. [Google Scholar] [CrossRef] [Green Version]
- Xuexin, S. Minor elements and ore genesis of the Fankou lead-zinc deposit, China. Miner. Depos. 1984, 19, 95–104. [Google Scholar] [CrossRef]
- Fouquet, Y.; Wafic, A.; Cambon, P.; Mevel, C.; Meyer, C.; Gente, P. Tectonic setting and mineralogical and geochemical zonation in the Snake Pit Sulfide Deposit (Mid Atlantic Ridge at 23° N). Econ. Geol. 1993, 88, 2018–2036. [Google Scholar] [CrossRef]
- Sherlock, R.L.; Roth, T.; Spooner, E.T.C.; Bray, C.J. Origin of the Eskay Creek precious metal-rich volcanogenic massive sulfide deposit: Fluid inclusion and stable isotope evidence. Econ. Geol. 1999, 94, 803–824. [Google Scholar] [CrossRef]
Deposit | Bukit Botol | ||||||
---|---|---|---|---|---|---|---|
Ore Type/Sample | MS: BB1d | MS: BB1d−A | MS: BB1d−B | MS: BB1d−C | MS: BB1d−D | MS: BB1d−E | MS: BB1d−F |
No. spot (Average wt%) | 10 | 6 | 10 | 5 | 8 | 5 | 10 |
S | 32.98 | 33.08 | 33.14 | 33.23 | 33.08 | 32.91 | 32.90 |
Pb | <DL | <DL | <DL | 0.02 | <DL | <DL | 0.01 |
Ag | 0.01 | 0.03 | 0.01 | <DL | <DL | 0.04 | 0.02 |
Cu | 0.21 | 0.34 | 0.13 | 0.26 | 0.17 | 0.11 | 0.11 |
Zn | 66.01 | 65.72 | 66.11 | 65.91 | 65.81 | 66.13 | 66.09 |
Sn | <DL | <DL | <DL | <DL | <DL | <DL | <DL |
Sb | <DL | <DL | 0.00 | <DL | 0.01 | <DL | 0.00 |
As | 0.00 | <DL | <DL | <DL | <DL | <DL | <DL |
Mn | 0.00 | <DL | 0.09 | 0.01 | <DL | <DL | 0.01 |
Fe | 0.38 | 0.51 | 0.43 | 0.50 | 0.40 | 0.23 | 0.22 |
Cd | 0.53 | 0.53 | 0.53 | 0.56 | 0.57 | 0.54 | 0.51 |
Average | |||||||
Zn/Mn | 1093 | 0 | 948 | 3395 | 0 | 0 | 2608 |
Zn/Cd | 124 | 124 | 126 | 117 | 115 | 122 | 130 |
Zn/Fe | 176 | 151 | 158 | 147 | 168 | 288 | 310 |
Mole% | |||||||
FeS | 0.64 | 0.85 | 0.72 | 0.83 | 0.67 | 0.39 | 0.37 |
CdS | 0.54 | 0.54 | 0.54 | 0.57 | 0.58 | 0.55 | 0.52 |
CuS | 0.32 | 0.52 | 0 | 0.40 | 0.26 | 0 | 0 |
ZnS | 98.50 | 98.09 | 98.74 | 98.20 | 98.49 | 99.06 | 99.11 |
Deposit | Bukit Botol | ||||||
---|---|---|---|---|---|---|---|
Ore Type/Sample | SZ: BB2b | SZ: BB2b−A | SZ: BB2b−B | SZ: BB2b−C | SZ: BB2b−2A | SZ: BB2b−2B | SZ: BBotolDump−1 |
No. spot (Average wt%) | 3 | 1 | 3 | 3 | 2 | 7 | 5 |
S | 34.21 | 36.07 | 32.89 | 32.71 | 32.70 | 33.03 | 32.81 |
Pb | 0.05 | <DL | <DL | 0.04 | 0.18 | 0.03 | <DL |
Ag | 0.03 | 0.09 | 0.05 | 0.02 | 0.10 | 0.05 | 0.01 |
Cu | 4.09 | 1.26 | 3.85 | 1.89 | 2.81 | 6.39 | 4.37 |
Zn | 53.79 | 54.94 | 58.65 | 62.35 | 60.44 | 53.48 | 57.25 |
Sn | <DL | <DL | <DL | <DL | <DL | <DL | <DL |
Sb | <DL | 0.04 | <DL | <DL | <DL | <DL | 0.01 |
As | <DL | <DL | <DL | <DL | <DL | <DL | 0.01 |
Mn | <DL | 0.01 | <DL | <DL | <DL | <DL | <DL |
Fe | 7.23 | 8.01 | 4.05 | 2.67 | 3.47 | 6.50 | 4.73 |
Cd | 0.22 | 0.24 | 0.24 | 0.26 | 0.28 | 0.23 | 0.22 |
Average | |||||||
Zn/Mn | 0 | 3951 | 0 | 0 | 0 | 0 | 0 |
Zn/Cd | 239 | 229 | 251 | 245 | 216 | 230 | 267 |
Zn/Fe | 12 | 7 | 21 | 23 | 20 | 13 | 16 |
Mole% | |||||||
FeS | 12.12 | 13.73 | 6.74 | 4.43 | 5.77 | 10.79 | 7.89 |
CdS | 0.22 | 0.25 | 0.24 | 0.26 | 0.28 | 0.23 | 0.22 |
CuS | 6.30 | 1.99 | 5.89 | 2.89 | 4.29 | 9.75 | 6.70 |
ZnS | 81.35 | 84.04 | 87.12 | 92.42 | 89.66 | 79.23 | 85.19 |
Deposit | Bukit Ketaya | ||||||||
---|---|---|---|---|---|---|---|---|---|
Ore Type/Sample | MS:BMSE1 | MS:BMSE1−A | MS: BK11A | MS: BK11B | MS: BK11 | MS: BK11−A | MS: BK11−B | MS: BK11−C | MS:BK11−D |
No. spot (Average wt%) | 3 | 3 | 3 | 3 | 4 | 8 | 6 | 10 | 5 |
S | 32.93 | 32.76 | 33.07 | 33.08 | 32.26 | 32.46 | 32.35 | 32.37 | 32.57 |
Pb | <DL | <DL | <DL | <DL | 0.04 | <DL | <DL | <DL | 0.03 |
Ag | <DL | 0.02 | 0.06 | <DL | 0.04 | 0.03 | <DL | 0.01 | 0.02 |
Cu | <DL | 0.19 | <DL | <DL | <DL | <DL | <DL | <DL | <DL |
Zn | 66.63 | 66.45 | 66.59 | 66.64 | 64.70 | 66.04 | 65.89 | 66.21 | 64.91 |
Sn | <DL | <DL | <DL | <DL | <DL | <DL | <DL | <DL | <DL |
Sb | <DL | <DL | 0.02 | <DL | 0.02 | <DL | <DL | <DL | <DL |
As | <DL | <DL | <DL | <DL | 0.01 | <DL | <DL | <DL | <DL |
Mn | <DL | <DL | 0.01 | 0.00 | <DL | <DL | <DL | 0.01 | 0.00 |
Fe | 0.39 | 0.50 | 0.35 | 0.19 | 0.20 | 0.19 | 0.19 | 0.29 | 0.18 |
Cd | 0.23 | 0.25 | 0.18 | 0.20 | 0.21 | 0.21 | 0.20 | 0.20 | 0.20 |
Average | |||||||||
Zn/Mn | 0 | 0 | 3356 | 1610 | 0 | 0 | 0 | 2028 | 692 |
Zn/Cd | 285 | 265 | 371 | 336 | 313 | 321 | 325 | 330 | 337 |
Zn/Fe | 172 | 140 | 195 | 347 | 332 | 356 | 350 | 237 | 370 |
Mole% | |||||||||
FeS | 0.64 | 0.83 | 0.58 | 0.32 | 0.34 | 0.32 | 0.32 | 0.49 | 0.31 |
CdS | 0.23 | 0.25 | 0.18 | 0.20 | 0.22 | 0.22 | 0.21 | 0.20 | 0.21 |
CuS | 0 | 0.29 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
ZnS | 99.13 | 98.62 | 99.23 | 99.48 | 99.44 | 99.46 | 99.47 | 99.31 | 99.48 |
Deposit | Bukit Ketaya | |||||||
---|---|---|---|---|---|---|---|---|
Ore Type/Sample | SZ: BKCL1 | SZ: BKCL1−A | SZ: BKCL1−B | SZ: BKCL1−C | SZ: BKCL1−D | SZ: BKCL1−E | SZ: BKCL1−F | SZ:BK12a |
No. spot (Average wt%) | 6 | 5 | 6 | 7 | 7 | 10 | 4 | 3 |
S | 33.07 | 33.13 | 32.98 | 33.06 | 33.02 | 33.09 | 33.30 | 33.07 |
Pb | <DL | <DL | <DL | <DL | 0.00 | 0.02 | <DL | <DL |
Ag | <DL | <DL | <DL | 0.02 | 0.02 | 0.02 | 0.02 | <DL |
Cu | 0.20 | 0.17 | 0.53 | 0.07 | 0.08 | 0.10 | 0.37 | 0.75 |
Zn | 65.85 | 65.98 | 65.16 | 66.08 | 65.99 | 65.86 | 64.57 | 64.97 |
Sn | <DL | <DL | <DL | <DL | 0.01 | <DL | <DL | <DL |
Sb | <DL | <DL | <DL | <DL | 0.01 | <DL | <DL | <DL |
As | <DL | <DL | <DL | <DL | 0.01 | <DL | <DL | <DL |
Mn | 0.05 | 0.05 | 0.01 | 0.13 | 0.06 | 0.03 | 0.00 | 0.02 |
Fe | 0.64 | 0.55 | 0.83 | 0.53 | 0.58 | 0.52 | 0.71 | 0.87 |
Cd | 0.30 | 0.29 | 0.30 | 0.27 | 0.27 | 0.30 | 0.29 | 0.52 |
Average | ||||||||
Zn/Mn | 1613 | 1405 | 2713 | 529 | 1157 | 1424 | 1193 | 3253 |
Zn/Cd | 230 | 229 | 221 | 246 | 241 | 225 | 225 | 125 |
Zn/Fe | 112 | 122 | 83 | 126 | 117 | 130 | 119 | 77 |
Mole% | ||||||||
FeS | 1.06 | 0.91 | 1.38 | 0.88 | 0.96 | 0.86 | 1.19 | 1.44 |
CdS | 0.30 | 0.29 | 0.30 | 0.27 | 0.27 | 0.30 | 0.30 | 0.52 |
CuS | 0.30 | 0.26 | 0.81 | 0 | 0 | 0 | 0.57 | 1.14 |
ZnS | 98.33 | 98.54 | 97.51 | 98.85 | 98.77 | 98.83 | 97.94 | 96.90 |
Deposit & Ore Types | Zn/Mn Ratio | Zn/Cd Ratio | Zn/Fe Ratio |
---|---|---|---|
Bukit Botol | |||
massive sulphide (n = 7) | 1149 | 123 | 200 |
stringer sulphide (n = 7) | 256 | 240 | 16 |
Bukit Ketaya | |||
massive sulphide (n = 9) | 854 | 320 | 278 |
stringer sulphide (n = 8) | 1161 | 218 | 111 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Basori, M.B.I.; Gilbert, S.E.; Zaw, K.; Large, R.R. Geochemistry of Sphalerite from the Permian Volcanic-Hosted Massive Sulphide (VHMS) Deposits in the Tasik Chini Area, Peninsular Malaysia: Constraints for Ore Genesis. Minerals 2021, 11, 728. https://doi.org/10.3390/min11070728
Basori MBI, Gilbert SE, Zaw K, Large RR. Geochemistry of Sphalerite from the Permian Volcanic-Hosted Massive Sulphide (VHMS) Deposits in the Tasik Chini Area, Peninsular Malaysia: Constraints for Ore Genesis. Minerals. 2021; 11(7):728. https://doi.org/10.3390/min11070728
Chicago/Turabian StyleBasori, Mohd Basril Iswadi, Sarah E. Gilbert, Khin Zaw, and Ross R. Large. 2021. "Geochemistry of Sphalerite from the Permian Volcanic-Hosted Massive Sulphide (VHMS) Deposits in the Tasik Chini Area, Peninsular Malaysia: Constraints for Ore Genesis" Minerals 11, no. 7: 728. https://doi.org/10.3390/min11070728