Special Issue: Machine Learning and Data Analysis II
- Boolean reasoning (contribution 1);
- Classic neural networks (contribution 2);
- Deep learning (contributions 3 and 4);
- Decision tree-based approaches (contribution 4);
- Density estimation (contribution 5);
- Natural language processing (contribution 6);
- Genetic algorithms (contribution 7);
- Clustering (contribution 8).
- Bioinformatics (contribution 1);
- Biology (contribution 2);
- Chemistry (contributions 3 and 4);
- Text analysis (contribution 6);
- Network traffic (contribution 7);
- Computer vision (contribution 8).
Conflicts of Interest
List of Contributions
- Michalak, M.; Aguilar-Ruiz, J.S. Shifting Pattern Biclustering and Boolean Reasoning Symmetry. Symmetry 2023, 15, 1977. https://doi.org/10.3390/sym15111977.
- Alfonso Perez, G.; Colchero Paetz, J.V. Velocity Estimations in Blood Microflows via Machine Learning Symmetries. Symmetry 2024, 16, 428. https://doi.org/10.3390/sym16040428.
- Oyucu, S.; Dümen, S.; Duru, İ.; Aksöz, A.; Biçer, E. Discharge Capacity Estimation for Li-Ion Batteries: A Comparative Study. Symmetry 2024, 16, 436. https://doi.org/10.3390/sym16040436.
- Vaferi, B.; Dehbashi, M.; Alibak, A.H. Cutting-Edge Machine Learning Techniques for Accurate Prediction of Agglomeration Size in Water–Alumina Nanofluids. Symmetry 2024, 16, 804. https://doi.org/10.3390/sym16070804.
- Coccaro, A.; Letizia, M.; Reyes-González, H.; Torre, R. Comparison of Affine and Rational Quadratic Spline Coupling and Autoregressive Flows through Robust Statistical Tests. Symmetry 2024, 16, 942. https://doi.org/10.3390/sym16080942.
- Wang, S.; Liu, Q.; Hu, Y.; Liu, H. Public Opinion Evolution Based on the Two-Dimensional Theory of Emotion and Top2Vec-RoBERTa. Symmetry 2025, 17, 190. https://doi.org/10.3390/sym17020190.
- Xiang, Z.; Ying, F.; Yan, H.; Zheng, Z.; Zhang, Y.; Xu, Y. QoS-Effective and Resilient Service Deployment and Traffic Management in MEC-Based Crowd Sensing. Symmetry 2025, 17, 718. https://doi.org/10.3390/sym17050718.
- Jiang, Z.; Zhou, J.; Wang, S. Multi-View Utility-Based Clustering: A Mutually Supervised Perspective. Symmetry 2025, 17, 924. https://doi.org/10.3390/sym17060924.
References
- Brown, F.M. Boolean Reasoning; Springer: New York, NY, USA, 1990. [Google Scholar]
- Pawlak, Z.; Skowron, A. Rough Sets and Boolean Reasoning. Inf. Sci. 2007, 177, 41–73. [Google Scholar] [CrossRef]
- Kuehlmann, A.; Paruthi, V.; Krohm, F.; Ganai, M. Robust Boolean reasoning for equivalence checking and functional property verification. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 2002, 21, 1377–1394. [Google Scholar] [CrossRef]
- Le, A.V.; Fenech, M. Image-Based Experimental Measurement Techniques to Characterize Velocity Fields in Blood Microflows. Front. Physiol. 2022, 13, 886675. [Google Scholar] [CrossRef]
- Kang, Y.J. Blood rheometer based on microflow manipulation of continuous blood flows using push-and-back mechanism. Anal. Methods 2021, 13, 4871–4883. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.F.; Yang, Z.X.; Ma, S.; Kang, P.L.; Shang, C.; Hu, P.; Liu, Z.P. Machine Learning for Chemistry: Basics and Applications. Engineering 2023, 27, 70–83. [Google Scholar] [CrossRef]
- Hickey, K.; Feinstein, J.; Sivaraman, G.; MacDonell, M.; Yan, E.; Matherson, C.; Coia, S.; Xu, J.; Picel, K. Applying machine learning and quantum chemistry to predict the glass transition temperatures of polymers. Comput. Mater. Sci. 2024, 238, 112933. [Google Scholar] [CrossRef]
- Tu, Z.; Stuyver, T.; Coley, C.W. Predictive chemistry: Machine learning for reaction deployment, reaction development, and reaction discovery. Chem. Sci. 2023, 14, 226–244. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Zhang, Y.; Zhang, Y. Prediction of the SOH and cycle life of fast-charging lithium-ion batteries based on a machine learning framework. Future Batter. 2025, 7, 100088. [Google Scholar] [CrossRef]
- Rosenblatt, M. Remarks on Some Nonparametric Estimates of a Density Function. Ann. Math. Stat. 1956, 27, 832–837. [Google Scholar] [CrossRef]
- Nadaraya, E.A. On Estimating Regression. Theory Probab. Its Appl. 1964, 9, 141–142. [Google Scholar] [CrossRef]
- Watson, G.S. Smooth Regression Analysis. Sankhyā Indian J. Stat. Ser. A (1961–2002) 1964, 26, 359–372. [Google Scholar]
- Scott, D.W. Multivariate Density Estimation: Theory, Practice, and Visualization; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 1992. [Google Scholar]
- Reynolds, D. Gaussian Mixture Models. In Encyclopedia of Biometrics; Li, S.Z., Jain, A., Eds.; Springer: Boston, MA, USA, 2009; pp. 659–663. [Google Scholar] [CrossRef]
- Magdon-Ismail, M.; Atiya, A. Neural networks for density estimation. In Proceedings of the 1998 Conference on Advances in Neural Information Processing Systems II, Denver, CO, USA, 30 November–5 December 1998; MIT Press: Cambridge, MA, USA, 1999; pp. 522–528. [Google Scholar]
- Luhn, H.P. The Automatic Creation of Literature Abstracts. IBM J. Res. Dev. 1958, 2, 159–165. [Google Scholar] [CrossRef]
- Feldman, R.; Dagan, I. Knowledge discovery in Textual Databases (KDT). In Proceedings of the First International Conference on Knowledge Discovery and Data Mining (KDD’95), Montréal, QC, Canada, 20–21 August 1995; AAAI Press: Menlo Park, CA, USA, 1995; pp. 112–117. [Google Scholar]
- Apté, C.; Damerau, F.; Weiss, S.M. Towards Language Independent Automated Learning of Text Categorization Models. In Proceedings of the SIGIR ’94, Dublin, Ireland, 3–6 July 1994; Croft, B.W., van Rijsbergen, C.J., Eds.; Springer: London, UK, 1994; pp. 23–30. [Google Scholar]
- Jacobs, P.S. Joining statistics with NLP for text categorization. In Proceedings of the Third Conference on Applied Natural Language Processing (ANLC ’92), Trento, Italy, 31 March–3 April 1992; pp. 178–185. [Google Scholar] [CrossRef]
- Petukhova, A.; Matos-Carvalho, J.P.; Fachada, N. Text clustering with large language model embeddings. Int. J. Cogn. Comput. Eng. 2025, 6, 100–108. [Google Scholar] [CrossRef]
- Radhakrishnan, P.; Senthil kumar, G. Machine Learning-Based Automatic Text Summarization Techniques. SN Comput. Sci. 2023, 4, 855. [Google Scholar] [CrossRef]
- Huang, Z.; Chen, X.; Wang, Y.; Huang, J.; Zhao, X. A survey on biomedical automatic text summarization with large language models. Inf. Process. Manag. 2025, 62, 104216. [Google Scholar] [CrossRef]
- Potshangbam, K.S.; Singh, K.N. A similarity-based semi-supervised algorithm for labeling unlabeled text data. Expert Syst. Appl. 2026, 296, 128941. [Google Scholar] [CrossRef]
- Przystalski, K.; Argasiński, J.K.; Grabska-Gradzińska, I.; Ochab, J. Stylometry recognizes human and LLM-generated texts in short samples. Expert Syst. Appl. 2025, 296, 129001. [Google Scholar] [CrossRef]
- Ouni, S.; Fkih, F.; Omri, M.N. Toward a new approach to author profiling based on the extraction of statistical features. Soc. Netw. Anal. Min. 2021, 11, 59. [Google Scholar] [CrossRef]
- Li, H.; Liu, H.; Zhang, Z. Online persuasion of review emotional intensity: A text mining analysis of restaurant reviews. Int. J. Hosp. Manag. 2020, 89, 102558. [Google Scholar] [CrossRef]
- Oikonomou, P.; Karanika, A.; Anagnostopoulos, C.; Kolomvatsos, K. On the Use of Intelligent Models towards Meeting the Challenges of the Edge Mesh. ACM Comput. Surv. 2021, 54, 1–42. [Google Scholar] [CrossRef]
- Chen, S.; Oikonomou, P.; Hua, Z.; Tziritas, N.; Djemame, K.; Zhang, N.; Theodoropoulos, G. QoS-aware placement of interdependent services in energy-harvesting-enabled multi-access edge computing. Future Gener. Comput. Syst. 2025, 174, 108009. [Google Scholar] [CrossRef]
- Steinhaus, H. Sur la division des corps matériels en parties. Bull. L’Académie Pol. Sci. 1957, 4, 801–804. [Google Scholar]
- Ester, M.; Kriegel, H.P.; Sander, J.; Xu, X. A density-based algorithm for discovering clusters in large spatial databases with noise. In Proceedings of the Second International Conference on Knowledge Discovery and Data Mining (KDD’96), Portland, OR, USA, 2–4 August 1996; AAAI Press: Menlo Park, CA, USA, 1996; pp. 226–231. [Google Scholar]
- Ward, J.H. Hierarchical Grouping to Optimize an Objective Function. J. Am. Stat. Assoc. 1963, 58, 236–244. [Google Scholar] [CrossRef]
- Kohonen, T. Self-Organization and Associative Memory; Springer: Berlin/Heidelberg, Germany, 1988. [Google Scholar]
- Hu, Z.; Cai, S.M.; Wang, J.; Zhou, T. Collaborative recommendation model based on multi-modal multi-view attention network: Movie and literature cases. Appl. Soft Comput. 2023, 144, 110518. [Google Scholar] [CrossRef]
- Zhao, J.; Xie, X.; Xu, X.; Sun, S. Multi-view learning overview: Recent progress and new challenges. Inf. Fusion 2017, 38, 43–54. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Michalak, M. Special Issue: Machine Learning and Data Analysis II. Symmetry 2025, 17, 1199. https://doi.org/10.3390/sym17081199
Michalak M. Special Issue: Machine Learning and Data Analysis II. Symmetry. 2025; 17(8):1199. https://doi.org/10.3390/sym17081199
Chicago/Turabian StyleMichalak, Marcin. 2025. "Special Issue: Machine Learning and Data Analysis II" Symmetry 17, no. 8: 1199. https://doi.org/10.3390/sym17081199
APA StyleMichalak, M. (2025). Special Issue: Machine Learning and Data Analysis II. Symmetry, 17(8), 1199. https://doi.org/10.3390/sym17081199