Guidelines to Study the Adsorption of Pesticides onto Clay Minerals Aiming at a Straightforward Evaluation of Their Removal Performance
Abstract
:1. Introduction
2. Relevant Experimental Conditions
2.1. Solid to Solution Ratio
2.2. Data Treatment
2.3. Adsorption Kinetics
2.4. Pseudo-First Order Model
2.5. Pseudo-Second-Order Model
2.6. Intraparticle Diffusion
2.7. Adsorption Isotherms
2.8. Partition/Distribution Coefficients
2.9. Thermodynamics and the Units Issue
2.10. The Analytical Measurements
3. Natural Homoionic Clay Minerals as Pesticide Adsorbents
4. Organophilic Clay Minerals
5. Intercalated and Pillared Clay Minerals
Adsorption of Pesticides by Intercalated and Pillared Clay Minerals
6. Concluding Remarks
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pimentel, D. Green revolution agriculture and chemical hazards. Sci. Total Environ. 1996, 188, S86–S98. [Google Scholar] [CrossRef]
- Abate, G.; Masini, J.C. Adsorption of atrazine, hydroxyatrazine, deethylatrazine, and deisopropylatrazine onto Fe(III) polyhydroxy cations intercalated vermiculite and montmorillonite. J. Agric. Food Chem. 2005, 53, 1612–1619. [Google Scholar] [CrossRef] [PubMed]
- Horak, I.; Horn, S.; Pieters, R. Agrochemicals in freshwater systems and their potential as endocrine disrupting chemicals: A South African context. Environ. Pollut. 2021, 268, 115718. [Google Scholar] [CrossRef] [PubMed]
- Kaushal, J.; Khatri, M.; Arya, S.K. A treatise on Organophosphate pesticide pollution: Current strategies and advancements in their environmental degradation and elimination. Ecotoxicol. Environ. Saf. 2021, 207, 111483. [Google Scholar] [CrossRef] [PubMed]
- Chow, R.; Scheidegger, R.; Doppler, T.; Dietzel, A.; Fenicia, F.; Stamm, C. A review of long-term pesticide monitoring studies to assess surface water quality trends. Water Res. X 2020, 9, 100064. [Google Scholar] [CrossRef]
- Rigobello-Masini, M.; Pereira, E.A.O.; Abate, G.; Masini, J.C. Solid-Phase Extraction of Glyphosate in the Analyses of Environmental, Plant, and Food Samples. Chromatographia 2019, 82, 1121–1138. [Google Scholar] [CrossRef]
- Undabeytia, T.; Shuali, U.; Nir, S.; Rubin, B. Applications of chemically modified clay minerals and clays to water purification and slow release formulations of herbicides. Minerals 2021, 11, 9. [Google Scholar] [CrossRef]
- Natarelli, C.V.L.; Claro, P.I.C.; Miranda, K.W.E.; Ferreira, G.M.D.; de Oliveira, J.E.; Marconcini, J.M. 2,4-Dichlorophenoxyacetic acid adsorption on montmorillonite organoclay for controlled release applications. SN Appl. Sci. 2019, 1, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Awad, A.M.; Shaikh, S.M.R.; Jalab, R.; Gulied, M.H.; Nasser, M.S.; Benamor, A.; Adham, S. Adsorption of organic pollutants by natural and modified clays: A comprehensive review. Sep. Purif. Technol. 2019, 228, 115719. [Google Scholar] [CrossRef]
- Lelario, F.; Gardi, I.; Mishael, Y.; Dolev, N.; Undabeytia, T.; Nir, S.; Scrano, L.; Bufo, S.A. Pairing micropollutants and clay-composite sorbents for efficient water treatment: Filtration and modeling at a pilot scale. Appl. Clay Sci. 2017, 137, 225–232. [Google Scholar] [CrossRef]
- Shabeer, T.P.A.; Saha, A.; Gajbhiye, V.T.; Gupta, S.; Manjaiah, K.M.; Varghese, E. Simultaneous removal of multiple pesticides from water: Effect of organically modified clays as coagulant aid and adsorbent in coagulation-flocculation process. Environ. Technol. 2014, 35, 2619–2627. [Google Scholar] [CrossRef]
- Amari, A.; Alzahrani, F.M.; Katubi, K.M.; Alsaiari, N.S.; Tahoon, M.A.; Rebah, F. Ben Clay-polymer nanocomposites: Preparations and utilization for pollutants removal. Materials 2021, 14, 1365. [Google Scholar] [CrossRef]
- Infante, C.M.C.; Masini, J.C. Development of a spectrophotometric sequential injection methodology for online monitoring of the adsorption of paraquat on clay mineral and soil. Spectrosc. Lett. 2007, 40, 3–14. [Google Scholar] [CrossRef]
- Guégan, R. Organoclay applications and limits in the environment. C. R. Chim. 2019, 22, 132–141. [Google Scholar] [CrossRef]
- Mdlalose, L.; Balogun, M.; Setshedi, K.; Chimuka, L.; Chetty, A. Adsorption of phosphates using transition metals-modified bentonite clay. Sep. Sci. Technol. 2019, 54, 2397–2408. [Google Scholar] [CrossRef]
- Almasri, D.A.; Rhadfi, T.; Atieh, M.A.; McKay, G.; Ahzi, S. High performance hydroxyiron modified montmorillonite nanoclay adsorbent for arsenite removal. Chem. Eng. J. 2018, 335, 1–12. [Google Scholar] [CrossRef]
- Abate, G.; Masini, J.C. Influence of thermal treatment applied to Fe(III) polyhydroxy cation intercalated vermiculite on the adsorption of atrazine. J. Agric. Food Chem. 2007, 55, 3555–3560. [Google Scholar] [CrossRef]
- Khalaf, H.; Bouras, O.; Perrichon, V. Synthesis and characterization of Al-pillared and cationic surfactant modified Al-pillared Algerian bentonite. Microporous Mater. 1997, 8, 141–150. [Google Scholar] [CrossRef]
- Lenoble, V.; Bouras, O.; Deluchat, V.; Serpaud, B.; Bollinger, J.C. Arsenic adsorption onto pillared clays and iron oxides. J. Colloid Interface Sci. 2002, 255, 52–58. [Google Scholar] [CrossRef]
- do Nascimento, F.H.; de Souza Costa, D.M.; Masini, J.C. Evaluation of thiol-modified vermiculite for removal of Hg(II) from aqueous solutions. Appl. Clay Sci. 2016, 124–125, 227–235. [Google Scholar] [CrossRef]
- Abate, G.; Masini, J.C. Sorption of atrazine, propazine, deethylatrazine, deisopropylatrazine and hydroxyatrazine onto organovermiculite. J. Braz. Chem. Soc. 2005, 16, 936–943. [Google Scholar] [CrossRef]
- Uddin, M.K. A review on the adsorption of heavy metals by clay minerals, with special focus on the past decade. Chem. Eng. J. 2017, 308, 438–462. [Google Scholar] [CrossRef]
- Adewuyi, A.; Oderinde, R.A. Chemically modified vermiculite clay: A means to remove emerging contaminant from polluted water system in developing nation. Polym. Bull. 2019, 76, 4967–4989. [Google Scholar] [CrossRef]
- Leite, S.T.; do Nascimento, F.H.; Masini, J.C. Fe(III)-polyhydroxy cations supported onto K10 montmorillonite for removal of phosphate from waters. Heliyon 2020, 6, e03868. [Google Scholar] [CrossRef]
- Zarpon, L.; Abate, G.; do Santos, L.B.O.; Masini, J.C. Montmorillonite as an adsorbent for extraction and concentration of atrazine, propazine, deethylatrazine, deisopropylatrazine and hydroxyatrazine. Anal. Chim. Acta 2006, 579, 81–87. [Google Scholar] [CrossRef]
- Manzotti, F.; dos Santos, O.A.A. Evaluation of removal and adsorption of different herbicides on commercial organophilic clay. Chem. Eng. Commun. 2019, 206, 1526–1543. [Google Scholar] [CrossRef]
- Organization for Economic Cooperation and Development/OCDE. 106 OECD Guideline for the Testing of Chemicals. Adsorption-Desorption Using Batch Equilibrium Method; OCDE: Paris, France, 2000; pp. 1–44. [Google Scholar]
- Tran, H.N.; You, S.J.; Hosseini-Bandegharaei, A.; Chao, H.P. Mistakes and inconsistencies regarding adsorption of contaminants from aqueous solutions: A critical review. Water Res. 2017, 120, 88–116. [Google Scholar] [CrossRef] [PubMed]
- Lagergren, S.K. About the theory of so-called adsorption of soluble substances. Sven. Vetensk. Handl. 1898, 24, 1–39. [Google Scholar]
- Ho, Y.S.; McKay, G. A Comparison of chemisorption kinetic models applied to pollutant removal on various sorbents. Process Saf. Environ. Prot. 1998, 76, 332–340. [Google Scholar] [CrossRef] [Green Version]
- Abate, G.; Dos Santos, L.B.O.; Colombo, S.M.; Masini, J.C. Sequential injection analysis as a tool for on-line monitoring the sorption of fulvic acid onto modified vermiculite. J. Braz. Chem. Soc. 2006, 17, 491–496. [Google Scholar] [CrossRef]
- Blanchard, G.; Maunaye, M.; Martin, G. Removal of heavy metals from waters by means of natural zeolites. Water Res. 1984, 18, 1501–1507. [Google Scholar] [CrossRef]
- Moussout, H.; Ahlafi, H.; Aazza, M.; Maghat, H. Critical of linear and nonlinear equations of pseudo-first order and pseudo-second order kinetic models. Karbala Int. J. Mod. Sci. 2018, 4, 244–254. [Google Scholar] [CrossRef]
- Tran, H.N.; You, S.J.; Chao, H.P. Thermodynamic parameters of cadmium adsorption onto orange peel calculated from various methods: A comparison study. J. Environ. Chem. Eng. 2016, 4, 2671–2682. [Google Scholar] [CrossRef]
- Lima, É.C.; Adebayo, M.A.; Machado, F.M.; Bergmann, C.P.; Machado, F.M. (Eds.) Carbon Nanostructures as Adsorbents for Environmental and Biological Applications; Springer: Cham, Switzerland, 2015; pp. 33–69. [Google Scholar]
- Weber, W.J.; Morris, J.C. Kinetics of Adsorption on Carbon from Solutions. J. Sanit. Eng. Div. 1963, 89, 31–39. [Google Scholar] [CrossRef]
- Bolster, C.H.; Hornberger, G.M. On the Use of Linearized Langmuir Equations. Soil Sci. Soc. Am. J. 2007, 71, 1796–1806. [Google Scholar] [CrossRef]
- Langmuir, I. The adsorption of gases on plane surfaces of glass, mica and patinum. J. Am. Chem. Soc. 1918, 40, 1361–1403. [Google Scholar] [CrossRef] [Green Version]
- Sposito, G. Derivation of the Freundlich equation for ion exchange reaction in soils. Soil Sci. Soc. Am. J. 1980, 44, 652–654. [Google Scholar] [CrossRef]
- Hall, K.R.; Eagleton, L.C.; Acrivos, A.; Vermeulen, T. Pore- and solid-diffusion kinetics in fixed-bed adsorption under constant-pattern conditions. Ind. Eng. Chem. Fundam. 1966, 5, 212–223. [Google Scholar] [CrossRef]
- Milonjić, S.K. A consideration of the correct calculation of thermodynamic parameters of adsorption. J. Serbian Chem. Soc. 2007, 72, 1363–1367. [Google Scholar] [CrossRef]
- Zhou, X.; Zhou, X. The Unit Problem in the Thermodynamic Calculation of Adsorption Using the Langmuir Equation. Chem. Eng. Commun. 2014, 201, 1459–1467. [Google Scholar] [CrossRef]
- Worch, E. Adsorption Technology in Water Treatment; De Gruyter: Berlin, Germany, 2021; pp. 49–88. [Google Scholar]
- Otalvaro, J.O.; Brigante, M. Interaction of pesticides with natural and synthetic solids. Evaluation in dynamic and equilibrium conditions. Environ. Sci. Pollut. Res. 2018, 25, 6707–6719. [Google Scholar] [CrossRef]
- Azejjel, H.; del Hoyo, C.; Draoui, K.; Rodríguez-Cruz, M.S.; Sánchez-Martín, M.J. Natural and modified clays from Morocco as sorbents of ionizable herbicides in aqueous medium. Desalination 2009, 249, 1151–1158. [Google Scholar] [CrossRef]
- Ait Sidhoum, D.; Socías-Viciana, M.M.; Ureña-Amate, M.D.; Derdour, A.; González-Pradas, E.; Debbagh-Boutarbouch, N. Removal of paraquat from water by an Algerian bentonite. Appl. Clay Sci. 2013, 83–84, 441–448. [Google Scholar] [CrossRef]
- Pateiro-Moure, M.; Nóvoa-Muñoz, J.C.; Arias-Estévez, M.; López-Periago, E.; Martínez-Carballo, E.; Simal-Gándara, J. Quaternary herbicides retention by the amendment of acid soils with a bentonite-based waste from wineries. J. Hazard. Mater. 2009, 164, 769–775. [Google Scholar] [CrossRef]
- Etcheverry, M.; Cappa, V.; Trelles, J.; Zanini, G. Montmorillonite-alginate beads: Natural mineral and biopolymers based sorbent of paraquat herbicides. J. Environ. Chem. Eng. 2017, 5, 5868–5875. [Google Scholar] [CrossRef]
- Wang, M.; Orr, A.A.; He, S.; Dalaijamts, C.; Chiu, W.A.; Tamamis, P.; Phillips, T.D. Montmorillonites Can Tightly Bind Glyphosate and Paraquat Reducing Toxin Exposures and Toxicity. ACS Omega 2019, 4, 17702–17713. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seki, Y.; Yurdakoç, K. Paraquat adsorption onto clays and organoclays from aqueous solution. J. Colloid Interface Sci. 2005, 287, 1–5. [Google Scholar] [CrossRef]
- Shattar, S.F.A.; Zakaria, N.A.; Foo, K.Y. Acid modified natural clay as a judicious solution for the successive treatment of ametryn. Desalin. Water Treat. 2018, 103, 270–279. [Google Scholar] [CrossRef]
- Shattar, S.F.A.; Zakaria, N.A.; Foo, K.Y. Utilization of montmorillonite as a refining solution for the treatment of ametryn, a second generation of pesticide. J. Environ. Chem. Eng. 2017, 5, 3235–3242. [Google Scholar] [CrossRef]
- Shattar, S.F.A.; Zakaria, N.A.; Foo, K.Y.; Undabeytia, T.; Shuali, U.; Nir, S.; Rubin, B.; Sartori, F.; Vidrio, E.; Pimentel, D. Green revolution agriculture and chemical hazards. Minerals 1996, 188, 479–517. [Google Scholar]
- Bouazza, F.; Benguella, B.; Soussi, S. Elimination of pesticides by natural and modified clays. Can. J. Chem. 2018, 96, 975–983. [Google Scholar] [CrossRef]
- Tarazona, J.V.; Court-Marques, D.; Tiramani, M.; Reich, H.; Pfeil, R.; Istace, F.; Crivellente, F. Glyphosate toxicity and carcinogenicity: A review of the scientific basis of the European Union assessment and its differences with IARC. Arch. Toxicol. 2017, 91, 2723–2743. [Google Scholar] [CrossRef] [Green Version]
- Pereira, R.C.; da Costa, A.C.S.; Ivashita, F.F.; Paesano, A.; Zaia, D.A.M. Interaction between glyphosate and montmorillonite in the presence of artificial seawater. Heliyon 2020, 6, e03532. [Google Scholar] [CrossRef] [PubMed]
- Khoury, G.A.; Gehris, T.C.; Tribe, L.; Torres Sánchez, R.M.; dos Santos Afonso, M. Glyphosate adsorption on montmorillonite: An experimental and theoretical study of surface complexes. Appl. Clay Sci. 2010, 50, 167–175. [Google Scholar] [CrossRef]
- Do Nascimento, F.H.; Masini, J.C. Influence of humic acid on adsorption of Hg(II) by vermiculite. J. Environ. Manag. 2014, 143, 1–7. [Google Scholar] [CrossRef]
- Abate, G.; Masini, J.C. Influence of pH and ionic strength on removal processes of a sedimentary humic acid in a suspension of vermiculite. Colloids Surf. A Physicochem. Eng. Asp. 2003, 226, 25–34. [Google Scholar] [CrossRef]
- Shattar, S.F.A.; Zakaria, N.A.; Foo, K.Y. Feasibility of montmorillonite-assisted adsorption process for the effective treatment of organo-pesticides. Desalin. Water Treat. 2016, 57, 13645–13677. [Google Scholar] [CrossRef]
- Leovac, A.; Vasyukova, E.; Ivančev-Tumbas, I.; Uhl, W.; Kragulj, M.; Tričković, J.; Kerkez, D.; Dalmacija, B. Sorption of atrazine, alachlor and trifluralin from water onto different geosorbents. RSC Adv. 2015, 5, 8122–8133. [Google Scholar] [CrossRef]
- Abate, G.; dos Santos, L.B.O.; Colombo, S.M.; Masini, J.C. Removal of fulvic acid from aqueous media by adsorption onto modified vermiculite. Appl. Clay Sci. 2006, 32, 261–270. [Google Scholar] [CrossRef]
- Park, Y.; Sun, Z.; Ayoko, G.A.; Frost, R.L. Removal of herbicides from aqueous solutions by modified forms of montmorillonite. J. Colloid Interface Sci. 2014, 415, 127–132. [Google Scholar] [CrossRef]
- Oiwa, M.; Yamaguchi, K.; Hayashi, H.; Saitoh, T. Rapid sorption of fenitrothion on didodecyldimethylammonium bromide-montmorillonite organoclay followed by the degradation into less toxic 3-methyl-4-nitrophenolate. J. Environ. Chem. Eng. 2020, 8, 104000. [Google Scholar] [CrossRef]
- Giles, C.H.; Smith, D. A general treatment and classification of the solute adsorption isotherm I. Theoretical. J. Collooid Interface Sci. 1974, 47, 755–765. [Google Scholar] [CrossRef]
- Saha, A.; Ahammed, S.T.; Gajbhiye, V.T.; Gupta, S.; Kumar, R. Removal of mixed pesticides from aqueous solutions using organoclays: Evaluation of equilibrium and kinetic model. Bull. Environ. Contam. Toxicol. 2013, 91, 111–116. [Google Scholar] [CrossRef] [PubMed]
- Narayanan, N.; Gupta, S.; Gajbhiye, V.T.; Manjaiah, K.M. Optimization of isotherm models for pesticide sorption on biopolymer-nanoclay composite by error analysis. Chemosphere 2017, 173, 502–511. [Google Scholar] [CrossRef]
- Najafi, H.; Farajfaed, S.; Zolgharnian, S.; Mosavi Mirak, S.H.; Asasian-Kolur, N.; Sharifian, S. A comprehensive study on modified-pillared clays as an adsorbent in wastewater treatment processes. Process Saf. Environ. Prot. 2021, 147, 8–36. [Google Scholar] [CrossRef]
- Galeano, L.A.; Vicente, M.Á.; Gil, A. Catalytic degradation of organic pollutants in aqueous streams by mixed Al/M-pillared clays (M = Fe, Cu, Mn). Catal. Rev. Sci. Eng. 2014, 56, 239–287. [Google Scholar] [CrossRef]
- Roca Jalil, M.E.; Vieira, R.S.; Azevedo, D.; Baschini, M.; Sapag, K. Improvement in the adsorption of thiabendazole by using aluminum pillared clays. Appl. Clay Sci. 2013, 71, 55–63. [Google Scholar] [CrossRef]
- Biswas, B.; Warr, L.N.; Hilder, E.F.; Goswami, N.; Rahman, M.M.; Churchman, J.G.; Vasilev, K.; Pan, G.; Naidu, R. Biocompatible functionalisation of nanoclays for improved environmental remediation. Chem. Soc. Rev. 2019, 48, 3740–3770. [Google Scholar] [CrossRef]
- Khankhasaeva, S.T.; Badmaeva, S.V. Removal of p-aminobenzenesulfanilamide from water solutions by catalytic photo-oxidation over Fe-pillared clay. Water Res. 2020, 185, 116212. [Google Scholar] [CrossRef]
- Matthes, W.; Kahr, G. Sorption of organic compounds by Al and Zr-hydroxy intercalated and pillared bentonite. Clays Clay Miner. 2000, 48, 593–602. [Google Scholar] [CrossRef]
- Herney-Ramirez, J.; Vicente, M.A.; Madeira, L.M. Heterogeneous photo-Fenton oxidation with pillared clay-based catalysts for wastewater treatment: A review. Appl. Catal. B Environ. 2010, 98, 10–26. [Google Scholar] [CrossRef]
- Cardona, Y.; Korili, S.A.; Gil, A. Understanding the formation of Al13 and Al30 polycations to the development of microporous materials based on Al13-and Al30-PILC montmorillonites: A review. Appl. Clay Sci. 2021, 203, 105996. [Google Scholar] [CrossRef]
- Bouras, O.; Bollinger, J.C.; Baudu, M.; Khalaf, H. Adsorption of diuron and its degradation products from aqueous solution by surfactant-modified pillared clays. Appl. Clay Sci. 2007, 37, 240–250. [Google Scholar] [CrossRef]
- Li, J.; Li, Y.; Lu, J. Adsorption of herbicides 2,4-D and acetochlor on inorganic-organic bentonites. Appl. Clay Sci. 2009, 46, 314–318. [Google Scholar] [CrossRef]
- Marco-Brown, J.L.; Barbosa-Lema, C.M.; Torres Sánchez, R.M.; Mercader, R.C.; dos Santos Afonso, M. Adsorption of picloram herbicide on iron oxide pillared montmorillonite. Appl. Clay Sci. 2012, 58, 25–33. [Google Scholar] [CrossRef]
- Undabeytia, T.; Galán-Jiménez, M.C.; Gómez-Pantoja, E.; Vázquez, J.; Casal, B.; Bergaya, F.; Morillo, E. Fe-pillared clay mineral-based formulations of imazaquin for reduced leaching in soil. Appl. Clay Sci. 2013, 80–81, 382–389. [Google Scholar] [CrossRef]
- Marco-Brown, J.L.; Undabeytia, T.; Torres Sánchez, R.M.; dos Santos Afonso, M. Slow-release formulations of the herbicide picloram by using Fe–Al pillared montmorillonite. Environ. Sci. Pollut. Res. 2017, 24, 10410–10420. [Google Scholar] [CrossRef]
- Vercellone, S.Z.; Sham, E.; Torres, E.M.F. Measure of Zeta Potential of Titanium Pillared Clays. Proc. Mater. Sci. 2015, 8, 599–607. [Google Scholar] [CrossRef] [Green Version]
- Abdennouri, M.; Baâlala, M.; Galadi, A.; El Makhfouk, M.; Bensitel, M.; Nohair, K.; Sadiq, M.; Boussaoud, A.; Barka, N. Photocatalytic degradation of pesticides by titanium dioxide and titanium pillared purified clays. Arab. J. Chem. 2016, 9, S313–S318. [Google Scholar] [CrossRef] [Green Version]
- Gil, A.; Assis, F.C.C.; Albeniz, S.; Korili, S.A. Removal of dyes from wastewaters by adsorption on pillared clays. Chem. Eng. J. 2011, 168, 1032–1040. [Google Scholar] [CrossRef]
- Cabrera-Lafaurie, W.A.; Román, F.R.; Hernández-Maldonado, A.J. Transition metal modified and partially calcined inorganic-organic pillared clays for the adsorption of salicylic acid, clofibric acid, carbamazepine, and caffeine from water. J. Colloid Interface Sci. 2012, 386, 381–391. [Google Scholar] [CrossRef]
- Yan, F.; Spyrou, K.; Thomou, E.; Kumar, S.; Cao, H.; Stuart, M.C.A.; Pei, Y.; Gournis, D.; Rudolf, P. Smectite clay pillared with copper complexed polyhedral oligosilsesquioxane for adsorption of chloridazon and its metabolites. Environ. Sci. Nano 2020, 7, 424–436. [Google Scholar] [CrossRef] [Green Version]
- Zielke, R.C.; Pinnavaia, T.J. Modified clays for the adsorption of environmental toxicants: Binding of chlorophenols to pillared, delaminated, and hydroxy-interlayered smectites. Clays Clay Miner. 1988, 36, 403–408. [Google Scholar] [CrossRef]
- Konstantinou, I.K.; Albanis, T.A.; Petrakis, D.E.; Pomonis, P.J. Removal of herbicides from aqueous solutions by adsorption on Al- pillared clays, Fe-Al pillared clays and mesoporous alumina aluminum phosphates. Water Res. 2000, 34, 3123–3136. [Google Scholar] [CrossRef]
- Roca Jalil, M.E.; Baschini, M.; Rodríguez-Castellón, E.; Infantes-Molina, A.; Sapag, K. Effect of the Al/clay ratio on the thiabendazol removal by aluminum pillared clays. Appl. Clay Sci. 2014, 87, 245–253. [Google Scholar] [CrossRef]
- Cardona, Y.; Korili, S.A.; Gil, A. A nonconventional aluminum source in the production of alumina-pillared clays for the removal of organic pollutants by adsorption. Chem. Eng. J. 2021, 425, 130708. [Google Scholar] [CrossRef]
- Zhu, H.Y.; Li, J.Y.; Zhao, J.C.; Churchman, G.J. Photocatalysts prepared from layered clays and titanium hydrate for degradation of organic pollutants in water. Appl. Clay Sci. 2005, 28, 79–88. [Google Scholar] [CrossRef]
- Phuekphong, A.; Imwiset, K.; Ogawa, M. Designing nanoarchitecture for environmental remediation based on the clay minerals as building block. J. Hazard. Mater. 2020, 399, 122888. [Google Scholar] [CrossRef] [PubMed]
- Farghali, R.A.; Basiony, M.S.; Gaber, S.E.; Ibrahim, H.; Elshehy, E.A. Adsorption of organochlorine pesticides on modified porous Al30/bentonite: Kinetic and thermodynamic studies. Arab. J. Chem. 2020, 13, 6730–6740. [Google Scholar] [CrossRef]
Name | Use | Structure | Water Solubility (mol L−1) a | Log KOW b | pKa |
---|---|---|---|---|---|
Paraquat | Herbicide | | 3.32 | 4.50 | - |
Diquat | Herbicide | | 2.09 | 4.6 | - |
Atrazine | Herbicide | | 1.62 × 10−4 | 2.7 | 1.7 |
Propazine | Herbicide | | 3.74 × 10−5 | 3.95 | 1.7 |
Deethylatrazine | Atrazine metabolite | | 0.014 | 1.51 | 1.65 |
Deisopropylatrazine | Atrazine metabolite | | 3.85 × 10−3 | 1.15 | 1.58 |
2-Hydroxyatrazine | Atrazine metabolite | | 3.0 × 10−5 | 2.09 (pH 7.0) | 5.15 |
Ametryn | Herbicide | | 8.81 × 10−4 | 2.63 | 10.07 |
Trifluralin | Herbicide | | 6.59 × 10−7 | 5.27 | - |
Imazaquin | Herbicide | | 0.33 | 1.09 | 3.45 11.03 |
Fenitrothion | Insecticide | | 6.85 × 10−5 | 3.32 | - |
Diuron | Herbicide | | 1.53 × 10−4 | 2.87 | - |
1-(3,4-Dichlorophenyl)urea | | 4.6 × 10−3 | 2.65 | - | |
1-(3,4-Dichlorophenyl)-1-methylurea | Diuron metabolite | | - | 2 | - |
2,4-D | Herbicide | | 0.11 | 1.57 | 3.40 |
Alachlor | Herbicide | | 8.90 × 10−4 | 3.09 | - |
Metolachlor | Herbicide | | 1.87 × 10−3 | 3.40 | - |
Chlorpyriphos | Insecticide | | 3.0 × 10−6 | 4.7 | - |
Fipronil | Insecticide | | 8.65 × 10−6 | 3.75 | - |
α-endosulfan | Insecticide | | 7.86 × 10−7 | 4.74 | - |
Dieldrin | Insecticide | | 5.8 × 10−7 | 5.40 | - |
Endrin | Insecticide | | 5.8 × 10−7 | 5.40 | - |
Imidacloprid | Insecticide | | 2.38 × 10−3 | 0.57 | - |
Thiamethoxam | Insecticide | | 0.014 | 0.13 | - |
Thiabendazole | Fungicide | | 2.48 × 10−4 | 2.47 | 4.64 |
Glyphosate | Herbicide | | 0.062 | 3.2 | 2.0 2.6 5.6 10.6 |
Aminomethyl phosphonic acid | Glyphosate metabolite | | 13.21 | 1.63 | 1.8 5.4 10.0 |
2,4-dichloroaniline | Intermediate in the production of insecticides | | Not soluble | 2.78 | 2.0 |
Clay Mineral | Characterization Techniques | Compounds | Adsorbent Concentration (g L−1)/Contact Time (h) | Kinetic Evaluation | Models for Equilibrium Data Treatment | Removal (%) or Adsorption Capacity (Higher Results) | Reference |
---|---|---|---|---|---|---|---|
Mt | CEC, SSA, XRD | AT, 2,4-D, paraquat, metsulfuron methyl, glyphosate | 0–8.1/6 | No | Langmuir | Paraquat: 457 μmol g−1, Metsulfuron methyl: 56 μmol g−1, 2,4-D: negligible | [44] |
Bt, NSC | CEC, SSA, XRD, TG-DTA, organic carbon | Terbutryn, dicamba, paraquat | 10/24 | No | Langmuir, Freundlich | Paraquat: 100% (Bt), 47% (NSC), Dicamba: 30.6% (Bt), 15.2% (NSC), Terbutryn: 11.3% (Bt), 8.29% (NSC) | [45] |
Bt | CEC, SSA, XRD, XRF, TGA, FTIR | Paraquat | 2.0/24 | No | Langmuir | 111 mg g−1 (403 µmol g−1) | [46] |
Mt | SEM, TGA, XRD, SSA, FTIR, elemental analysis, zeta potential | Paraquat | -/6 | No | Langmuir | 442 μmol g−1 | [48] |
Bt, Sepiolite, Illite | CEC, SSA, XRD, TGA, organic carbon | Paraquat | 2.0/24 | No | Freundlich, Langmuir, Dubinin–Radushkevich | 48 μmol g−1 (sepiolite), 212 μmol g−1 (illite), 165 μmol g−1 (Bt) | [50] |
Mt | SEM, FTIR, SSA, pHzpc | Ametryn | 1.0/6 | Yes | Freundlich, Langmuir, Temkin, | 188.81 mg g−1 (831 µmol g−1) | [52] |
Bt | CEC, XRD, XRF, SSA, FTIR | Decis (deltametrin) | 20/4 | Yes | Freundlich, Langmuir | 36.39–36.74 mg g−1 (72.0–72.7 µmol g−1) | [54] |
Mt, Vt | XRD, SSA, CEC, iron content | AT, DEA, DIA, HAT | 10/24 | No | Freundlich | AT, DIA, HAT: > 99.5% (Mt), DEA: 64-72% (Mt), HAT: > 90% (Vt), AT, DIA: ≈10% (Vt), DEA: negligible (Vt) | [2] |
Mt | pHzpc, FTIR, Mössbauer, XRD, Na, K, Ca, Mg | Glyphosate | 6.0/24 | No | Freundlich, Langmuir, one/two-sites Sips | 85.64 mg g−1 (507 µmol g−1) at pH 7.0 | [56] |
Mt | XRD, XPS, SSA, CEC, SEM, chemical composition | Glyphosate | 10/24 | No | Langmuir | 4.0 ± 0.2 μmol m−2 (2.7 × 103) µmol g−1 at pH 4.0 | [57] |
Clay Mineral | Characterization of the Adsorbents | Compounds | Adsorbent Concentration (g L−1)/Contact Time (h) | Kinetic Evaluation | Models for Equilibrium Data Treatment | Removal (%) or Adsorption Capacities (Higher Results) | Reference |
---|---|---|---|---|---|---|---|
Commercial organophilic Bt | SEM-EDX, SSA, TG-DSC, XRF, FTIR | AT, ametryn, 2,4-D, diuron | 5.0/24 | Yes | Langmuir, Freundlich, Temkin | AT: 10.5, ametryn: 111, diuron: 202, 2,4-D: 29 µmol g−1 | [26] |
Bt and NSC modified with ODTMA, TMA, OTMA | CEC, XRD, SSA, TG-DTA, Organic carbon | Terbutryn, dicamba, paraquat | 10/24 | No | Langmuir, Freundlich | Paraquat: 100% (TMA-Bt), 47% (TMA-NSC), Dicamba: 76.6%, (ODTMA-Bt), 35.5% (ODTMA-NSC), Terbutryn: 95.4% (ODTMA-Bt), 86.5% (ODTMA-NSC) | [45] |
Mt-Alginate | SEM, TGA, XRD, SSA, FTIR, Zeta Potential, elemental, analysis | Paraquat | -/6 | No | Langmuir | 278 μmol g−1 | [48] |
Bt, Sepiolite and Illite modified with DDA and NA | CEC, SSA, XRD, TGA, organic carbon | Paraquat | 2.0/24 | No | Freundlich, Langmuir, Dubinin–Radushkevich | 95 μmol g−1 (Illite-DDA), 223 μmol g−1 (Illite-NA) | [50] |
Kt-TMA, Bt-TMA | CEC, SSA, total organic carbon, elemental analysis | AT, alachlor, trifluralin | 25/548 | No | Freundlich | AT: 69.8% (Bt-TMA), Alachlor: 63.0% (Kt-TMA), Trifluralin: 65.0% (Kt-TMA) | [61] |
Vt-HDTMA | XRD, SSA, iron content, elemental analysis | Fulvic Acid | 10/24 | No | - | 74 and 98% | [62] |
Mt-DDTMA, Mt-DDDMA, Mt-HDTMA | XRD, XPS, SSA, FTIR, TGA | AT, imazaquin | 2.5 and 5.0/12 | Yes | Freundlich, Langmuir, | Imazaquin: 35.3 µmol g−1 (Mt-DDDMA), AT: 12.1 µmol g−1 (Mt-HDTMA) | [63] |
Mt-DDDMA | SEM, SSA, FTIR, XRF, XRD, | Fenitrothion | 0.4/0.25 | No | Freundlich, Langmuir | 68.5 ± 1.2 mg g−1 (247 ± 4 µmol g−1) | [64] |
Mt-ODA, Mt-DMDA, Mt-ODAAPS | FTIR, XRD, SEM-EDX | chlorpyriphos, p,p′-DDT p,p′-DDE, endosulfan sulphate, α- β-endosulfan, alachlor, metolachlor, fipronil | 10/8 | Yes | Freundlich | (In µmol g−1) p,p′-DDT: 1.47, p,p′-DDE: 1.19, Chlorpyriphos: 1.0, α-endosulfan: 0.84, β-endosulfan: 0.698, endosulfan sulphate: 0.61, fipronil: 0.62, alachlor: 0.70, metolachlor: 0.67 | [66] |
Mt-carboxy methyl cellulose-DMDA | XRD, SEM-EDX, FTIR | AT, imidacloprid, thiamethoxam | 10/4 | No | Freundlich, Langmuir | Imidacloprid: 8.82, thiamethoxam: 5.71, AT: 6.63 µmol g−1 | [67] |
Compound | Materials | ||||||||
---|---|---|---|---|---|---|---|---|---|
HDTMA-Vt0.5 | HDTMA-Vt1.0 | KVt | |||||||
1/n | KF | R2 | 1/n | KF | R2 | 1/n | KF | R2 | |
AT | 1.02 ± 0.02 | 102 ± 3 | 0.999 | 1.08 ± 0.01 | 138 ± 2 | 0.999 | 0.90 ± 0.05 | 10.5 ± 0.7 | 0.992 |
PRO | 0.97 ± 0.01 | 214 ± 5 | 0.999 | 0.97 ± 0.02 | 355 ±17 | 0.998 | |||
DEA | 0.97 ± 0.02 | 50 ± 1 | 0.997 | 0.99 ± 0.02 | 81 ± 2 | 0.997 | 0.8 ± 0.2 | 0.45 ± 0.10 | 0.87 |
DIA | 0.98 ± 0.05 | 20 ± 1 | 0.986 | 0.90 ±0.02 | 35 ± 1 | 0.998 | 0.93 ± 0.04 | 16.6 ± 0.8 | 0.994 |
HAT | 1.07 ± 0.01 | 14.8 ± 0.7 | 0.993 | 1.00 ± 0.02 | 21.9 ± 0.4 | 0.998 | 0.51 ± 0.03 | (1.2 ± 0.1) × 103 | 0.997 |
Modified Clay Mineral | Characterization of the Adsorbents | Compounds | Adsorbent Concentration (g L−1)/Contact Time (h) | Kinetic Evaluations | Model for Equilibrium Data Treatment | Removal (%) or Adsorption Capacity (Higher Results) | Reference |
---|---|---|---|---|---|---|---|
Pillared Mt-Fe | XRD, SSA | AT | 10/24 | No | Freundlich | 62.8-99.1% | [17] |
Intercalated Mt-Fe, Vt-Fe | XRD, SSA, CEC, iron content | AT, DEA, DIA, HAT | 10/24 | No | Freundlich | AT, DEA, DIA, HAT: >94% (Mt-Fe), AT: 3375% (Fe-Vt) | [2] |
Pillared Bt-Al13 | XRD, CEC, chemical composition | Thiabendazole | 0.6–2.5/24 | No | Freundlich, Langmuir | 141 µmol g−1 (aged 12 h at 60 °C) 318 µmol g−1 (aged 12 h at 25 °C) | [70] |
Intercalated and pillared Bt-Al13, Bt-Zr | XRD, CEC, SSA, Chemical composition | AT, 3-CA, 3-CP | 20/overnight | No | Freundlich, Langmuir | AT: 92–100%, 67.1 μmol g−1 (Bt-Al) and 117.6 μmol g−1 (Bt-Zr) 3-CA: 14–100%, 3-CP: 10–30% | [73] |
Intercalated Mt-Al13, Mt-Fe, Mt-Ti, modified with CTAB | XRD, SSA, DTA, TGA, CEC, FTIR, surface acidity, Zeta- potential | Diuron, DCPMU, DCPU, DCA | 0.05–0.5/24 | No | Freundlich | Diuron: 15.7, DCPMU: 14.0, DCPU: 6.79, DCA: 6.65 µmol g−1- measured at pH 3.1 and 0.5 g L−1 dispersion | [76] |
Pillared Mt-Fe | XRD, TG-DTA, SSA, SEM, FTIR, elemental analysis, Mössbauer, Zeta-potential | Picloram | 16/48 | No | Freundlich, Langmuir | 380 μmol g−1 at pH 3.0 | [78] |
Pillared Mt-Fe-Al13 modified with cyclodextrins | FTIR, XRD, XRF, SSA | Imazaquin | 1.6/24 | No | - | ≈65 μmol g−1 | [79] |
Pillared Mt-Fe-Al13 modified with cyclodextrins | XRD, SSA, FTIR, SEM-EDX | Picloram | 1.6/24 | No | Freundlich, Langmuir | 380 μmol g−1 | [80] |
Pillared Bt-Al30 | SEM, SSA, XRD | heptachlor epoxide, dieldrin, endrin | 1.0/5 | Yes | Freundlich, Langmuir | Heptachlor epoxide: 0.62, Dieldrin: 0.63, Endrin: 0.62 µmol g−1 | [92] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Masini, J.C.; Abate, G. Guidelines to Study the Adsorption of Pesticides onto Clay Minerals Aiming at a Straightforward Evaluation of Their Removal Performance. Minerals 2021, 11, 1282. https://doi.org/10.3390/min11111282
Masini JC, Abate G. Guidelines to Study the Adsorption of Pesticides onto Clay Minerals Aiming at a Straightforward Evaluation of Their Removal Performance. Minerals. 2021; 11(11):1282. https://doi.org/10.3390/min11111282
Chicago/Turabian StyleMasini, Jorge Cesar, and Gilberto Abate. 2021. "Guidelines to Study the Adsorption of Pesticides onto Clay Minerals Aiming at a Straightforward Evaluation of Their Removal Performance" Minerals 11, no. 11: 1282. https://doi.org/10.3390/min11111282
APA StyleMasini, J. C., & Abate, G. (2021). Guidelines to Study the Adsorption of Pesticides onto Clay Minerals Aiming at a Straightforward Evaluation of Their Removal Performance. Minerals, 11(11), 1282. https://doi.org/10.3390/min11111282