Coincidences of the Concave Integral and the Pan-Integral
Abstract
:1. Introduction
2. Preliminaries
(1) | (∅) = 0; | (vanishing at ∅) |
(2) | whenever and . | (monotonicity) |
3. The Main Results
- (i)
- if μ is superadditive, then , i.e., for each , ;
- (ii)
- if μ is subadditive, then .
4. Concluding Remarks
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Riemann, B. Ueber Die Darstellbarkeit Einer Function Durch Eine Trigonometrische Reihe. Habilitation Thesis, Universität Göttingen, Göttingen, Germany, 1854. (In German). [Google Scholar]
- Lebesgue, H. Intégrale, longueur, aire. Ann. Mat. Pura Appl. 1902, 3, 231–359. [Google Scholar] [CrossRef]
- Kolmogorov, A.N. Foundations of the Theory of Probability; AMS Chelsea Publishing: New York, NY, USA, 1950. [Google Scholar]
- Vitali, G. Sulla definizione di integrale delle funzioni diuna variabile. Ann. Mat. Pura Appl. 1925, 2, 111–121. [Google Scholar] [CrossRef]
- Choquet, G. Theory of capacities. Ann. Inst. Fourier 1953, 5, 131–295. [Google Scholar] [CrossRef]
- Sugeno, M. Theory of Fuzzy Integrals and Its Applications. Ph.D. Thesis, Tokyo Institute of Technology, Tokyo, Japan, 1974. [Google Scholar]
- Shilkret, N. Maxitive measure and integration. Indag. Math. 1971, 33, 109–116. [Google Scholar] [CrossRef]
- Yang, Q. The pan-integral on fuzzy measure space. Fuzzy Math. 1985, 3, 107–114. (In Chinese) [Google Scholar]
- Lehrer, E. A new integral for capacities. Econ. Theory 2009, 39, 157–176. [Google Scholar] [CrossRef]
- Lehrer, E.; Teper, R. Subjective independence and concave expected utility. J. Econ. Theory 2015, 158, 33–53. [Google Scholar] [CrossRef]
- Klement, E.P.; Mesiar, R.; Pap, E. A universal integral as common frame for Choquet and Sugeno integral. IEEE Trans. Fuzzy Syst. 2010, 18, 178–187. [Google Scholar] [CrossRef]
- Even, Y.; Lehrer, E. Decomposition Integral: Unifying Choquet and the Concave Integrals. Econ. Theory 2014, 56, 33–58. [Google Scholar] [CrossRef]
- Lehrer, E.; Teper, R. The concave integral over large spaces. Fuzzy Sets Syst. 2008, 159, 2130–2144. [Google Scholar] [CrossRef]
- Wang, Z.; Klir, G.J. Generalized Measure Theory; Springer: New York, NY, USA, 2009. [Google Scholar]
- Ouyang, Y.; Li, J.; Mesiar, R. Relationship between the concave integrals and the pan-integrals on finite spaces. J. Math. Anal. Appl. 2015, 424, 975–987. [Google Scholar] [CrossRef]
- Mesiar, R.; Li, J.; Ouyang, Y. On the equality of integrals. Inf. Sci. 2017, 393, 82–90. [Google Scholar] [CrossRef]
- Li, J.; Mesiar, R.; Pap, E. Atoms of weakly null-additive monotone measures and integrals. Inf. Sci. 2014, 257, 183–192. [Google Scholar] [CrossRef]
- Pap, E. Null-Additive Set Functions; Kluwer: Dordrecht, The Netherlands, 1995. [Google Scholar]
- Denneberg, D. Non-additive Measure and Integral; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1994. [Google Scholar]
- Kawabe, J. Continuity and compactness of the indirect product of two non-additive measures. Fuzzy Sets Syst. 2009, 160, 1327–1333. [Google Scholar] [CrossRef]
- Teper, R. On the continuity of the concave integral. Fuzzy Sets Syst. 2009, 160, 1318–1326. [Google Scholar] [CrossRef]
- Benvenuti, P.; Mesiar, R.; Vivona, D. Monotone set functions-based integrals. In Handbook of Measure Theory; Pap, E., Ed.; Elsevier: Amsterdam, The Netherlands, 2002; Volume II. [Google Scholar]
- Li, J.; Mesiar, R.; Struk, P. Pseudo-optimal measures. Inf. Sci. 2010, 180, 4015–4021. [Google Scholar] [CrossRef]
- Mesiar, R.; Rybárik, J. Pan-operations structure. Fuzzy Sets Syst. 1995, 74, 365–369. [Google Scholar] [CrossRef]
- Sugeno, M.; Murofushi, T. Pseudo-additive measures and integrals. J. Math. Anal. Appl. 1987, 122, 197–222. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, W.; Klir, G.J. Pan-integrals with respect to imprecise probabilities. Int. J. Gen. Syst. 1996, 25, 229–243. [Google Scholar] [CrossRef]
- Azrieli, Y.; Lehrer, E. Extendable cooperative games. J. Public Econ. Theory 2007, 9, 1069–1078. [Google Scholar] [CrossRef]
- Lovász, L. Submodular functions and convexity. In Mathematical Programming: The State of the Art; Bachem, A., Korte, B., Grotschel, M., Eds.; Springer: Berlin, Germany, 1983; pp. 235–257. [Google Scholar]
- Mesiar, R. A note on de Finetti’s lower probabilities and belief measures. Rend. Mat. Appl. 2008, 28, 229–235. [Google Scholar]
- Grabisch, M. k-order additive discrete fuzzy measures and their representation. Fuzzy Sets Syst. 1997, 92, 167–189. [Google Scholar] [CrossRef]
- Zhang, Q.; Mesiar, R.; Li, J.; Struk, P. Generalized Lebesgue integral. Int. J. Approx. Reason. 2011, 52, 427–443. [Google Scholar] [CrossRef]
- Mesiar, R.; Li, J.; Pap, E. Pseudo-concave integrals. In Advances in Intelligent and Soft Computing; Springer: Berlin/Heidelberg, Germany, 2011; Volume 100, pp. 43–49. [Google Scholar]
- Mesiar, R.; Li, J.; Pap, E. Discrete pseudo-integrals. Int. J. Approx. Reason. 2013, 54, 357–364. [Google Scholar] [CrossRef]
- Kolesárová, A.; Li, J.; Mesiar, R. Pseudo-concave Benvenuti integral. In Communications in Computer and Information Science; Springer: Berlin/Heidelberg, Germany, 2012; Volume 300, pp. 565–570. [Google Scholar]
- Mesiar, R. Choquet-like integrals. J. Math. Anal. Appl. 1995, 194, 477–488. [Google Scholar] [CrossRef]
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ouyang, Y.; Li, J.; Mesiar, R. Coincidences of the Concave Integral and the Pan-Integral. Symmetry 2017, 9, 90. https://doi.org/10.3390/sym9060090
Ouyang Y, Li J, Mesiar R. Coincidences of the Concave Integral and the Pan-Integral. Symmetry. 2017; 9(6):90. https://doi.org/10.3390/sym9060090
Chicago/Turabian StyleOuyang, Yao, Jun Li, and Radko Mesiar. 2017. "Coincidences of the Concave Integral and the Pan-Integral" Symmetry 9, no. 6: 90. https://doi.org/10.3390/sym9060090