Informed Local Smoothing in 3D Implicit Geological Modeling
Abstract
:1. Introduction
- Preprocessing: Kriging results are largely dependent on the original data configuration. Contradicting data, data strongly varying over different scales and unevenly spaced data can lead to modeling artifacts. Proper cleaning, but also manual selection of used data is often required to achieve acceptable results [19].
2. Materials and Methods
2.1. Ordinary Kriging
2.2. Nugget Effect and Filtered Kriging
2.3. Local Smoothing
2.4. Application in Geomodeling
2.5. Informing Local Smoothing
2.5.1. Manually Informed
2.5.2. Data Informed
2.5.3. Data Configuration-Informed
2.6. Scaling
3. Results
3.1. Model with Regularly Spaced Data
3.1.1. Model with Random Noise
3.1.2. Model with Clustered Random Noise
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Wellmann, F.; Caumon, G. 3-D Structural geological models: Concepts, methods, and uncertainties. In Advances in Geophysics; Nielsen, L., Schmelzbach, C., Eds.; Elsevier Science & Technology: San Diego, CA, USA, 2018; Volume 59, pp. 1–121. [Google Scholar] [CrossRef] [Green Version]
- Ringrose, P.; Bentley, M. (Eds.) Reservoir Model Design: A Practitioner’s Guide, 2nd ed.; Springer International Publishing: Cham, Switzerland, 2021. [Google Scholar] [CrossRef]
- Lajaunie, C.; Courrioux, G.; Manuel, L. Foliation fields and 3D cartography in geology: Principles of a method based on potential interpolation. Math. Geosci. 1997, 29, 571–584. [Google Scholar] [CrossRef]
- Calcagno, P.; Chilès, J.P.; Courrioux, G.; Guillen, A. Geological modelling from field data and geological knowledge. Phys. Earth Planet. Inter. 2008, 171, 147–157. [Google Scholar] [CrossRef]
- Chiles, J.P.; Delfiner, P. Geostatistics: Modeling Spatial Uncertainty, 2nd ed.; Wiley Series in Probability and Statistics; Wiley: Hoboken, NJ, USA, 2012. [Google Scholar]
- De La Varga, M.; Schaaf, A.; Wellmann, F. GemPy 1.0: Open-source stochastic geological modeling and inversion. Geosci. Model Dev. 2019, 12, 1–32. [Google Scholar] [CrossRef] [Green Version]
- Lorensen, W.E.; Cline, H.E. Marching cubes: A high resolution 3D surface construction algorithm. ACM SIGGRAPH Comput. Graph. 1987, 21, 163–169. [Google Scholar] [CrossRef]
- Marquer, D.; Calcagno, P.; Barfety, J.C.; Baudin, T. 3D modeling and kinematics of the external zone of the French Western Alps (Belledonne and Grand Châtelard Massifs, Maurienne Valley, Savoie). Eclogae Geol. Helv. 2006, 99, 211–222. [Google Scholar] [CrossRef]
- Maxelon, M.; Renard, P.; Courrioux, G.; Brändli, M.; Mancktelow, N. A workflow to facilitate three-dimensional geometrical modelling of complex poly-deformed geological units. Comput. Geosci. 2009, 35, 644–658. [Google Scholar] [CrossRef] [Green Version]
- Sue, C.; Calcagno, P.; Courrioux, G.; Tricart, P.; Frechet, J.; Thouvenot, F. Relationships between inherited crustal structures and seismicity in the western Alps inferred from 3D structural modeling. Bull. Soc. Geol. Fr. 2010, 181, 583–590. [Google Scholar] [CrossRef]
- Calcagno, P.; Bouchot, V.; Thinon, I.; Bourgine, B. A new 3D fault model of the Bouillante geothermal province combining onshore and offshore structural knowledge (French West Indies). Tectonophysics 2012, 526–529, 185–195. [Google Scholar] [CrossRef]
- Borghi, A.; Renard, P.; Courrioux, G. Generation of 3D spatially variable anisotropy for groundwater flow simulations. Groundwater 2015, 53, 955–958. [Google Scholar] [CrossRef] [PubMed]
- Joly, A.; Porwal, A.; McCuaig, T.C. Exploration targeting for orogenic gold deposits in the Granites-Tanami Orogen: Mineral system analysis, targeting model and prospectivity analysis. Ore Geol. Rev. 2012, 48, 349–383. [Google Scholar] [CrossRef]
- Wellmann, J.F.; De La Varga, M.; Murdie, R.E.; Gessner, K.; Jessell, M. Uncertainty estimation for a geological model of the Sandstone greenstone belt, Western Australia–insights from integrated geological and geophysical inversion in a Bayesian inference framework. Geol. Soc. Lond. Spec. Publ. 2018, 453, 41–56. [Google Scholar] [CrossRef]
- Güdük, N.; De La Varga, M.; Kaukolinna, J.; Wellmann, F. Model-Based Probabilistic Inversion Using Magnetic Data: A Case Study on the Kevitsa Deposit. Geosciences 2021, 11, 150. [Google Scholar] [CrossRef]
- Krige, D.G. A statistical approach to some basic mine valuation problems on the Witwatersrand. J. S. Afr. Inst. Min. Metall. 1951, 52, 119–139. [Google Scholar]
- Matheron, G. Principles of geostatistics. Econ. Geol. 1963, 58, 1246–1266. [Google Scholar] [CrossRef]
- Wackernagel, H. Multivariate Geostatistics: An Introduction with Applications, 3rd ed.; Completely Revised Edition; Springer: Berlin/Heidelberg, Germany, 2003. [Google Scholar] [CrossRef]
- Webster, R.; Oliver, M.A. Geostatistics for Environmental Scientists, 2nd ed.; Statistics in Practice; Wiley: Chichester, UK, 2007. [Google Scholar]
- Renaudeau, J.; Malvesin, E.; Maerten, F.; Caumon, G. Implicit structural modeling by minimization of the bending energy with moving least squares functions. Math. Geosci. 2019, 51, 693–724. [Google Scholar] [CrossRef]
- Yang, L.; Achtziger-Zupančič, P.; Caers, J. 3D Modeling of Large-Scale Geological Structures by Linear Combinations of Implicit Functions: Application to a Large Banded Iron Formation. Nat. Resour. Res. 2021. [Google Scholar] [CrossRef]
- Chilès, J.P.; Aug, C.; Guillen, A.; Lees, T. Modelling the geometry of geological units and its uncertainty in 3D from structural data: The potential-field method. In Proceedings of the International Symposium on Orebody Modelling and Strategic Mine Planning, Perth, Australia, 24–25 November 2014; pp. 313–320. [Google Scholar]
- Hillier, M.J.; Schetselaar, E.M.; de Kemp, E.A.; Perron, G. Three-Dimensional Modelling of Geological Surfaces Using Generalized Interpolation with Radial Basis Functions. Math. Geosci. 2014, 46, 931–953. [Google Scholar] [CrossRef]
- Pizzella, L.; Lajaunie, C.; Courrioux, G.; Lopez, S.; Freulon, X.; Renard, D.; Bourgine, B. Integrating field interpretations to geological modeling with the potential field method. In Proceedings of the IAMG 2019, International Association of Mathematical Geosciences, State College, PA, USA, 10–16 August 2019. [Google Scholar]
- Wellmann, J.F.; Lindsay, M.; Poh, J.; Jessell, M. Validating 3-D Structural Models with Geological Knowledge for Improved Uncertainty Evaluations. Energy Procedia 2014, 59, 374–381. [Google Scholar] [CrossRef] [Green Version]
- Schaaf, A.; de La Varga, M.; Wellmann, F.; Bond, C.E. Constraining stochastic 3-D structural geological models with topology information using approximate Bayesian computation in GemPy 2.1. Geosci. Model Dev. 2021, 14, 3899–3913. [Google Scholar] [CrossRef]
- Matheron, G. Le krigeage universel (Universal Kriging); Cahiers du Centre de Morphologie Mathematique; Ecole des Mines de Paris: Paris, France, 1969; Volume 1. [Google Scholar]
- Odeha, I.; McBratney, A.B.; Chittleborough, D.J. Spatial prediction of soil properties from landform attributes derived from a digital elevation model. Geoderma 1994, 63, 197–214. [Google Scholar] [CrossRef]
- Monestiez, P.; Meiring, W.; Sampson, P.D.; Guttorp, P. Modelling non-stationary spatial covariance structure from space-time monitoring data. Ciba Found. Symp. 1997, 210, 38–48; discussion 48–51, 68–78. [Google Scholar] [CrossRef]
- Stein, M.L. Nonstationary Spatial Covariance Functions; Technical Report 21; Center for Integrating Statistical and Environmental Science, University of Chicago: Chicago, IL, USA, 2005; Available online: http://www-personal.umich.edu/~jizhu/jizhu/covar/Stein-Summary.pdf (accessed on 8 November 2021).
- Lark, R.M. Kriging a soil variable with a simple nonstationary variance model. J. Agric. Biol. Environ. Stat. 2009, 14, 301–321. [Google Scholar] [CrossRef]
- Yin, J.; Ng, S.H.; Ng, K.M. Kriging metamodel with modified nugget-effect: The heteroscedastic variance case. Comput. Ind. Eng. 2011, 61, 760–777. [Google Scholar] [CrossRef]
- Linsel, A.; Wiesler, S.; Haas, J.; Bär, K.; Hinderer, M. Accounting for Local Geological Variability in Sequential Simulations—Concept and Application. ISPRS Int. J. Geo-Inf. 2020, 9, 409. [Google Scholar] [CrossRef]
- Krivoruchko, K.; Gribov, A.; Hoef, J.M.V. A New Method for Handling the Nugget Effect in Kriging; AAPG Special Volumes; American Association of Petroleum Geologists: Tulsa, OK, USA, 2006. [Google Scholar] [CrossRef]
- Christensen, W.F. Filtered kriging for spatial data with heterogeneous measurement error variances. Biometrics 2011, 67, 947–957. [Google Scholar] [CrossRef] [PubMed]
- van der Walt, S.; Schönberger, J.L.; Nunez-Iglesias, J.; Boulogne, F.; Warner, J.D.; Yager, N.; Gouillart, E.; Yu, T. scikit-image: Image processing in Python. PeerJ 2014, 2, e453. [Google Scholar] [CrossRef]
- Corbel, S.; Wellmann, J.F. Framework for multiple hypothesis testing improves the use of legacy data in structural geological modeling. GeoResJ 2015, 6, 202–212. [Google Scholar] [CrossRef] [Green Version]
- Schweizer, D.; Blum, P.; Butscher, C. Uncertainty assessment in 3-D geological models of increasing complexity. Solid Earth 2017, 8, 515–530. [Google Scholar] [CrossRef] [Green Version]
- Scott, D.W.; Sain, S.R. Multidimensional Density Estimation. Handb. Stat. 2005, 24, 229–261. [Google Scholar] [CrossRef]
- Silverman, B.W. Density Estimation for Statistics and Data Analysis; Routledge: London, UK, 2018. [Google Scholar] [CrossRef]
- Virtanen, P.; Gommers, R.; Oliphant, T.E.; Haberland, M.; Reddy, T.; Cournapeau, D.; Burovski, E.; Peterson, P.; Weckesser, W.; Bright, J.; et al. SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nat. Methods 2020, 17, 261–272. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bashtannyk, D.M.; Hyndman, R.J. Bandwidth selection for kernel conditional density estimation. Comput. Stat. Data Anal. 2001, 36, 279–298. [Google Scholar] [CrossRef] [Green Version]
- Tarantola, A. Inverse Problem Theory and Methods for Model Parameter Estimation; SIAM—Society for Industrial and Applied Mathematics: Philadelphia, PA, USA, 2005. [Google Scholar]
- Carr, J.C.; Beatson, R.K.; Cherrie, J.B.; Mitchell, T.J.; Fright, W.R.; McCallum, B.C.; Evans, T.R. Reconstruction and representation of 3D objects with radial basis functions. In Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques, Los Angeles, CA, USA, 12–17 August 2001; Pocock, L., Ed.; ACM: New York, NY, USA, 2001; pp. 67–76. [Google Scholar] [CrossRef]
- Beatson, R.; Cherrie, J.; Mclennan, T.; Mitchell, T.; Carr, J.; Fright, W.; Mccallum, B. Surface Reconstruction via Smoothest Restricted Range Approximation. Geom. Model. Comput. 2004, 46, 41–52. [Google Scholar]
- Carr, J.C.; Beatson, R.K.; McCallum, B.C.; Fright, W.R.; McLennan, T.J.; Mitchell, T.J. Smooth surface reconstruction from noisy range data. In Proceedings of the 1st International Conference on Computer Graphics and Interactive Techniques in Australasia and South East Asia, Melbourne, Australia, 11–14 February 2003; Adcock, M., Ed.; ACM: New York, NY, USA, 2003; p. 119. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
von Harten, J.; de la Varga, M.; Hillier, M.; Wellmann, F. Informed Local Smoothing in 3D Implicit Geological Modeling. Minerals 2021, 11, 1281. https://doi.org/10.3390/min11111281
von Harten J, de la Varga M, Hillier M, Wellmann F. Informed Local Smoothing in 3D Implicit Geological Modeling. Minerals. 2021; 11(11):1281. https://doi.org/10.3390/min11111281
Chicago/Turabian Stylevon Harten, Jan, Miguel de la Varga, Michael Hillier, and Florian Wellmann. 2021. "Informed Local Smoothing in 3D Implicit Geological Modeling" Minerals 11, no. 11: 1281. https://doi.org/10.3390/min11111281
APA Stylevon Harten, J., de la Varga, M., Hillier, M., & Wellmann, F. (2021). Informed Local Smoothing in 3D Implicit Geological Modeling. Minerals, 11(11), 1281. https://doi.org/10.3390/min11111281