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Abstract:



In this note, we discuss when the concave integral coincides with the pan- integral with respect to the standard arithmetic operations + and ·. The subadditivity of the underlying monotone measure is one sufficient condition for this equality. We show also another sufficient condition, which, in the case of finite spaces, is necessary, too.
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1. Introduction


Integrals play a prominent role in almost any area dealing with quantitative information, varying from physics to sociology, including economics or engineering, but also many intelligent systems. The standard calculus is based on the Riemann integral [1]. Note that Riemann has generalized the earlier approaches known from antic Greece, and he has completed the ideas originated by Newton, Leibniz, Cauchy and others. Lebesgue [2] has further generalized this integral, working with [image: there is no content]-additive measures, and thus he has enabled the development of many other theories, first of all the Kolmogorovian probability theory [3]. Even in the Kolmogorov era, there were ideas of integrating some particular non-additive measures, especially outer and inner measures, see [4]. These efforts were completed by the introduction of the Choquet integral [5], which for [image: there is no content]-additive measures coincides with the Lebesgue integral. Further development of integrals based on monotone but non necessarily additive measures was initiated first of all by needs of economy, multicriteria decision support, psychology, sociology, etc., i.e., by needs of branches where the phenomenon of interaction is crucial. Among these new types of integrals (based on monotone measures) are the Sugeno integral [6], Shilkret integral [7], pan-integral [8], and the concave integral introduced by Lehrer [9,10]. Note that there are successful efforts how to axiomatize some types of integrals, see, e.g., the concept of universal integrals from [11], or how to construct integrals, recall the decomposition integrals introduced in [12]. As already mentioned, the Choquet integral generalizes the Lebesgue integral, i.e., for any [image: there is no content]-additive measure [image: there is no content] these integrals coincide. Similarly, when considering a [image: there is no content]-additive measure [image: there is no content], the Lebesgue integral coincides with the pan-integral, as well as with the concave integral. Note that this is not the case of the Shilkret integral neither of the Sugeno integral. Recall also that all three earlier mentioned integrals (Choquet, pan and concave integrals) are decomposition integrals. Namely, the Choquet integral is based on finite chains, the pan-integral is based on finite partition while the concave integral is related to arbitrary finite set systems, for more details see [12]. The aim of this paper is a further discussion of the coincidence of integrals, whose starting point is the above-mentioned fact that, if a [image: there is no content]-additive measure [image: there is no content] is considered, the all four Lebesgue, Choquet, pan and concave integrals coincide. Obviously, for [image: there is no content] which is not [image: there is no content]-additive, the Lebesgue integral is not defined, and the remaining three integrals are different, in general. Nevertheless, for some particular monotone measure [image: there is no content], some of these integrals may coincide.



Lehrer [9,13] discussed the relationship between the concave integral and the Choquet integral, and showed that these two integrals coincide if and only if the underlying capacity [image: there is no content] is convex (also known as supermodular). In [14] the order relationship between the pan-integral (with respect to the usual addition + and usual multiplication ·) and the Choquet integral was shown by using the subadditivity and superadditivity of monotone measures.



We have recently discussed the relationship between the concave integral and the pan-integral on finite spaces [15]. We have introduced the concept of minimal atom of a monotone measure. By means of two important structure characteristics related to minimal atoms: minimal atoms disjoint property and subadditivity for minimal atoms, we have shown a necessary and sufficient condition ensuring that the concave integral coincides with the pan-integral on finite spaces. A research on coincidences of the Choquet integral and the pan-integral on finite space was made by using the minimal atom of monotone measure (see [16]).



We pointed out that in the above-mentioned study we have only considered the case that the underlying space is finite. However, our approach based on minimal atoms does not apply to infinite spaces, see [15].



This paper will focus on the relationship between the concave integrals and pan-integrals on general spaces (not necessarily finite). We shall show that if the underlying monotone measure [image: there is no content] is subadditive, then the concave integral coincides with the pan-integral w.r.t. the usual addition + and usual multiplication ·.




2. Preliminaries


Let X be a nonempty set and [image: there is no content] a [image: there is no content]-algebra of subsets of X. [image: there is no content] denotes the class of all finite nonnegative real-valued measurable functions on the measurable space [image: there is no content]. Unless stated otherwise all the subsets mentioned are supposed to belong to [image: there is no content], and all the functions mentioned are supposed to belong to [image: there is no content].

Definition 1.

([14]) A monotone measure on [image: there is no content] is an extended real valued set function [image: there is no content] satisfying the following conditions:



	(1)
	[image: there is no content](∅) = 0;
	(vanishing at ∅)



	(2)
	[image: there is no content] whenever [image: there is no content] and [image: there is no content].
	(monotonicity)












When [image: there is no content] is a monotone measure, the triple [image: there is no content] is called a monotone measure space ([14,17,18]). In some literature, such a monotone measure [image: there is no content] constrained by the boundary condition [image: there is no content] is also called a capacity or a fuzzy measure or a nonadditive probability, etc.



Let [image: there is no content] be a monotone measure on [image: there is no content]. [image: there is no content] is said to be

	(i)

	
subadditive if [image: there is no content] for any [image: there is no content];




	(ii)

	
superadditive if [image: there is no content] for any [image: there is no content] such that [image: there is no content] ∅ [19];




	(iii)

	
supermodular if [image: there is no content] for any [image: there is no content] [19];




	(iv)

	
continuous from below (resp. from above), if [image: there is no content] whenever [image: there is no content] (resp. whenever [image: there is no content] and [image: there is no content]) ([20]).









In our discussions we concern three types of nonlinear integrals, the Choquet integral, the concave integral and the pan-integral. We recall their definitions.



We consider a given monotone measure space [image: there is no content], and let [image: there is no content], [image: there is no content] denote the indicator function of measurable set A.



The Choquet integral [5] (see also [18,19]) of f on X with respect to [image: there is no content], is defined by


∫Chofdμ=∫0∞μ({x:f(x)≥t})dt,








where the right side integral is the Riemann integral.



Lehrer [13] introduced a new integral known as concave integral (see also [9,21]), as follows:



The concave integral of f on X is defined by


∫cavfdμ=sup{∑i=1nλiμ(Ai):∑i=1nλiχAi≤f,{Ai}i=1n⊂A,λi≥0,n∈N}.











The concept of a pan-integral [8,14] involves two binary operations, the pan-addition ⊕ and pan-multiplication ⊗ of real numbers (see also [14,18,22,23,24,25,26]). In this paper we only consider the pan-integrals with respect to the usual addition + and usual multiplication ·. Note that the general case of pan-integrals is discussed in Concluding Remarks.



The pan-integral of f on X w.r.t. the usual addition + and usual multiplication · (in short, pan-integral), is given by


∫panfdμ=sup{∑i=1nλiμ(Ai):∑i=1nλiχAi≤f,{Ai}i=1n⊂A is apartion of X,λi≥0,n∈N}.











All these integrals are covered by a recent concept of decomposition integrals by Even and Lehrer [12].



Note that the pan-integral is related to finite partitions of X, the concave integral to any finite set systems of measurable subsets of X. The Choquet integral is based on chains of sets, it can be expressed in the following form:


∫Chofdμ=sup{∑i=1nλiμ(Ai):∑i=1nλiχAi≤f,{Ai}i=1n⊂Ais achain,λi≥0,n∈N}.











Comparing above three definitions, it is obvious that for each [image: there is no content],


[image: there is no content]



(1)




and


[image: there is no content]



(2)







In general, [image: there is no content], [image: there is no content].



Example 2.

Let [image: there is no content] (the set of all positive integers). The monotone measure [image: there is no content] is defined by


μ(E)=1if|E|=∞and1∈E,0otherwise.











We take


[image: there is no content]











Then [image: there is no content], and [image: there is no content]. Thus, [image: there is no content], [image: there is no content].





Observe that the Choquet integral and the pan-integral are not comparable.



Example 3.

Let [image: there is no content], and the monotone measure [image: there is no content] be defined as μ(X)=3,μ({1})=μ({2})=1,μ(∅)=0. Let [image: there is no content]. Then


[image: there is no content]








and


[image: there is no content]











Thus, we have [image: there is no content].





Example 4.

Let [image: there is no content], and the monotone measure [image: there is no content] be defined as [image: there is no content] if [image: there is no content]∅ and [image: there is no content]∅)=0. Let [image: there is no content]. Then


[image: there is no content]








and


[image: there is no content]











Thus, [image: there is no content].





The above examples indicate that any two of the three integrals do not coincide, in general. They are significantly different from each other.




3. The Main Results


We consider a given measurable space [image: there is no content], and let [image: there is no content] be the class of all monotone measures defined on [image: there is no content].



For the convenience of our discussion, we denote Chμ(f)=∫Chofdμ, Cavμ(f)=∫cavfdμ and Panμ(f)=∫panfdμ.



In [13] (see also [9,27,28]) the relationship between the the concave integral and the Choquet integral was discussed, as follows:



Theorem 5.

Let [image: there is no content]. Then [image: there is no content], i.e., for each [image: there is no content],


[image: there is no content]








if and only if μ is supermodular, i.e., for any [image: there is no content]


[image: there is no content]













The following results were shown in [14] (Theorems 10.7 and 10.8 in [14]).

Theorem 6.

Let [image: there is no content]. Then

	(i)

	
if μ is superadditive, then [image: there is no content], i.e., for each [image: there is no content], [image: there is no content];




	(ii)

	
if μ is subadditive, then [image: there is no content].













Moreover, we have the following result (see also Mesiar et al. [16]):

Theorem 7.

Let [image: there is no content]. If [image: there is no content], i.e., for each [image: there is no content],


[image: there is no content]








then μ is superadditive.





Proof. 

Observe that [image: there is no content] for any [image: there is no content] and, thus for any A,B⊆X,A∩B=∅, we have


μ(A∪B)=Chμ(χA∪B)=Panμ(χA∪B)=sup{∑i=1kλi·μ(Di)|(Di)i=1kis adisjoint system,λ1,λ2,⋯,λk≥0and∑i=1kλiχAi≤χA∪B}≥μ(A)+μ(B),








i.e., [image: there is no content] is superadditive. ☐





Remark 8.

The converse of Theorem 7 may not be true. Observe that in Example 2, the monotone measure [image: there is no content] is superadditive, but [image: there is no content].







Now we present our main result.

Theorem 9.

Let [image: there is no content]. If μ is subadditive, then [image: there is no content], i.e., for each [image: there is no content],


[image: there is no content]













Proof. 

It suffices to prove that [image: there is no content] holds for any [image: there is no content]. To prove this fact, it suffices to prove that for any [image: there is no content] and [image: there is no content], there is a sequence of pairwise disjoint subsets [image: there is no content] and a sequence of nonnegative numbers [image: there is no content] such that


[image: there is no content]



(3)




and


[image: there is no content]



(4)







For [image: there is no content], observe that


[image: there is no content]











If we let


l1=λ1,l2=λ2,l3=λ1+λ2








and


B1=A1-(A1∩A2),B2=A2-(A1∩A2),B3=A1∩A2,








then


[image: there is no content]











Moreover, thanks to the subadditivity of [image: there is no content], we have


λ1μ(A1)+λ2μ(A2)≤λ1μ(B1)+μ(B3)+λ2μ(B2)+μ(B3)=l1μ(B1)+l2μ(B2)+l3μ(B3).











Now suppose that (3) and (4) hold for [image: there is no content], we need to verify that they are also true for [image: there is no content]. For [image: there is no content], we have


∑i=1k+1λiχAi=∑i=1kλiχAi+λk+1χAk+1=∑j=1N′αjχCj+λk+1χAk+1,








where [image: there is no content] are pairwise disjoint subsets of X, [image: there is no content] with [image: there is no content]. Observe the facts that


[image: there is no content]








and


Ak+1=Ak+1-⋃j=1N′(Ak+1∩Cj)⋃⋃j=1N′(Ak+1∩Cj).











If we let


Bj=Cj-(Cj∩Ak+1),j=1,2,⋯,N′BN′+j=Cj∩Ak+1,j=1,2,⋯,N′,B2N′+1=Ak+1-⋃j=1N′(Ak+1∩Cj)








and let


lj=αj,lN′+j=αj+λk+1,j=1,2,⋯,N′,l2N′+1=λk+1,








then


∑i=1k+1λiχAi=∑j=12N′+1ljχBj








and


∑i=1k+1λiμ(Ai)≤∑j=1N′αjμ(Cj)+λk+1μ(Ak+1)≤∑j=1N′αjμ(Bj)+μ(BN′+j)+λk+1μ(B2N′+1)+∑j=1N′μ(BN′+j)=∑j=1N′αjμ(Bj)+∑j=1N′(αj+λk+1)μ(BN′+j)+λk+1μ(B2N′+1)=∑j=12N′+1ljμ(Bj).












 ☐



The following example shows that the subadditivity in Theorem 9 is not a necessary condition.



Example 10.

Let [image: there is no content] and [image: there is no content] (the Borel [image: there is no content]-algebra over X). Let a monotone measure [image: there is no content] be defined as


[image: there is no content]











Then, for all [image: there is no content]


[image: there is no content]











But [image: there is no content] is not subadditive. Indeed, for any Borel measurable proper subset E of [image: there is no content], we have [image: there is no content].





The next theorem gives another sufficient condition ensuring the coincidence of the pan-integral and concave integral, now covering Example 10, too.



Theorem 11.

Let μ be a monotone measure on [image: there is no content]. If there is a countable partition [image: there is no content] of X, so that [image: there is no content], and


μ(E)≤∑t∈T,Et⊂Eet,∀E∈A,








then the concave integral coincides with the pan-integral with respect to the usual arithmetic operation “+” and “·”.





Proof. 

It is not difficult to check that under the above constraints on [image: there is no content], for any [image: there is no content] it holds


[image: there is no content]








 ☐





Observe that if X is a finite space, then the constraints on [image: there is no content] given in Theorem 11 are also necessary, see [15]. Moreover, consider a lower probability [image: there is no content] on a finite set [image: there is no content] in the sense of de Finetti [29], i.e., there is partition [image: there is no content] of X such that


μ(E1)=e1,μ(E2)=e2,⋯,μ(Er)=er,e1+e2,⋯,er=1,








and for any [image: there is no content] it holds


[image: there is no content]











Note that [image: there is no content] is then a belief measure [14] which is k-additive [30]. Clearly, [image: there is no content] satisfies the constraints of Theorem 11, and thus [image: there is no content]. Moreover, both these integrals coincide in this case also with the Choquet integral, i.e., [image: there is no content]. Note that the case when [image: there is no content] is [image: there is no content]-additive (i.e., a discrete probability measure on X) is a particular subcase of the mentioned class of lower probabilities related to the finest partition of X into the singletons, i.e., when [image: there is no content]. Another particular subclass of de Finetti’s lower probabilities, known from the game theory, is formed by the unanimity games. In that case, for a non-empty subset E of X, we define a monotone measure [image: there is no content] on X as


μE(A)=1ifE⊂A,0otherwise.








and then for all three considered integrals their equal output is [image: there is no content].




4. Concluding Remarks


We have proved the coincidence of the concave integral and the pan-integral w.r.t. the usual addition + and usual multiplication · on general spaces (not necessarily finite spaces) by considering the subadditivity of related monotone measures. However, the subadditivity condition is only sufficient, but not necessary (see Example 10). We have shown also some other sufficient conditions ensuring the discussed coincidence [image: there is no content], including Theorem 11 which in the case of a finite universe X gives also a necessary condition. In general, a complete characterization of capacities [image: there is no content] ensuring the coincidence [image: there is no content] is a challenging open problem.



Note that the pan-integral [8,14] was established based on a special type of commutative isotonic semiring [image: there is no content]. A related concept of generalizing Lebesgue integral based on a generalized ring [image: there is no content] (the commutativity of ⊗ is not required) was proposed and discussed in [31]. On the other hand, Mesiar et al. introduced pseudo-concave integrals [32] (see also [33]) and pseudo-concave Benvenuti integrals [34] by means of the pseudo-addition ⊕ and pseudo-multiplication ⊗ of reals based on a generalized ring [image: there is no content]. Similarly, Choquet-like integrals [35] are based on a particular ring [image: there is no content].



In further research, we shall investigate the relationships among these four integrals on a fixed generalized ring [image: there is no content].
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