Statistical Analysis Under a Random Censoring Scheme with Applications
Abstract
1. Introduction
2. Randomly Censoring Scheme
3. Classical Inference
3.1. Maximum Likelihood Estimation
3.2. Confidence Interval
4. Bayesian Estimation
4.1. Prior Information and Posterior Distribution
4.2. MCMC Techniques
- Begin by initializing the parameters , , and with their initial values, denoted as , , and , respectively. Set . Choose an appropriate value for k, which implies the burn-in period.
- Utilizing a gamma distribution with parameters , compute the value of .
- Finding with a gamma distribution and parameters is possible.
- With a gamma distribution’s parameters , calculate .
- Set
- To obtain the parameter values , iterate Steps 2 through 5 a total of A times, where .
- Using , arranged the parameter values , , and in ascending order to determine the CRIs for , , and . Since , represents the CRIs.
- The Bayes estimate for the parameter under the SE loss function can be determined using the following formula:The GE loss function is utilized to obtain the estimations as follows:
5. Application to Real Data
5.1. Wooden Toy Cost Dataset
5.2. Ball Bearing Data
- the Anderson–Darling test;
- the Kolmogorov–Smirnov (KS) test;
- Pearson’s test.
- the Cramér–von Mises test.
6. Simulation Study
- Bayesian methods demonstrate superior performance compared to traditional methods, as the ARB values obtained using MCMC are lower than those obtained with MLE.
- When using the GE loss function, the performance under underestimation is better than overestimation. Specifically, ARB values at are better than those at .
- The performance of MCMC at is also observed to be better than the SE loss function in terms of achieving smaller ARB values.
- The interval length in Bayesian methods is shorter compared to that observed in conventional methods.
7. Conclusions
8. Directions for Future Research
- Extend to other lifetime distributionsApply the same inference framework to other two-parameter or three-parameter distributions like Weibull, Log-logistic, or Burr Type XII under random censoring.
- Handle more complex censoring mechanismsInvestigate models under progressive, interval, or informative censoring schemes. These reflect more realistic experimental settings in survival and reliability studies.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gumbel, E. Statistics of Extremes; Columbia University Press: New York, NY, USA, 1958. [Google Scholar]
- Mousa, M.A.; Jaheen, Z.; Ahmad, A. Bayesian estimation, prediction and characterization for the Gumbel model based on records. Stat. J. Theor. Appl. Stat. 2002, 36, 65–74. [Google Scholar] [CrossRef]
- Malinowska, I.; Szynal, D. On a family of Bayesian estimators and predictors for a Gumbel model based on the kth lower records. Appl. Math. 2004, 1, 107–115. [Google Scholar] [CrossRef]
- Nadarajah, S.; Kotz, S. The beta Gumbel distribution. Math. Probl. Eng. 2004, 2004, 323–332. [Google Scholar] [CrossRef]
- Miladinovic, B.; Tsokos, C.P. Ordinary, Bayes, empirical Bayes, and non-parametric reliability analysis for the modified Gumbel failure model. Nonlinear Anal. Theory Methods Appl. 2009, 71, e1426–e1436. [Google Scholar] [CrossRef]
- Feroze, N.; Aslam, M. Bayesian Analysis Of Gumbel Type II Distribution Under Doubly Censored Samples Using Different Loss Functions. Casp. J. Appl. Sci. Res. 2012, 1, 26–43. [Google Scholar]
- Abbas, K.; Fu, J.; Tang, Y. Bayesian estimation of Gumbel type-II distribution. Data Sci. J. 2013, 12, 33–46. [Google Scholar] [CrossRef]
- Feroze, N.; Aslam, M. Bayesian estimation of twocomponent mixture of gumbel type II distribution under informative priors. Int. J. Adv. Sci. Technol. 2013, 53, 11–30. [Google Scholar]
- Abbas, K.; Hussain, Z.; Rashid, N.; Ali, A.; Taj, M.; Khan, S.A.; Manzoor, S.; Khalil, U.; Khan, D.M. Bayesian estimation of gumbel type-II distribution under type-II censoring with medical applications. Comput. Math. Methods Med. 2020, 2020, 1876073. [Google Scholar] [CrossRef]
- Qiu, Y.; Gui, W. Statistical Inference for Two Gumbel Type-II Distributions under Joint Type-II Censoring Scheme. Axioms 2023, 12, 572. [Google Scholar] [CrossRef]
- Gilbert, J.P. Random Censorship. Ph.D. Thesis, University of Chicago, Chicago, IL, USA, 1962. [Google Scholar]
- Breslow, N.; Crowley, J. A large sample study of the life table and product limit estimates under random censorship. Ann. Stat. 1974, 2, 437–453. [Google Scholar] [CrossRef]
- Koziol, J.; Green, S. A Cramer–von Mises statistic for randomly censored data. Biometrika 1976, 63, 465–474. [Google Scholar] [CrossRef]
- Ghitany, M.E.; Al-Awadhi, S. Maximum likelihood estimation of Burr XII distribution parameters under random censoring. J. Appl. Stat. 2002, 29, 955–965. [Google Scholar] [CrossRef]
- Saleem, M.; Aslam, M. On Bayesian analysis of the Rayleigh survival time assuming the random censor time. Pak. J. Stat. 2009, 25, 71–82. [Google Scholar]
- Danish, M.Y.; Aslam, M. Bayesian inference for the randomly censored Weibull distribution. J. Stat. Comput. Simul. 2014, 84, 215–230. [Google Scholar] [CrossRef]
- Vivekanand, H.K.; Kumar, K. Estimation in Maxwell distribution with randomly censored data. J. Stat. Comput. Simul. 2015, 85, 3560–3578. [Google Scholar]
- Garg, R.; Dube, M.; Kumar, K.; Krishna, H. On randomly censored generalized inverted exponential distribution. Am. J. Math. Manag. Sci. 2016, 35, 361–379. [Google Scholar] [CrossRef]
- Krishna, H.; Goel, N. Maximum likelihood and Bayes estimation in randomly censored geometric distribution. J. Probab. Stat. 2017, 2017, 4860167. [Google Scholar] [CrossRef]
- Krishna, H.; Goel, N. Classical and Bayesian inference in two parameter exponential distribution with randomly censored data. Comput. Stat. 2018, 33, 249–275. [Google Scholar] [CrossRef]
- Garg, R.; Dube, M.; Krishna, H. Estimation of parameters and reliability characteristics in Lindley distribution using randomly censored data. Stat. Optim. Inf. Comput. 2020, 8, 80–97. [Google Scholar] [CrossRef]
- Ajmal, M.; Danish, M.Y.; Arshad, I.A. Objective Bayesian analysis for Weibull distribution with application to random censorshi model. J. Stat. Comput. Simul. 2022, 92, 43–59. [Google Scholar] [CrossRef]
- Goel, N.; Krishna, H. Different methods of estimation in two parameter Geometric distribution with randomly censored data. Int. J. Syst. Assur. Eng. Manag. 2022, 13, 1652–1665. [Google Scholar] [CrossRef]
- Hasaballah, M.M.; Balogun, O.S.; Bakr, M.E. Non-Bayesian and Bayesian estimation for Lomax distribution under randomly censored with application. AIP Adv. 2024, 14, 025318. [Google Scholar] [CrossRef]
- Alshenawy, R.; Sabry, M.A.H.; Almetwally, E.M.; Elomngy, H.M. Product Spacing of Stress–Strength under Progressive Hybrid Censored for Exponentiated-Gumbel Distribution. Comput. Mater. Contin. 2020, 66, 2973–2995. [Google Scholar] [CrossRef]
- Hassan, A.S.; Fayomi, A.; Algarni, A.; Almetwally, E.M. Bayesian and Non-Bayesian Inference for Unit-Exponentiated Half-Logistic Distribution with Data Analysis. Appl. Sci. 2022, 12, 11253. [Google Scholar] [CrossRef]
- Almetwally, E.M.; Kilai, M.; Aldallal, R. X-Gamma Lomax Distribution with Different Applications. J. Bus. Environ. Sci. 2022, 1, 129–140. [Google Scholar] [CrossRef]
- Hassan, A.S.; Abdelghaffar, A.M. Bayesian and E-Bayesian Estimation of Gompertz Distribution in Stress-Strength Reliability Model under Partially Accelerated Life Testing. Comput. J. Math. Stat. Sci. 2025, 4, 348–378. [Google Scholar] [CrossRef]
- El-Saeed, A.R.; Abdellatif, A.D. Point and Interval Estimation of Reliability and Entropy for Generalized Exponential Distribution under Generalized Type-II Hybrid Censoring Scheme. Comput. J. Math. Stat. Sci. 2025, 4, 96–138. [Google Scholar] [CrossRef]
- Geman, S.; Geman, D. Stochastic relaxation, Gibbs distribution and the Bayesian restoration of images. IEEE Trans. Pattern Anal. Mach. Intell. 1984, 6, 721–741. [Google Scholar] [CrossRef]
- Gamerman, D. Markov Chain Monte Carlo: Stochastic Simulation for Bayesian Inference; Chapman & Hall: London, UK, 1997. [Google Scholar]
- Chen, M.; Shao, Q. Monte Carlo estimation of Bayesian credible and HPD intervals. J. Comput. Graph. Stat. 1999, 8, 69–92. [Google Scholar] [CrossRef]
- Metropolis, N.; Rosenbluth, A.W.; Rosenbluth, M.N.; Teller, A.H.; Teller, E. Equations of state calculations by fast computing machines. J. Chem. Phys. 1953, 21, 1087–1091. [Google Scholar] [CrossRef]
- Hastings, W.K. Monte Carlo sampling methods using Markov chains and their applications. Biometrika 1970, 57, 97–109. [Google Scholar] [CrossRef]
- Shafiei, S.; Darijani, S.; Saboori, H. Inverse Weibull power series distributions: Properties and applications. J. Stat. Comput. Simul. 2016, 86, 1069–1094. [Google Scholar] [CrossRef]
- Meintanis, S.G. A new approach of goodness-of-fit testing for exponentiated laws applied to the generalized Rayleigh distribution. Comput. Stat. Data Anal. 2008, 52, 2496–2503. [Google Scholar] [CrossRef]
Modes | Anderson-Darling | Cramer-von Mises | Pearson | K-S | ||||
---|---|---|---|---|---|---|---|---|
Statistic | p-Value | Statistic | p-Value | Statistic | p-Value | Statistic | p-Value | |
Dataset I | 0.4163 | 0.8311 | 0.0548 | 0.8463 | 1.4666 | 0.9834 | 0.1023 | 0.8804 |
Dataset II | 0.5781 | 0.6665 | 0.0784 | 0.7008 | 5.8695 | 0.5550 | 0.1328 | 0.7635 |
Parameters | MLE | MCMC | ||||
---|---|---|---|---|---|---|
Mean | Length | SE | GE | Length | ||
0.6746 | 0.4631 | 0.92887 | 0.9760 | 0.8497 | 0.3707 | |
3.3605 | 1.9848 | 1.9362 | 2.0455 | 1.7501 | 1.4811 | |
2.4216 | 3.7625 | 0.9489 | 1.1339 | 0.7207 | 1.2759 |
Parameters | MLE | MCMC | ||||
---|---|---|---|---|---|---|
Mean | Length | SE | GE | Length | ||
1.1006 | 0.8115 | 0.2410 | 0.2562 | 0.2146 | 0.1940 | |
162.66 | 469.962 | 2.7646 | 3.169 | 2.2328 | 3.2405 | |
2.6153 | 4.6647 | 1.7678 | 5.9376 | 0.9432 | 4.3552 |
b | MLE | MCMC | ||||
---|---|---|---|---|---|---|
Mean | Length | SE | GE | Length | ||
20 | 2.9346 | 2.1735 | 1.5229 | 1.6319 | 1.3380 | 1.3060 |
0.5738 | 0.3908 | 0.3473 | 0.4648 | |||
30 | 2.5733 | 1.5961 | 1.5249 | 1.5982 | 1.4003 | 1.0787 |
0.4593 | 0.3900 | 0.3307 | 0.4399 | |||
40 | 3.3643 | 1.9056 | 1.8653 | 1.9485 | 1.7290 | 1.2581 |
0.4457 | 0.2539 | 0.2206 | 0.3084 | |||
50 | 2.5349 | 1.2073 | 1.5810 | 1.6282 | 1.5018 | 0.8701 |
0.4140 | 0.2476 | 0.2187 | 0.3013 | |||
60 | 2.9744 | 1.3019 | 1.7239 | 1.7697 | 1.6470 | 0.9024 |
0.4097 | 0.2105 | 0.2121 | 0.2912 | |||
70 | 2.5467 | 1.0239 | 1.5809 | 1.6144 | 1.5246 | 0.7377 |
0.3987 | 0.2076 | 0.2042 | 0.2902 | |||
80 | 2.9456 | 1.1217 | 1.7825 | 1.8197 | 1.7204 | 0.8294 |
0.3782 | 0.2070 | 0.2021 | 0.2818 | |||
90 | 2.6377 | 16.2483 | 1.8427 | 1.8766 | 1.7858 | 0.8017 |
0.3551 | 0.1929 | 0.1793 | 0.2757 | |||
100 | 2.6869 | 0.9027 | 1.7477 | 1.7750 | 1.7017 | 0.7015 |
0.2448 | 0.1809 | 0.1600 | 0.2193 |
b | MLE | MCMC | ||||
---|---|---|---|---|---|---|
Mean | Length | SE | GE | Length | ||
20 | 1.3716 | 1.0946 | 1.6522 | 1.7645 | 1.4606 | 1.0866 |
0.4856 | 0.2014 | 0.1963 | 0.4648 | |||
30 | 2.0664 | 1.3210 | 2.4353 | 2.5505 | 2.2397 | 1.7023 |
0.4770 | 0.1936 | 0.1903 | 0.4231 | |||
40 | 1.9421 | 1.1234 | 1.6681 | 1.7280 | 1.5667 | 1.0192 |
0.4647 | 0.1921 | 0.1820 | 0.4145 | |||
50 | 1.3639 | 0.6845 | 1.7855 | 1.8379 | 1.6968 | 0.9850 |
0.4607 | 0.1903 | 0.1752 | 0.4012 | |||
60 | 1.3816 | 0.9112 | 1.6975 | 1.738 | 1.6287 | 0.8464 |
0.4589 | 0.1817 | 0.1687 | 0.3858 | |||
70 | 1.3785 | 0.5861 | 1.9144 | 1.9542 | 1.8475 | 0.8859 |
0.2510 | 0.1763 | 0.1528 | 0.2316 | |||
80 | 1.5702 | 0.6234 | 1.8020 | 1.8349 | 1.7469 | 0.7824 |
0.2468 | 0.1613 | 0.1502 | 0.2146 | |||
90 | 1.5457 | 17.3011 | 1.6925 | 1.7201 | 1.6463 | 0.6927 |
0.2305 | 0.1484 | 0.1468 | 0.1976 | |||
100 | 1.4231 | 0.5175 | 1.7495 | 1.7754 | 1.7059 | 0.6842 |
0.2113 | 0.1263 | 0.1206 | 0.1373 |
b | MLE | MCMC | ||||
---|---|---|---|---|---|---|
Mean | Length | SE | GE | Length | ||
20 | 1.9024 | 3.5259 | 0.7470 | 0.8930 | 0.5432 | 1.0342 |
0.6683 | 0.5020 | 0.4047 | 0.6379 | |||
30 | 1.2744 | 1.8249 | 0.6677 | 0.7643 | 0.5262 | 0.7987 |
0.6504 | 0.5019 | 0.4004 | 0.6192 | |||
40 | 1.0430 | 1.2680 | 0.7309 | 0.8314 | 0.5874 | 0.8499 |
0.6447 | 0.4127 | 0.3957 | 0.6084 | |||
50 | 1.2638 | 1.3819 | 0.6350 | 0.6934 | 0.5474 | 0.6116 |
0.6074 | 0.4067 | 0.3377 | 0.5351 | |||
60 | 1.5063 | 1.5373 | 0.7227 | 0.7814 | 0.6336 | 0.6481 |
0.6042 | 0.3582 | 0.2791 | 0.5176 | |||
70 | 1.3843 | 1.2938 | 0.6437 | 0.6850 | 0.5787 | 0.5181 |
0.5771 | 0.4708 | 0.2433 | 0.5142 | |||
80 | 1.3324 | 1.1611 | 0.7151 | 0.7611 | 0.6437 | 0.5756 |
0.5117 | 0.4233 | 0.1926 | 0.4709 | |||
90 | 1.3086 | 45.4285 | 0.6929 | 0.7340 | 0.6291 | 0.5343 |
0.4076 | 0.3381 | 0.1106 | 0.3806 | |||
100 | 1.2364 | 0.9588 | 0.6736 | 0.7066 | 0.6217 | 0.4731 |
0.3058 | 0.2509 | 0.1089 | 0.2855 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hasaballah, M.M.; Abdelwahab, M.M. Statistical Analysis Under a Random Censoring Scheme with Applications. Symmetry 2025, 17, 1048. https://doi.org/10.3390/sym17071048
Hasaballah MM, Abdelwahab MM. Statistical Analysis Under a Random Censoring Scheme with Applications. Symmetry. 2025; 17(7):1048. https://doi.org/10.3390/sym17071048
Chicago/Turabian StyleHasaballah, Mustafa M., and Mahmoud M. Abdelwahab. 2025. "Statistical Analysis Under a Random Censoring Scheme with Applications" Symmetry 17, no. 7: 1048. https://doi.org/10.3390/sym17071048
APA StyleHasaballah, M. M., & Abdelwahab, M. M. (2025). Statistical Analysis Under a Random Censoring Scheme with Applications. Symmetry, 17(7), 1048. https://doi.org/10.3390/sym17071048