Exact Solutions of Maxwell Vacuum Equations in Petrov Homogeneous Non-Null Spaces
Abstract
1. Introduction
2. Non-Null Petrov Spaces
- A semi-geodetic coordinate system, in which the metric tensor of the space has the form:
- The equations of the structure:
- Using the functions , the components of the tensor can be found by integrating the Killing equations:As is known, the metric tensor of the non-null homogeneous Petrov space can also be defined using a triad of vectors of the canonical frame , satisfying the equations of the structure:In the same coordinate system the vector fields are interconnected by equations(see [81] (p. 484)) Therefore, the classification by the Petrov method should be supplemented by a final stage:
- Classification of all independent solutions of the Equation (6).
- All solutions of Maxwell vacuum equations have been obtained in explicit form and classified. The common solution scheme have been used for all groups of motions, which made it possible to significantly simplify the solution procedure and further simplify and systematize the previously obtained solutions.
- The classification of exact solutions of Maxwell vacuum equations for Petrov spaces with an unsolvable group of motions has been supplemented by the classification for two new Petrov spaces.
- Section 6 provides a complete list of the solutions obtained.
3. Maxwell Vacuum Equations in the Canonical Frame
- I.
- Spaces with solvable groups of motions
- II.
- Spaces with solvable groups of motions
- III.
- Spaces with non-solvable groups of motions
- –
- for the group ;
- –
- for the group ;
- –
- for the group .
4. Solutions of Maxwell Equations for Groups
4.1. Group (I)
4.2. Group (II)
4.3. Group (III)
- 1
- is an arbitrary function.
- 2
- is an arbitrary function.
- 1
- 2
- is an arbitrary function.
- 1
- 2
5. Solutions of Maxwell Equations for the Groups (III < N < VIII)
5.1. Group
- 1
- 2
- 3
- 4
- 5
- is an arbitrary function.
- 6
- is an arbitrary function.
- 1
- 2
5.2. Groups
5.3. Group
- 1
- 2
- 1
- (a)
- (b)
- 2
- is an arbitrary function,
- 1
- ,
- 2
- .
6. Solutions of Maxwell Equations for Unsolvable Groups
6.1. Group (VIII)
6.2. Group (IX)
7. List of Results
7.1. Solutions for the Group (I)
- 1.
- are arbitrary functions, p, q = 1, 2.
7.2. Solutions for the Group (II)
- 2.
- are arbitrary functions,
- 3.
- are arbitrary functions,
- 4.
- are arbitrary functions,
7.3. Solutions for the Group (III)
- 5.
- are arbitrary functions .
- 6.
- are arbitrary functions.
- 7.
- are arbitrary functions,
- 8.
- 9.
- .
- 10.
- 11.
7.4. Solutionsfor the Group (IV)
- 12.
- 13.
- 14.
- 15.
- is an arbitrary function,
- 16.
- is an arbitrary function,
- 17.
- is an arbitrary function,
- 18.
- 19.
- is an arbitrary function,
7.5. Solutions for the Groups (V) and (VI)
- 20.
- 21.
- 22.
- 23.
- 24.
7.6. Solutions for the Group
- 25.
- 26.
- 27.
- 28.
- 29.
- 30.
- 31.
- 32.
- .
- 33.
- .
- 34.
- .
7.7. Solutions for the Group
- 35.
- 36.
- is an arbitrary function.
- 37.
- are arbitrary functions,
- 38.
- are arbitrary functions,
- 39.
- is an arbitrary function,
- 40.
- is an arbitrary function,
- 41.
- are arbitrary functions,
7.8. Solutions for the Group
- 42.
- is an arbitrary function.
- 43.
- is an arbitrary function,
- 44.
- are arbitrary functions,
8. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Stäckel, P. Uber die intagration der Hamiltonschen differentialechung mittels separation der variablen. Math. Ann. 1897, 49, 145–147. [Google Scholar] [CrossRef]
- Eisenhart, L.P. Separable systems of stackel. Ann. Math. 1934, 35, 284–305. [Google Scholar] [CrossRef]
- Levi-Civita, T. Sulla Integraziome Della Equazione Di Hamilton-Jacobi Per Separazione Di Variabili. Math. Ann. 1904, 59, 383–397. [Google Scholar] [CrossRef]
- Jarov-Jrovoy, M.S. Integration of Hamilton-Jacobi equation by complete separation of variables method. J. Appl. Math. Mech. 1963, 27, 173–219. [Google Scholar] [CrossRef]
- Carter, B. New family of Einstein spaces. Phys. Lett. 1968, 26, 399–400. [Google Scholar] [CrossRef]
- Shapovalov, V.N. Symmetry and separation of variables in the Hamilton-Jacobi equation.I. Sov. Phys. J. 1978, 21, 1124–1132. [Google Scholar] [CrossRef]
- Shapovalov, V.N. Stackel’s spaces. Sib. Math. J. 1979, 20, 1117–1130. [Google Scholar] [CrossRef]
- Shapovalov, V.N. Symmetry of motion equations of free particle in riemannian space. Sov. Phys. J. 1975, 18, 1650–1654. [Google Scholar] [CrossRef]
- Miller, W. Symmetry and Separation of Variables; Cambridge University Press: Cambridge, UK, 1984; 318p. [Google Scholar]
- Petrov, A.Z. Einstein Spaces; Pergamon Press: Los Angeles, CA, USA, 1969; 494p. [Google Scholar]
- Petrov, A.Z. New Methods in General Relativity; Nauka: Moscow, Russia, 1966; 496p. (In Russian) [Google Scholar]
- Obukhov, V.V. Classification of Petrov homogeneous spaces. Symmetry 2024, 16, 1385. [Google Scholar] [CrossRef]
- Shapovalov, V.N.; Eckle, G.G. Separation of Variables in the Dirac Equation. Sov. Phys. J. 1973, 16, 818–823. [Google Scholar] [CrossRef]
- Shapovalov, V.N. Symmetry and separation of variables in a linear second-order differential equation I. Sov. Phys. J. 1978, 21, 645–650. [Google Scholar] [CrossRef]
- Shapovalov, V.N. Symmetry and separation of variables in a linear second-order differential equation II. Sov. Phys. J. 1978, 21, 693–695. [Google Scholar] [CrossRef]
- Bagrov, V.G.; Meshkov, A.G.; Shapovalov, V.N.; Shapovalov, A.V. Separation of variables in the Klein-Gordon equations I. Sov. Phys. J. 1973, 16, 1533–1538. [Google Scholar] [CrossRef]
- Bagrov, V.G.; Meshkov, A.G.; Shapovalov, V.N.; Shapovalov, A.V. Separation of variables in the Klein-Gordon equations II. Sov. Phys. J. 1973, 16, 1659–1665. [Google Scholar] [CrossRef]
- Bagrov, V.G.; Meshkov, A.G.; Shapovalov, V.N.; Shapovalov, A.V. Separation of variables in the Klein-Gordon equations III. Sov. Phys. J. 1974, 17, 812–815. [Google Scholar] [CrossRef]
- Obukhov, V.V.; Osetrin, K.E.; Shapovalov, A.V. Comments on the article M.O. Katanaev, Complete separation of variables in the geodesic Hamilton-Jacobi equation in four dimensions. Phys. Scr. 2023, 98, 104001. [Google Scholar] [CrossRef]
- Obukhov, V.V. Separation of variables in Hamilton-Jacobi and Klein-Gordon-Fock equations for a charged test particle in the Stäckel spaces of type (1.1). Int. J. Geom. Meth. Mod. Phys. 2021, 18, 2150036. [Google Scholar] [CrossRef]
- Shapovalov, A.V.; Shirokov, I.V. The method of noncommutative integration for linear differential equations. Functional algebras and noncommutative dimensional reduction. Theor. Math. Phys. 1996, 106, 1–10. [Google Scholar] [CrossRef]
- Breev, A.I.; Shapovalov, A.V. Non-commutative integration of the Dirac equation in homogeneous spaces. Symmetry 2020, 12, 1867. [Google Scholar] [CrossRef]
- Magazev, A.A. Integrating Klein-Gordon-Fock equations in an extremal electromagnetic field on Lie groups. Theor. Math. Phys. 2012, 173, 1654–1667. [Google Scholar] [CrossRef]
- Magazev, A.A.; Shirokov, I.V.; Yurevich, Y.A. Integrable magnetic geodesic flows on Lie groups. Theor. Math. Phys. 2008, 156, 1127–1141. [Google Scholar] [CrossRef]
- Magazev, A.A. Constructing a Complete Integral of the Hamilton-Jacobi Equation on Pseudo-Riemannian Spaces with Simply Transitive Groups of Motions. Math. Phys. Anal Geom. 2021, 24, 11. [Google Scholar] [CrossRef]
- Obukhov, V.V. Hamilton-Jacobi and Klein-Gordon-Fock equations for a charged test particle in space-time with simply transitive four-parameter groups of motions. J. Math. Phys. 2023, 64, 093507. [Google Scholar] [CrossRef]
- Obukhov, V.V. Algebra of the symmetry operators of the Klein-Gordon-Fock equation for the case when groups of motions G3 act transitively on null subsurfaces of spacetime. Symmetry 2022, 14, 346. [Google Scholar] [CrossRef]
- Schwarzschild, K. Uber das Gravitationsfeld eines Masenpunktes nach der Einsteinschen Theorie; Königlich Preussischen Akademie der Wissenschaften: Berlin, Germany, 1916; pp. 189–196. [Google Scholar]
- Schwarzschild, K. Uber das Gravitationsfeldeiner Kugel aus Inkompressibler Flussigkeit Nach der Einsteinschen Theorie; Königlich Preussischen Akademie der Wissenschaften: Berlin, Germany, 1916; pp. 424–434. [Google Scholar]
- Kerr, R.P. Gravitational field of a spinning mass as an example of algebraically special metrics. Phys. Rev. Lett. 1963, 11, 237. [Google Scholar] [CrossRef]
- Newman, E.; Tamburino, L.; Unti, T. Empty space generalization of the Schwarzschild metric. J. Math. Phys. 1963, 4, 915–923. [Google Scholar] [CrossRef]
- Reissner, H. Uber die Eigengravitation des elektrischen Feldes nach der Einsteinschen Theorie. Ann. Phys. 1916, 355, 106–120. [Google Scholar] [CrossRef]
- Friedmann, A. Uber die Moglichkeit einer Welt mit konstanter negativer Krummung des Raumes. Z. Phys. 1924, 21, 326–332. [Google Scholar] [CrossRef]
- Taub, A.H. Empty Space-Times Admitting a Three Parameter Group of Motions. Ann. Math. 1951, 53, 472–490. [Google Scholar] [CrossRef]
- Stephani, H.; Kramer, D.; MacCallum, M.; Hoenselaers, C.; Herlt, E. Exact Solutions of Einstein’s Field Equations, 2nd ed.; Cambridge University Press: Cambridge, UK, 2003; p. 732. ISBN 0521461367. [Google Scholar] [CrossRef]
- Chong, Z.W.; Gibbons, G.W.; Pope, C.N. Separability and Killing tensors in Kerr-Taub-Nut-De Sitter metrics in higher dimensions. Phys. Lett. B 2005, 609, 124–132. [Google Scholar] [CrossRef]
- Vasudevan, M.; Stevens, K.A.; Page, D.N. Separability Of The Hamilton-Jacobi And Klein-Gordon Equations in Kerr-De Sitter Metrics. Class. Quant. Grav. 2005, 22, 339–352. [Google Scholar] [CrossRef]
- Frolov, P.; Kyoto, U.; Krtous, P.; Kubiznak, D. Separation of variables in maxwell equations in Plebanski-Demianski spacetime. Phys. Rev. D 2018, 97, 101701. [Google Scholar] [CrossRef]
- Akbar, M.M.; MacCallum, M.A.H. Static axisymmetric Einstein equations in vacuum: Symmetry, new solutions, and Ricci solitons. Phys. Rev. D 2015, 92, 063017. [Google Scholar] [CrossRef]
- Kumaran, Y.; Ovgun, A. Deflection angle and shadow of the reissner-nordstrom black hole with higher-order magnetic correction in einstein-nonlinear-maxwell fields. Symmetry 2022, 14, 2054. [Google Scholar] [CrossRef]
- Brevik, I.; Obukhov, V.V.; Timoshkin, A.V. Cosmological Models Coupled with Dark Matter in a Dissipative Universe. Astrophys. Space Sci. 2015, 359, 11. [Google Scholar] [CrossRef]
- Obukhov, V.V. Classification of Einstein spaces with Stackel metric of type (3.0). Int. J. Geom. Methods Mod. Phys. 2025, 2550177. [Google Scholar] [CrossRef]
- Obukhov, V.V. Classification of the non-null electrovacuum solution of Einstein–Maxwell equations with three-parameter abelian group of motions. Ann. Phys. 2024, 470, 169816. [Google Scholar] [CrossRef]
- Valenzuela, M. Hamiltonian formalism of Bianchi models with cosmological constant. Rev. Investig. Física 2025, 28, 1. [Google Scholar] [CrossRef]
- Sáez, J.A.; Mengual, S.; Ferrando, J.J. Spatially-homogeneous cosmologies. Class. Quantum Grav. 2024, 41, 205013. [Google Scholar] [CrossRef]
- Astorga, F.; Salazar, J.F.; Zannias, T. On the integrability of the geodesic flow on a Friedmann-Robertson-Walker spacetime. Phys. Scr. 2022, 93, 085205. [Google Scholar] [CrossRef]
- Claudio, D.; Juarez-Aubry, B.A.; Ground, A.M. State for the Klein-Gordon field in anti-de Sitter spacetime with dynamical Wentzell boundary conditions. Phys. Rev. D 2022, 105, 105017. [Google Scholar] [CrossRef]
- Nojiri, S.; Odintsov, S.D.; Oikonomou, V.K. Modified gravity theories on a nutshell: Inflation, bounce and late-time evolution. Phys. Rep. 2017, 692, 1–104. [Google Scholar] [CrossRef]
- Bamba, K.; Capozziello, S.; Nojiri, S.; Odintsov, S.D. Dark energy cosmology: The equivalent description via different theoretical models and cosmography tests. Astrophys. Space Sci. 2012, 342, 155. [Google Scholar] [CrossRef]
- Capozziello, S.; De Laurentis, M.; Odintsov, D. Hamiltonian dynamics and Noether symmetries in extended gravity cosmology. Eur. Phys. J. 2012, C72, 2068. [Google Scholar] [CrossRef]
- Kibaroglu, S.; Odintsov, S.D.; Paul, T. Cosmology of unimodular Born Infeld-fR gravity. Phys. Dark Univ. 2024, 44, 101445. [Google Scholar] [CrossRef]
- Kibaroglu, S. Cosmological application of the Maxwell gravity. Int. J. Mod. Phys. D 2023, 32, 10, 2350069. [Google Scholar] [CrossRef]
- Odintsov, S.D. Modified gravity: The game of theories? Russ. Phys. J. 2025, 68, 108–112. [Google Scholar] [CrossRef]
- Kibaroglu, S.; Cebecioglu, O.; Saban, A. Gauging the Maxwell Extended and Algebras. Symmetry 2023, 15, 464. [Google Scholar] [CrossRef]
- Brevik, I.; Obukhov, V.V.; Timoshkin, A.V. Quasi-Rip and Pseudo-Rip Universes Induced by the Fluid Inhomogeneous Equation of State. Astrophys. Space Sci. 2022, 344, 275–279. [Google Scholar] [CrossRef]
- Cebecioglu, O.; Saban, A.; Kibaroglu, S. Maxwell extension of f(R) gravity. Eur. Phys. J. C 2023, 83, 95. [Google Scholar] [CrossRef]
- Paliathanasis, A. Kantowski-Sachs cosmology in scalar-torsion theory. Eur. Phys. J. C 2023, 83, 213. [Google Scholar] [CrossRef]
- Ildesa, M.; Arikb, M. Analytic solutions of scalar field cosmology, mathematicalstructures for early inflation and late time accelerated expansion. Eur. Phys. J. C 2023, 83, 167. [Google Scholar] [CrossRef]
- Osetrin, K.; Osetrin, E. Shapovalov Wave-Like Spacetimes. Symmetry 2020, 12, 1372. [Google Scholar] [CrossRef]
- Osetrin, K.E.; Epp, V.Y.; Filippov, A.E. Exact Model of Gravitational Waves and Pure Radiation. Symmetry 2024, 16, 1456. [Google Scholar] [CrossRef]
- Osetrin, K.E.; Epp, V.Y.; Chervon, S.V. Propagation of light and retarded time of radiation in a strong gravitational wave. Ann. Phys. 2024, 462, 169619. [Google Scholar] [CrossRef]
- Osetrin, K.E.; Epp, V.Y.; Guselnikova, U.A. Gravitational wave and pure radiation in the Bianchi IV universe. Russ. Phys. J. 2024, 68, 526–531. [Google Scholar] [CrossRef]
- Osetrin, K.; Osetrin, E.; Osetrina, E. Deviation of Geodesics, Particle Trajectories and the Propagation of Radiation in Gravitational Waves in Shapovalov Type III Wave Spacetimes. Symmetry 2023, 15, 1455. [Google Scholar] [CrossRef]
- Magazev, A.A.; Boldyreva, M.N. Schrodinger Equations in Electromagnetic Fields: Symmetries and Noncommutative Integration. Symmetry 2021, 13, 1527. [Google Scholar] [CrossRef]
- Breev, A.I.; Shirokov, I.V.; Magazev, A.A. Vacuum polarization of a scalar field on lie groups and homogeneous spaces. Theor. Math. Phys. 2023, 167, 468–483. [Google Scholar] [CrossRef]
- Komrakov, B.B. Einstein–Maxwell equation on four-dimensional homogeneous spaces. J. Math. 2001, 8, 33–165. [Google Scholar]
- Calvaruso, G.; Fino, A. Four-dimensional pseudo-Riemannian homogeneous Ricci solitons. Int. J. Geom. Methods Mod. Phys. 2015, 12, 1550056. [Google Scholar] [CrossRef]
- Calvaruso, G.; Zaeim, A. A complete classification of Ricci and Yamabe solitons of non-reductive homogeneous 4-spaces. J. Geom. Phys. 2015, 80, 15–25. [Google Scholar] [CrossRef]
- Ghezelbash, A.M. Bianchi IX geometry and the Einstein-Maxwell theory. Class. Quantum Grav. 2022, 39, 075012. [Google Scholar] [CrossRef]
- Osetrin, E.; Osetrin, K.; Filippov, A. Plane Gravitational Waves in Spatially-Homogeneous Models of type-(3.1) Stäckel Spaces. Russ. Phys. J. 2019, 62, 292–301. [Google Scholar] [CrossRef]
- Osetrin, E.K.; Osetrin, K.E.; Filippov, A.E. Spatially Homogeneous Conformally Stackel Spaces of Type (3.1). Russ. Phys J. 2020, 63, 403–409. [Google Scholar] [CrossRef]
- Osetrin, E.; Osetrin, K.; Filippov, A. Spatially Homogeneous Models Stäckel Spaces of Type (2.1). Russ. Phys. J. 2020, 63, 410–419. [Google Scholar] [CrossRef]
- Camci, U. Noether Symmetry Analysis of the Klein–Gordon and Wave Equations in Bianchi I Spacetime. Symmetry 2024, 16, 115. [Google Scholar] [CrossRef]
- Magazev, A.A.; Shirokov, I.V. The Structure of Differential Invariants for a Free Symmetry Group Action. Russ. Math. 2023, 67, 26–33. [Google Scholar] [CrossRef]
- Shair-a-Yazdan; Iqbal, M.J.; Hickman, M. Anisotropic models in magnetized Bianchi Type-III spacetimes via noether symmetries. Mod. Phys. Lett. A 2025, 40, 2550003. [Google Scholar] [CrossRef]
- Obukhov, V.V. Maxwell Equations in Homogeneous Spaces for Admissible Electromagnetic Fields. Universe 2022, 8, 245. [Google Scholar] [CrossRef]
- Obukhov, V.V. Maxwell Equations in Homogeneous Spaces with Solvable Groups of Motions. Symmetry 2022, 14, 2595. [Google Scholar] [CrossRef]
- Obukhov, V.V. Exact Solutions of Maxwell Equations in Homogeneous Spaces with the Group of Motions G3(IX). Axioms 2023, 12, 135. [Google Scholar] [CrossRef]
- Obukhov, V.V. Exact Solutions of Maxwell Equations in Homogeneous Spaces with the Group of Motions G3(VIII). Symmetry 2023, 15, 648. [Google Scholar] [CrossRef]
- Obukhov, V.V.; Kartashov, D.V. Non-null homogeneous Petrov type VIII space-time by Bianchi classification. Russ. Phys. J. 2024, 67, 1913–1917. [Google Scholar] [CrossRef]
- Landau, L.D.; Lifshits, E.M. Theoretical Physics, Field Theory, 7th ed.; Nauka: Moskow, Russia, 1988; Volume 2, 512p, ISBN 5-02-014420-7. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Obukhov, V.V. Exact Solutions of Maxwell Vacuum Equations in Petrov Homogeneous Non-Null Spaces. Symmetry 2025, 17, 1574. https://doi.org/10.3390/sym17091574
Obukhov VV. Exact Solutions of Maxwell Vacuum Equations in Petrov Homogeneous Non-Null Spaces. Symmetry. 2025; 17(9):1574. https://doi.org/10.3390/sym17091574
Chicago/Turabian StyleObukhov, Valery V. 2025. "Exact Solutions of Maxwell Vacuum Equations in Petrov Homogeneous Non-Null Spaces" Symmetry 17, no. 9: 1574. https://doi.org/10.3390/sym17091574
APA StyleObukhov, V. V. (2025). Exact Solutions of Maxwell Vacuum Equations in Petrov Homogeneous Non-Null Spaces. Symmetry, 17(9), 1574. https://doi.org/10.3390/sym17091574