Control Design for Flexible Manipulator Model with Nonlinear Input and State Constraints Based on Symmetric Barrier Lyapunov Function
Abstract
1. Introduction
- An adaptive control method based on the tangent-type BLF is proposed. It handles both nonlinear input and state constrains.
- A compensation mechanism that integrates external disturbances and dead-zone errors is established;
- A theoretical basis for future research on control problems in such PDE systems is provided.
2. Materials and Methods
2.1. System and Problem Description
2.2. Control Design
- If , satisfy , , respectively, then , satisfy , . If , satisfy , , respectively, then , satisfy , . If , satisfy , , respectively, then , satisfy , . If , satisfy , respectively, then , satisfy , .
- 1.
- , , , , , , are bounded;
- 2.
- The states of , , , and satisfy the constraint conditions.
3. Simulation Verification
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Siranosian, A.A.; Krstic, M.; Smyshlyaev, A.; Bement, M. Motion planning and tracking for tip displacement and deflection angle for flexible beams. J. Dyn. Syst. Meas. Control 2009, 131, 031009. [Google Scholar] [CrossRef]
- Zhang, P.; Zhu, C.M.; Zhang, L.J. Analysis of forced coupled longitudinal-transverse vibration of flexible hoisting systems with varying length. Eng. Mech. 2008, 25, 202–207. [Google Scholar]
- He, W.; He, X.; Sun, C. Vibration control of an industrial moving strip in the presence of input dead zone. IEEE Trans. Ind. Electron. 2017, 64, 4680–4689. [Google Scholar] [CrossRef]
- How, B.; Ge, S.; Choo, Y. Active control of flexible marine risers. J. Sound Vib. 2009, 320, 758–776. [Google Scholar] [CrossRef]
- Zhang, X.Y.; Tang, L.; Liu, Y.J. Adaptive constraint control for flexible manipulator systems modeled by partial differential equations with dead-zone input. Int. J. Adapt. Control Signal Process. 2021, 35, 1404–1416. [Google Scholar] [CrossRef]
- Xu, B. Robust adaptive neural control of flexible hypersonic flight vehicle with dead-zone input nonlinearity. Nonlinear Dyn. 2015, 80, 1509–1520. [Google Scholar] [CrossRef]
- Tarbouriech, S.; Queinnec, I.; Prieur, C. Stability analysis and stabilization of systems with input backlash. IEEE Trans. Autom. Control 2013, 59, 488–494. [Google Scholar] [CrossRef]
- Zhou, J.; Zhang, C.; Wen, C. Robust adaptive output control of uncertain nonlinear plants with unknown backlash nonlinearity. IEEE Trans. Autom. Control 2007, 52, 503–509. [Google Scholar] [CrossRef]
- Chen, B.M.; Lee, T.H.; Peng, K.; Venkataramanan, V. Composite nonlinear feedback control for linear systems with input saturation: Theory and an application. IEEE Trans. Autom. Control 2003, 48, 427–439. [Google Scholar] [CrossRef]
- Ling, S.; Wang, H.; Liu, P.X. Adaptive fuzzy dynamic surface control of flexible-joint robot systems with input saturation. IEEE/CAA J. Autom. Sin. 2019, 6, 97–107. [Google Scholar] [CrossRef]
- Song, Y.K.; Song, Y.; Wu, Y.J. Adaptive boundary control of an axially moving system with large acceleration/deceleration under the input saturation. Math. Biosci. Eng. 2023, 20, 18230–18247. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Wen, C.; Zhang, Y. Adaptive output control of nonlinear systems with uncertain dead-zone nonlinearity. IEEE Trans. Autom. Control 2006, 51, 504–511. [Google Scholar] [CrossRef]
- Wang, L.; Li, H.; Zhou, Q.; Lu, R. Adaptive fuzzy control for nonstrict feedback systems with unmodeled dynamics and fuzzy dead zone via output feedback. IEEE Trans. Cybern. 2017, 47, 2400–2412. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Wang, F.; Yu, J. BLF-based asymptotic tracking control for a class of time-varying full state constrained nonlinear systems. Trans. Inst. Meas. Control 2019, 41, 3043–3052. [Google Scholar] [CrossRef]
- Cao, W.J.; Xu, J.X. Oscillation elimination of tip regulation for a single-link flexible manipulator. Int. J. Robust Nonlinear Control 2001, 11, 267–285. [Google Scholar] [CrossRef]
- Tee, K.P.; Ge, S.S.; Tay, E.H. Barrier lyapunov functions for the control of output-constrained nonlinear systems. Automatica 2009, 45, 918–927. [Google Scholar] [CrossRef]
- Lin, X.; Li, X.; Park, J.H. Output-feedback stabilization for planar output-constrained switched nonlinear systems. Int. J. Robust Nonlinear Control 2020, 30, 1819–1830. [Google Scholar] [CrossRef]
- Ren, B.; Ge, S.S.; Tee, K.P.; Lee, T.H. Adaptive neural control for output feedback nonlinear systems using a barrier Lyapunov function. IEEE Trans. Neural Netw. 2010, 21, 1339–1345. [Google Scholar]
- Guo, Y.; Yan, T.; Xu, B.; Tao, C.; Sun, S. Asymmetric integral BLF based state-constrained flight control using nn and dob. Int. J. Robust Nonlinear Control 2022, 32, 3021–3038. [Google Scholar] [CrossRef]
- Cruz-Ortiz, D.; Chairez, I.; Poznyak, A. Non-singular terminal sliding-mode control for a manipulator robot using a barrier Lyapunov function. ISA Trans. 2022, 121, 268–283. [Google Scholar] [CrossRef] [PubMed]
- Shah, S.A.A.; Gao, B.; Ahmad, I.; Ullah, H.; Ahmed, N.; Saeed, A. Adaptive backstepping integral sliding mode control for 5DOF barge-type OFWT under output constraint. J. Mar. Sci. Eng. 2023, 11, 492. [Google Scholar] [CrossRef]
- Djeffal, S.; Ghoul, A.; Saadi, A.; Izri, Z.; Morakchi, M.R.; Wang, H. Design optimization and simulation of a 3D printed cable-driven continuum robot using IKM-ANN and nTop software. Proc. Inst. Mech. Eng. Part I J. Syst. Control Eng. 2025, 239, 200–218. [Google Scholar] [CrossRef]
- Yang, K.; Zhao, L. Command-filter-based Backstepping Control for Flexible Joint Manipulator Systems with Full-state Constrains. Int. J. Control. Autom. Syst. 2022, 20, 2231–2238. [Google Scholar] [CrossRef]
- Yao, X.Q.; Xu, X.M.; He, W.; Liu, Y. Asymptotical event-based input-output constrained boundary control of flexible manipulator agents under a signed digraph. Sci. China Inf. Sci. 2025, 68, 142201. [Google Scholar] [CrossRef]
- Li, B.; Li, X.Y.; Gao, H.J.; Wang, F.Y. Advances in Flexible Robotic Manipulator Systems—Part I: Overview and Dynamics Modeling Methods. IEEE/ASME Trans. Mechatron. 2024, 29, 1100–1110. [Google Scholar] [CrossRef]
- Li, B.; Li, X.Y.; Gao, H.J.; Wang, F.Y. Advances in Flexible Robotic Manipulator Systems—Part II: Planning, Control, Applications, and Perspectives. IEEE/ASME Trans. Mechatron. 2024, 29, 1680–1689. [Google Scholar] [CrossRef]
- Shang, D.Y.; Li, X.P.; Yin, M.; Li, F. Dynamic modeling and RBF neural network compensation control for space flexible manipulator with an underactuated hand. Chin. J. Aeronaut. 2024, 37, 417–439. [Google Scholar] [CrossRef]
- Viswanadhapalli, J.K.; Elumalai, V.K.; Shivram, S.; Mahajan, D. Deep reinforcement learning with reward shaping for tracking control and vibration suppression of flexible link manipulator. Appl. Soft Comput. 2024, 152, 110756. [Google Scholar] [CrossRef]
- Zhao, B.Y.; Yao, X.M.; Zheng, W.X. Fixed-Time Composite Anti-Disturbance Control for Flexible-Link Manipulators Based on Disturbance Observer. IEEE Trans. Circuits Syst. Regul. Pap. 2024, 71, 3390–3400. [Google Scholar] [CrossRef]
- Shang, D.Y.; Li, X.P.; Yin, M.; Zhou, S. Dynamic modeling and rotation control for flexible single-link underwater manipulator considering flowing water environment based on modified morison equation. Ocean Eng. 2024, 291, 116427. [Google Scholar] [CrossRef]
- Zhao, L.; Li, Z.J.; Li, H.B.; Liu, B. Backstepping integral sliding mode control for pneumatic manipulators via adaptive extended state observers. ISA Trans. 2024, 144, 374–384. [Google Scholar] [CrossRef] [PubMed]
- Shi, M.M.; Cheng, Y.; Rong, B.; Zhao, W.; Yao, Z.; Yu, C. Research on vibration suppression and trajectory tracking control strategy of a flexible link manipulator. Appl. Math. Model. 2022, 110, 78–98. [Google Scholar] [CrossRef]
- Song, N.N.; Zhang, M.R.; Li, F.; Kan, Z.; Zhao, J.; Peng, H. Dynamic research on winding and capturing of tensegrity flexible manipulator. Mech. Mach. Theory 2024, 193, 105554. [Google Scholar] [CrossRef]
- Jiang, T.; Liu, J.; He, W. Adaptive boundary control for a flexible manipulator with state constraints using a barrier Lyapunov function. J. Dyn. Syst. Meas. Control 2018, 140, 081018. [Google Scholar] [CrossRef]
- Liu, J.; He, W. Distributed Parameter Modeling and Boundary Control of Flexible Manipulators; Springer: Singapore, 2018. [Google Scholar]
Symbol | Description | Symbol | Description |
---|---|---|---|
Flexural stiffness | Rotational inertia of the hub | ||
Angle of rotation of the manipulator | Mass of the flexible manipulator per degree of length | ||
m | Mass of the end load | L | Length of the manipulator |
Control input generated by the engine | External force at the connecting rod end | ||
Unknown time-varying boundary disturbance generated by the engine | Unknown time-varying boundary disturbance generated by the end of the connecting rod |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, Y.; Wu, Y.; Chen, Y. Control Design for Flexible Manipulator Model with Nonlinear Input and State Constraints Based on Symmetric Barrier Lyapunov Function. Symmetry 2025, 17, 1035. https://doi.org/10.3390/sym17071035
Song Y, Wu Y, Chen Y. Control Design for Flexible Manipulator Model with Nonlinear Input and State Constraints Based on Symmetric Barrier Lyapunov Function. Symmetry. 2025; 17(7):1035. https://doi.org/10.3390/sym17071035
Chicago/Turabian StyleSong, Yukun, Yongjun Wu, and Yang Chen. 2025. "Control Design for Flexible Manipulator Model with Nonlinear Input and State Constraints Based on Symmetric Barrier Lyapunov Function" Symmetry 17, no. 7: 1035. https://doi.org/10.3390/sym17071035
APA StyleSong, Y., Wu, Y., & Chen, Y. (2025). Control Design for Flexible Manipulator Model with Nonlinear Input and State Constraints Based on Symmetric Barrier Lyapunov Function. Symmetry, 17(7), 1035. https://doi.org/10.3390/sym17071035