Chaos, Local Dynamics, Codimension-One and Codimension-Two Bifurcation Analysis of a Discrete Predator–Prey Model with Holling Type I Functional Response
Abstract
1. Introduction
- Identification of equilibria along with the construction of a linearized system of an asymmetric discrete predator–prey model (6);
- Local behavior at equilibria of the discrete model (6);
- Identification of codimension-one bifurcation sets with detailed codimension-one bifurcations at fixed points of the discrete model (6);
- Identification of codimension-two bifurcation sets with detailed codimension-two bifurcation analysis at the interior fixed point of the discrete model (6);
- Study of chaos by hybrid and OGY strategies;
- Interpretation of theoretical results biologically.
- Numerical validation of theoretical findings.
2. Fixed Points, Linearized System, and Local Behavior
3. Codimension-One Bifurcation
3.1. Bifurcation at
3.2. Bifurcation at
4. Codimension-Two Bifurcations at
- (i)
- Curve of Pitchfork bifurcation
- (ii)
- Heteroclinic bifurcation curve:
- (iii)
- Non-degenerate N-S bifurcation curve:
- (iv)
- Homologous bifurcation curve:
- (i)
- We have the non-degenerate Hopf bifurcation if (106) has the trivial fixed point;
- (ii)
- If (respectively, ) then 1:3 invariant closed curves appear which are unstable (respectively, stable).
- Finally, 2-parameter with 1:4 strong resonance is explore. If , then from (64), one gets, with
- (i)
- There is a Hopf bifurcation at trivial fixed point of (133). Furthermore, if (respectively, ) then invariant circle appear (respectively, disappear);
- (ii)
- There are eight equilibrium points that disappear or appear in pairs via fold bifurcation if ;
- (iii)
- At eight fixed points, there is Hopf bifurcation.
5. Chaos Control
5.1. By OGY Method
5.2. By Hybrid Control Strategy
6. Numerical Simulations
7. Conclusions
Future Work and Extension
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Representation of Ingredients of (40)
Appendix B. Representation of Ingredients of (59)
References
- Murray, J.D. Mathematical Biology: An Introduction; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2007. [Google Scholar]
- Britton, F.N. Essential Mathematical Biology; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Lotka, A.J. Elements of Physical Biology; Williams, & Wilkins: Philadelphia, PA, USA, 1925. [Google Scholar]
- Volterra, V. Fluctuations in the abundance of a species considered mathematically. Nature 1926, 118, 558–560. [Google Scholar] [CrossRef]
- Holling, C.S. The components of predation as revealed by a study of small-mammal predation of the European pine sawfly. Can. Entomol. 1959, 91, 293–320. [Google Scholar] [CrossRef]
- Rosenzweig, M.L.; MacArthur, R.H. Graphical representation and stability conditions of predator-prey interactions. Am. Nat. 1963, 97, 209–223. [Google Scholar] [CrossRef]
- May, R.M. Simple mathematical models with very complicated dynamics. Nature 1976, 261, 459–467. [Google Scholar] [CrossRef]
- Khan, A.Q.; Akhtar, T.; Jhangeer, A.; Riaz, M.B. Codimension-two bifurcation analysis at an endemic equilibrium state of a discrete epidemic model. Aims Math. 2024, 9, 13006–13027. [Google Scholar] [CrossRef]
- Govaerts, W.; Kuznetsov, Y.A.; Ghaziani, R.K.; Meijer, H.G.E. Cl Matcontm: A Toolbox for Continuation and Bifurcation of Cycles of Maps; Universiteit Gent: Gent, Belgium; Utrecht University: Utrecht, The Netherlands, 2008. [Google Scholar]
- Chen, Q.; Teng, Z. Codimension-two bifurcation analysis of a discrete predator–prey model with nonmonotonic functional response. J. Differ. Equations Appl. 2017, 23, 2093–2115. [Google Scholar] [CrossRef]
- Arancibia–Ibarra, C.; Flores, J. Dynamics of a Leslie–Gower predator–prey model with Holling type-II functional response, Allee effect and a generalist predator. Math. Comput. Simul. 2021, 188, 1–22. [Google Scholar] [CrossRef]
- Chen, L.; Chen, F.; Chen, L. Qualitative analysis of a predator–prey model with Holling type-II functional response incorporating a constant prey refuge. Nonlinear Anal. Real World Appl. 2010, 11, 246–252. [Google Scholar] [CrossRef]
- Pusawidjayanti, K.; Kusumasari, V. Dynamical analysis predator-prey population with Holling type-II functional response. J. Phys. Conf. Ser. 2021, 1872, 012035. [Google Scholar] [CrossRef]
- Sambath, M.; Balachandran, K.; Surendar, M.S. Functional responses of prey-predator models in population dynamics: A Survey. J. Appl. Nonlinear Dyn. 2024, 13, 83–98. [Google Scholar] [CrossRef]
- Shang, Z.; Qiao, Y.; Duan, L.; Miao, J. Bifurcation analysis in a predator-prey system with an increasing functional response and constant-yield prey harvesting. Math. Comput. Simul. 2021, 190, 976–1002. [Google Scholar] [CrossRef]
- Naik, P.A.; Eskandari, Z.; Yavuz, M.; Huang, Z. Bifurcation results and chaos in a two-dimensional predator-prey model incorporating Holling type response function on the predator. Discret. Contin. Dyn. Syst.-S 2024, 18, 1212–1229. [Google Scholar] [CrossRef]
- Mandal, G.; Rojas-Palma, A.; González-Olivares, E.; Chakravarty, S.; Guin, L.N. Allee-induced periodicity and bifurcations in a Gause-type model with interference phenomena. Eur. Phys. J. B 2025, 98, 63. [Google Scholar] [CrossRef]
- Khan, A.Q.; Alsulami, I.M. Complicate dynamical analysis of a discrete predator-prey model with a prey refuge. Aims Math. 2023, 8, 15035–15057. [Google Scholar] [CrossRef]
- Al-Kaff, M.O.; AlNemer, G.; El-Metwally, H.A.; Elsadany, A.E.A.; Elabbasy, E.M. Dynamic behavior and bifurcation analysis of a modified reduced Lorenz model. Mathematics 2024, 12, 1354. [Google Scholar] [CrossRef]
- Cai, Y.; Chen, Q.; Teng, Z.; Zhang, G.; Rifhat, R. Bifurcations in a discrete-time Beddington-DeAngelis prey-predator model with fear effect, prey refuge and harvesting. Nonlinear Dyn. 2025, 113, 931–969. [Google Scholar] [CrossRef]
- Wu, X.; Zhou, Z.; Xie, F. Multi-scale dynamics of a piecewise-smooth Bazykin’s prey-predator system. Nonlinear Dyn. 2025, 113, 1969–1981. [Google Scholar] [CrossRef]
- Torkzadeh, L.; Fahimi, M.; Ranjbar, H.; Nouri, K. Analysis of a stochastic model for a prey-predator system with an indirect effect. Int. J. Comput. Math. 2025, 102, 60–73. [Google Scholar] [CrossRef]
- Yao, J.; Huang, J.; Wang, H. Relaxation oscillation, homoclinic orbit and limit cycles in a piecewise smooth predator-prey model. Qual. Theory Dyn. Syst. 2024, 23, 289. [Google Scholar] [CrossRef]
- Zhang, H.; Cai, Y.; Shen, J. Super-explosion and inverse canard explosion in a piecewise-smooth slow-fast Leslie-Gower model. Qual. Theory Dyn. Syst. 2024, 23, 73. [Google Scholar] [CrossRef]
- Tian, Y.; Zhu, J.; Zheng, J.; Sun, K. Modeling and analysis of a prey-predator system with prey habitat selection in an environment subject to stochastic disturbances. Electron. Res. Arch. 2025, 33, 744–767. [Google Scholar] [CrossRef]
- Das, S.; Chatterjee, A.N.; Rana, S. Complex dynamics of a discrete time one prey two predator system with prey refuge. Int. J. Appl. Comput. Math. 2025, 11, 86. [Google Scholar] [CrossRef]
- Mokni, K.; Ch-Chaoui, M. Dynamic analysis and chaos control in a discrete predator-prey model with Holling type-IV and nonlinear harvesting. Miskolc Math. Notes 2024, 25, 899–919. [Google Scholar] [CrossRef]
- Li, S.; Wang, X.; Li, X.; Wu, K. Relaxation oscillations for Leslie-type predator–prey model with Holling type-I response functional function. Appl. Math. Lett. 2021, 120, 107328. [Google Scholar] [CrossRef]
- Liu, B.; Zhang, Y.; Chen, L. Dynamic complexities of a Holling I predator–prey model concerning periodic biological and chemical control. Chaos Solitons Fractals 2004, 22, 123–134. [Google Scholar] [CrossRef]
- Ruan, M.J.; Li, C.; Li, X.Y. Codimension two 1:1 strong resonance bifurcation in a discrete predator-prey model with Holling IV functional response. Aims Math. 2021, 7, 3150–3168. [Google Scholar] [CrossRef]
- Lampert, W. Release of dissolved organic carbon by grazing zooplankton. Limnol. Oceanogr. 1978, 23, 831–834. [Google Scholar] [CrossRef]
- Murdoch, W.W.; Oaten, A. Predation and population stability. Adv. Ecol. Res. 1975, 9, 1–131. [Google Scholar]
- Camouzis, E.; Ladas, G. Dynamics of Third-Order Rational Difference Equations with Open Problems and Conjectures; Chapman and Hall/CRC: Boca Raton, FL, USA, 2007. [Google Scholar]
- Grove, E.A.; Ladas, G. Periodicities in Nonlinear Difference Equations; Chapman & Hall/CRC: Boca Raton, FL, USA, 2004. [Google Scholar]
- Kocic, V.L.; Ladas, G. Global Behavior of Nonlinear Difference Equations of Higher-Order with Applications; Springer Science & Business Media: Berlin/Heidelberg, Germany, 1993. [Google Scholar]
- Sedaghat, H. Nonlinear Difference Equations: Theory with Applications to Social Science Models; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Wikan, A. Discrete Dynamical Systems with an Introduction to Discrete Optimization Problems; Bookboon. com: London, UK, 2013. [Google Scholar]
- Guckenheimer, J.; Holmes, P. Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Kuznetsov, Y.A. Elements of Applied Bifurcation Theorey; Springer: New York, NY, USA, 2004. [Google Scholar]
- Gümüşboga, F.; Kangalgil, F. Dynamics of a discrete predator–prey model with an Allee effect in prey: Stability, bifurcation analysis and chaos control. Int. J. Bifurc. Chaos 2025, 35, 2550097. [Google Scholar] [CrossRef]
- Su, X.; Wang, J.; Bao, A. Stability analysis and chaos control in a discrete predator-prey system with Allee effect, fear effect, and refuge. Aims Math. 2024, 9, 13462–13491. [Google Scholar] [CrossRef]
- Jia, C.; Wang, J.; Zhang, J.F. A predator–prey model: Understanding the role of fear effect. Int. J. Bifurc. Chaos 2025, 35, 2550092. [Google Scholar] [CrossRef]
- Lv, L.; Li, X. Stability and bifurcation analysis in a discrete predator–prey system of Leslie-type with radio-dependent simplified Holling type-IV functional response. Mathematics 2024, 12, 1803. [Google Scholar] [CrossRef]
- Hong, B.; Zhang, C. Neimark–Sacker bifurcation of a discrete-time predator–prey model with prey refuge effect. Mathematics 2023, 11, 1399. [Google Scholar] [CrossRef]
- Sardar, P.; Biswas, S.; Das, K.P.; Rana, S.; Pal, B.; Ali, M.F.; Gupta, V. Exploring multiple bifurcation behaviors and chaos control via weak Allee effect and harvesting in a predator-prey interaction model. Nonlinear Sci. 2025, 4, 100033. [Google Scholar] [CrossRef]
- Singh, A.; Deolia, P. Bifurcation and chaos in a discrete predator–prey model with Holling type-III functional response and harvesting effect. J. Biol. Syst. 2021, 29, 451–478. [Google Scholar] [CrossRef]
- Ara, R.; Sohel Rana, S.R. Complex dynamics and chaos control of discrete prey–predator model with caputo fractional derivative. Complexity 2025, 2025, 4415022. [Google Scholar] [CrossRef]
- Li, Y.; Liu, L.; Chen, Y.; Yu, Z. Bifurcations and Marotto’s chaos of a discrete Lotka–Volterra predator–prey model. Phys. Nonlinear Phenom. 2025, 472, 134524. [Google Scholar] [CrossRef]
- Liu, M.; Ma, L.; Hu, D. Some bifurcations of codimensions 1 and 2 in a discrete predator–prey model with non-linear harvesting. Mathematics 2024, 12, 2872. [Google Scholar] [CrossRef]
- Lei, C.; Han, X. Codimension-two bifurcation analysis of a discrete predator–prey system with fear effect and Allee effect. Nonlinear Anal. Model. Control. 2025, 30, 386–404. [Google Scholar] [CrossRef]
- Allen, L.J. Introduction to Mathematical Biology; Pearson/Prentice Hall: London, UK, 2007. [Google Scholar]
- Elaydi, S. An Introduction to Difference Equations; Springer: New York, NY, USA, 1996. [Google Scholar]
- Lynch, S. Dynamical Systems with Applications Using Mathematica; Birkhäuser: Boston, MA, USA, 2007. [Google Scholar]
- Jafari, A.; Hussain, I.; Nazarimehr, F.; Golpayegani, S.M.R.H.; Jafari, S. A simple guide for plotting a proper bifurcation diagram. Int. J. Bifurc. Chaos 2021, 31, 2150011. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Raja, M.R.; Khan, A.Q.; AL-Juaid, J.G. Chaos, Local Dynamics, Codimension-One and Codimension-Two Bifurcation Analysis of a Discrete Predator–Prey Model with Holling Type I Functional Response. Symmetry 2025, 17, 1117. https://doi.org/10.3390/sym17071117
Raja MR, Khan AQ, AL-Juaid JG. Chaos, Local Dynamics, Codimension-One and Codimension-Two Bifurcation Analysis of a Discrete Predator–Prey Model with Holling Type I Functional Response. Symmetry. 2025; 17(7):1117. https://doi.org/10.3390/sym17071117
Chicago/Turabian StyleRaja, Muhammad Rameez, Abdul Qadeer Khan, and Jawharah G. AL-Juaid. 2025. "Chaos, Local Dynamics, Codimension-One and Codimension-Two Bifurcation Analysis of a Discrete Predator–Prey Model with Holling Type I Functional Response" Symmetry 17, no. 7: 1117. https://doi.org/10.3390/sym17071117
APA StyleRaja, M. R., Khan, A. Q., & AL-Juaid, J. G. (2025). Chaos, Local Dynamics, Codimension-One and Codimension-Two Bifurcation Analysis of a Discrete Predator–Prey Model with Holling Type I Functional Response. Symmetry, 17(7), 1117. https://doi.org/10.3390/sym17071117