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Abstract: In this note, we discuss when the concave integral coincides with the pan- integral with
respect to the standard arithmetic operations + and ·. The subadditivity of the underlying monotone
measure is one sufficient condition for this equality. We show also another sufficient condition,
which, in the case of finite spaces, is necessary, too.
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1. Introduction

Integrals play a prominent role in almost any area dealing with quantitative information, varying
from physics to sociology, including economics or engineering, but also many intelligent systems.
The standard calculus is based on the Riemann integral [1]. Note that Riemann has generalized
the earlier approaches known from antic Greece, and he has completed the ideas originated by
Newton, Leibniz, Cauchy and others. Lebesgue [2] has further generalized this integral, working with
σ-additive measures, and thus he has enabled the development of many other theories, first of all the
Kolmogorovian probability theory [3]. Even in the Kolmogorov era, there were ideas of integrating
some particular non-additive measures, especially outer and inner measures, see [4]. These efforts
were completed by the introduction of the Choquet integral [5], which for σ-additive measures
coincides with the Lebesgue integral. Further development of integrals based on monotone but non
necessarily additive measures was initiated first of all by needs of economy, multicriteria decision
support, psychology, sociology, etc., i.e., by needs of branches where the phenomenon of interaction is
crucial. Among these new types of integrals (based on monotone measures) are the Sugeno integral [6],
Shilkret integral [7], pan-integral [8], and the concave integral introduced by Lehrer [9,10]. Note that
there are successful efforts how to axiomatize some types of integrals, see, e.g., the concept of universal
integrals from [11], or how to construct integrals, recall the decomposition integrals introduced in [12].
As already mentioned, the Choquet integral generalizes the Lebesgue integral, i.e., for any σ-additive
measure µ these integrals coincide. Similarly, when considering a σ-additive measure µ, the Lebesgue
integral coincides with the pan-integral, as well as with the concave integral. Note that this is not the
case of the Shilkret integral neither of the Sugeno integral. Recall also that all three earlier mentioned
integrals (Choquet, pan and concave integrals) are decomposition integrals. Namely, the Choquet
integral is based on finite chains, the pan-integral is based on finite partition while the concave
integral is related to arbitrary finite set systems, for more details see [12]. The aim of this paper is
a further discussion of the coincidence of integrals, whose starting point is the above-mentioned
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fact that, if a σ-additive measure µ is considered, the all four Lebesgue, Choquet, pan and concave
integrals coincide. Obviously, for µ which is not σ-additive, the Lebesgue integral is not defined,
and the remaining three integrals are different, in general. Nevertheless, for some particular monotone
measure µ, some of these integrals may coincide.

Lehrer [9,13] discussed the relationship between the concave integral and the Choquet integral,
and showed that these two integrals coincide if and only if the underlying capacity ν is convex
(also known as supermodular). In [14] the order relationship between the pan-integral (with respect
to the usual addition + and usual multiplication ·) and the Choquet integral was shown by using the
subadditivity and superadditivity of monotone measures.

We have recently discussed the relationship between the concave integral and the pan-integral on
finite spaces [15]. We have introduced the concept of minimal atom of a monotone measure. By means
of two important structure characteristics related to minimal atoms: minimal atoms disjoint property
and subadditivity for minimal atoms, we have shown a necessary and sufficient condition ensuring that
the concave integral coincides with the pan-integral on finite spaces. A research on coincidences of
the Choquet integral and the pan-integral on finite space was made by using the minimal atom of
monotone measure (see [16]).

We pointed out that in the above-mentioned study we have only considered the case that the
underlying space is finite. However, our approach based on minimal atoms does not apply to infinite
spaces, see [15].

This paper will focus on the relationship between the concave integrals and pan-integrals on
general spaces (not necessarily finite). We shall show that if the underlying monotone measure µ is
subadditive, then the concave integral coincides with the pan-integral w.r.t. the usual addition + and
usual multiplication ·.

2. Preliminaries

Let X be a nonempty set and A a σ-algebra of subsets of X. F+ denotes the class of all finite
nonnegative real-valued measurable functions on the measurable space (X,A). Unless stated otherwise
all the subsets mentioned are supposed to belong to A, and all the functions mentioned are supposed
to belong to F+.

Definition 1. ([14]) A monotone measure on A is an extended real valued set function µ : A → [0,+∞]

satisfying the following conditions:
(1) µ(∅) = 0; (vanishing at ∅)
(2) µ(A) ≤ µ(B) whenever A ⊂ B and A, B ∈ F . (monotonicity)

When µ is a monotone measure, the triple (X,A, µ) is called a monotone measure space ([14,17,18]).
In some literature, such a monotone measure µ constrained by the boundary condition µ(X) = 1 is
also called a capacity or a fuzzy measure or a nonadditive probability, etc.

Let µ be a monotone measure on (X,A). µ is said to be

(i) subadditive if µ(A ∪ B) ≤ µ(A) + µ(B) for any A, B ∈ A;
(ii) superadditive if µ(A ∪ B) ≥ µ(A) + µ(B) for any A, B ∈ A such that A ∩ B = ∅ [19];

(iii) supermodular if µ(A ∪ B) + µ(A ∩ B) ≥ µ(A) + µ(B) for any A, B ∈ A [19];
(iv) continuous from below (resp. from above), if limn→∞ µ(En) = µ(E) whenever En ↗ E (resp.

whenever En ↘ E and µ(E1) < ∞) ([20]).

In our discussions we concern three types of nonlinear integrals, the Choquet integral, the concave
integral and the pan-integral. We recall their definitions.

We consider a given monotone measure space (X,A, µ), and let f ∈ F+, χA denote the indicator
function of measurable set A.
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The Choquet integral [5] (see also [18,19]) of f on X with respect to µ, is defined by

∫ Cho
f dµ =

∫ ∞

0
µ({x : f (x) ≥ t}) dt,

where the right side integral is the Riemann integral.
Lehrer [13] introduced a new integral known as concave integral (see also [9,21]), as follows:
The concave integral of f on X is defined by

∫ cav
f dµ = sup

{ n

∑
i=1

λiµ(Ai) :
n

∑
i=1

λiχAi ≤ f ,

{Ai}n
i=1 ⊂ A, λi ≥ 0, n ∈ N

}
.

The concept of a pan-integral [8,14] involves two binary operations, the pan-addition ⊕ and
pan-multiplication ⊗ of real numbers (see also [14,18,22–26]). In this paper we only consider the
pan-integrals with respect to the usual addition + and usual multiplication ·. Note that the general
case of pan-integrals is discussed in Concluding Remarks.

The pan-integral of f on X w.r.t. the usual addition + and usual multiplication · (in short,
pan-integral), is given by

∫ pan
f dµ = sup

{ n

∑
i=1

λiµ(Ai) :
n

∑
i=1

λiχAi ≤ f ,

{Ai}n
i=1 ⊂ A is a partition of X, λi ≥ 0, n ∈ N

}
.

All these integrals are covered by a recent concept of decomposition integrals by Even and
Lehrer [12].

Note that the pan-integral is related to finite partitions of X, the concave integral to any finite
set systems of measurable subsets of X. The Choquet integral is based on chains of sets, it can be
expressed in the following form:

∫ Cho
f dµ = sup

{ n

∑
i=1

λiµ(Ai) :
n

∑
i=1

λiχAi ≤ f ,

{Ai}n
i=1 ⊂ A is a chain, λi ≥ 0, n ∈ N

}
.

Comparing above three definitions, it is obvious that for each f ∈ F+,∫ cav
f dµ ≥

∫ pan
f dµ (1)

and ∫ cav
f dµ ≥

∫ Cho
f dµ. (2)

In general,
∫ cav f dµ 6=

∫ pan f dµ,
∫ cav f dµ 6=

∫ Cho f dµ.

Example 2. Let X = N (the set of all positive integers). The monotone measure µ : 2N → [0, 1] is
defined by

µ(E) =

{
1 if |E| = ∞ and 1 ∈ E,

0 otherwise.

We take

f (x) =

{
2, if x = 1;
1, if x = 2, 3, . . . .
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Then
∫ cav f dµ = 2, and

∫ pan f dµ =
∫ Cho f dµ = 1. Thus,

∫ cav f dµ 6=
∫ pan f dµ,

∫ cav f dµ 6=
∫ Cho f dµ.

Observe that the Choquet integral and the pan-integral are not comparable.

Example 3. Let X = {1, 2},A = 2X, and the monotone measure µ be defined as µ(X) = 3,
µ({1}) = µ({2}) = 1, µ(∅) = 0. Let f (x) = x. Then

∫ Cho
f dµ = µ(X) + µ({2}) = 4

and ∫ pan
f dµ = max

(
µ(X), µ({1}) + 2µ({2})

)
= 3.

Thus, we have
∫ Cho f dµ >

∫ pan f dµ.

Example 4. Let X = {1, 2},A = 2X, and the monotone measure µ be defined as µ(A) = 1 if A 6= ∅
and µ(∅) = 0. Let f (x) = x. Then

∫ Cho
f dµ = µ(X) + µ({2}) = 2

and ∫ pan
f dµ = max

(
µ(X), µ({1}) + 2µ({2})

)
= 3.

Thus,
∫ Cho f dµ <

∫ pan f dµ.

The above examples indicate that any two of the three integrals do not coincide, in general.
They are significantly different from each other.

3. The Main Results

We consider a given measurable space (X,A), and letM be the class of all monotone measures
defined on (X,A).

For the convenience of our discussion, we denote Chµ( f ) =
∫ Cho f dµ, Cavµ( f ) =

∫ cav f dµ and
Panµ( f ) =

∫ pan f dµ.
In [13] (see also [9,27,28]) the relationship between the the concave integral and the Choquet

integral was discussed, as follows:

Theorem 5. Let µ ∈ M. Then Cavµ ≡ Chµ, i.e., for each f ∈ F+,

∫ cav
f dµ =

∫ Cho
f dµ

if and only if µ is supermodular, i.e., for any A, B ∈ A

µ(A ∪ B) + µ(A ∩ B) ≥ µ(A) + µ(B).

The following results were shown in [14] (Theorems 10.7 and 10.8 in [14]).
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Theorem 6. Let µ ∈ M. Then

(i) if µ is superadditive, then Panµ ≤ Chµ, i.e., for each f ∈ F+, Panµ( f ) ≤ Chµ( f );
(ii) if µ is subadditive, then Panµ ≥ Chµ.

Moreover, we have the following result (see also Mesiar et al. [16]):

Theorem 7. Let µ ∈ M. If Panµ ≡ Chµ, i.e., for each f ∈ F+,

∫ pan
f dµ =

∫ Cho
f dµ,

then µ is superadditive.

Proof. Observe that Chµ(χE) = µ(E) for any E ⊆ X and, thus for any A, B ⊆ X, A ∩ B = ∅, we have

µ(A ∪ B) = Chµ(χA∪B) = Panµ(χA∪B)

= sup
{ k

∑
i=1

λi · µ(Di) | (Di)
k
i=1 is a disjoint system,

λ1, λ2, · · · , λk ≥ 0 and
k

∑
i=1

λiχAi ≤ χA∪B

}
≥ µ(A) + µ(B),

i.e., µ is superadditive.

Remark 8. The converse of Theorem 7 may not be true. Observe that in Example 2, the monotone
measure µ is superadditive, but

∫ Cho f dµ >
∫ pan f dµ.

Now we present our main result.

Theorem 9. Let µ ∈ M. If µ is subadditive, then Cavµ ≡ Panµ, i.e., for each f ∈ F+,∫ pan
f dµ =

∫ cav
f dµ.

Proof. It suffices to prove that
∫ pan f dµ ≥

∫ cav f dµ holds for any f ∈ F+. To prove this fact, it suffices
to prove that for any {Ai}N

i=1 ⊂ A and λi ≥ 0, i = 1, 2, . . . , N, there is a sequence of pairwise disjoint
subsets

{
Bj
}M

j=1 ⊂ A and a sequence of nonnegative numbers lj, j = 1, 2, . . . , M such that

N

∑
i=1

λiχAi =
M

∑
j=1

ljχBj (3)

and
N

∑
i=1

λiµ(Ai) ≤
M

∑
j=1

ljµ(Bj). (4)

For N = 2, observe that

λ1χA1 + λ2χA2 = λ1χA1−(A1∩A2)
+ λ2χA2−(A1∩A2)

+ (λ1 + λ2)χA1∩A2 .
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If we let
l1 = λ1, l2 = λ2, l3 = λ1 + λ2

and
B1 = A1 − (A1 ∩ A2), B2 = A2 − (A1 ∩ A2), B3 = A1 ∩ A2,

then
2

∑
i=1

λiχAi =
3

∑
j=1

ljχBj .

Moreover, thanks to the subadditivity of µ, we have

λ1µ(A1) + λ2µ(A2)

≤ λ1 (µ(B1) + µ(B3)) + λ2 (µ(B2) + µ(B3))

= l1µ(B1) + l2µ(B2) + l3µ(B3).

Now suppose that (3) and (4) hold for N = k, we need to verify that they are also true for
N = k + 1. For ∑k+1

i=1 λiχAi , we have

k+1

∑
i=1

λiχAi =
k

∑
i=1

λiχAi + λk+1χAk+1

=
N
′

∑
j=1

αjχCj + λk+1χAk+1 ,

where Cj, j = 1, 2, . . . , N
′

are pairwise disjoint subsets of X, αj ≥ 0 with ∑k
i=1 λiµ(Ai) ≤ ∑N

′

j=1 αjµ(Cj).
Observe the facts that

Cj =
(
Cj − (Cj ∩ Ak+1)

)⋃
(Cj ∩ Ak+1)

and

Ak+1 =

Ak+1 −
N
′⋃

j=1

(Ak+1 ∩ Cj)

⋃ N
′⋃

j=1

(Ak+1 ∩ Cj)

 .

If we let

Bj = Cj − (Cj ∩ Ak+1), j = 1, 2, . . . , N
′

BN′+j = Cj ∩ Ak+1, j = 1, 2, . . . , N
′
,

B2N′+1 = Ak+1 −
N
′⋃

j=1

(Ak+1 ∩ Cj)

and let
lj = αj, lN′+j = αj + λk+1, j = 1, 2, . . . , N

′
, l2N′+1 = λk+1,

then
k+1

∑
i=1

λiχAi =
2N
′
+1

∑
j=1

ljχBj
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and

k+1

∑
i=1

λiµ(Ai)

≤
N
′

∑
j=1

αjµ(Cj) + λk+1µ(Ak+1)

≤
N
′

∑
j=1

αj

(
µ(Bj) + µ(BN′+j)

)

+λk+1

µ(B2N′+1) +
N
′

∑
j=1

µ(BN′+j)


=

N
′

∑
j=1

αjµ(Bj) +
N
′

∑
j=1

(αj + λk+1)µ(BN′+j) + λk+1µ(B2N′+1)

=
2N
′
+1

∑
j=1

ljµ(Bj).

The following example shows that the subadditivity in Theorem 9 is not a necessary condition.

Example 10. Let X = [0, 1] and A = B(X) (the Borel σ-algebra over X). Let a monotone measure µ be
defined as

µ(E) =

{
1 if E = X,

0 if E 6= X.

Then, for all f ∈ F+∫ cav
f dµ =

∫ pan
f dµ =

∫ Cho
f dµ = inf{ f (x)|x ∈ X}.

But µ is not subadditive. Indeed, for any Borel measurable proper subset E of A, we have
µ(E ∪ Ec) = µ(X) = 1 > 0 = µ(E) + µ(Ec).

The next theorem gives another sufficient condition ensuring the coincidence of the pan-integral
and concave integral, now covering Example 10, too.

Theorem 11. Let µ be a monotone measure on (X,A). If there is a countable partition {Et | t ∈ T} ⊂ A of X,
so that et = µ(Et), t ∈ T, and

µ(E) ≤ ∑
t∈T,Et⊂E

et, ∀E ∈ A,

then the concave integral coincides with the pan-integral with respect to the usual arithmetic operation “ + ”
and “ · ”.

Proof. It is not difficult to check that under the above constraints on µ, for any f ∈ F+ it holds∫ cav
f dµ =

∫ pan
f dµ = ∑

t∈T
et · inf{ f (x)|x ∈ Et}.
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Observe that if X is a finite space, then the constraints on µ given in Theorem 11 are also necessary,
see [15]. Moreover, consider a lower probability µ on a finite set X = {1, 2, . . . , n} in the sense of de
Finetti [29], i.e., there is partition {E1, E2, · · · , Er} of X such that

µ(E1) = e1, µ(E2) = e2, · · · , µ(Er) = er, e1 + e2, · · · , er = 1,

and for any E ⊂ X it holds
µ(E) = ∑

1≤i≤r,Ei⊂E
ei.

Note that µ is then a belief measure [14] which is k-additive [30]. Clearly, µ satisfies the constraints
of Theorem 11, and thus Cavµ = Panµ. Moreover, both these integrals coincide in this case also with
the Choquet integral, i.e., Chµ = Cavµ = Panµ. Note that the case when µ is σ-additive (i.e., a discrete
probability measure on X) is a particular subcase of the mentioned class of lower probabilities
related to the finest partition of X into the singletons, i.e., when E1 = {1}, E2 = {2}, · · · , En = {n}.
Another particular subclass of de Finetti’s lower probabilities, known from the game theory, is formed
by the unanimity games. In that case, for a non-empty subset E of X, we define a monotone measure
µE on X as

µE(A) =

{
1 if E ⊂ A,

0 otherwise.

and then for all three considered integrals their equal output is min{ f (i) | i ∈ E}.

4. Concluding Remarks

We have proved the coincidence of the concave integral and the pan-integral w.r.t. the usual
addition + and usual multiplication · on general spaces (not necessarily finite spaces) by considering the
subadditivity of related monotone measures. However, the subadditivity condition is only sufficient,
but not necessary (see Example 10). We have shown also some other sufficient conditions ensuring the
discussed coincidence Cavµ = Panµ, including Theorem 11 which in the case of a finite universe X
gives also a necessary condition. In general, a complete characterization of capacities µ ensuring the
coincidence Cavµ = Panµ is a challenging open problem.

Note that the pan-integral [8,14] was established based on a special type of commutative isotonic
semiring (R+,⊕,⊗). A related concept of generalizing Lebesgue integral based on a generalized ring
(R+,⊕,⊗) (the commutativity of ⊗ is not required) was proposed and discussed in [31]. On the
other hand, Mesiar et al. introduced pseudo-concave integrals [32] (see also [33]) and pseudo-concave
Benvenuti integrals [34] by means of the pseudo-addition ⊕ and pseudo-multiplication ⊗ of reals
based on a generalized ring (R+,⊕,⊗). Similarly, Choquet-like integrals [35] are based on a particular
ring (R+,⊕,⊗).

In further research, we shall investigate the relationships among these four integrals on a fixed
generalized ring (R+,⊕,⊗).
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