Abstract
The Rayleigh distribution is a continuous probability distribution that is inherently asymmetric and commonly used to model right-skewed data. It holds significant importance across a wide range of scientific and engineering disciplines and exhibits structural relationships with several other asymmetric probability distributions, for example, Weibull and exponential distribution. This research proposes techniques for establishing credible intervals and confidence intervals for the single mean of the zero-inflated two-parameter Rayleigh distribution. The study introduces methods such as the percentile bootstrap, generalized confidence interval, standard confidence interval, approximate normal using the delta method, Bayesian credible interval, and Bayesian highest posterior density. The effectiveness of the proposed methods is assessed by evaluating coverage probability and expected length through Monte Carlo simulations. The results indicate that the Bayesian highest posterior density method outperforms the other approaches. Finally, the study applies the proposed methods to construct confidence intervals for the single mean using real-world data on COVID-19 total deaths in Singapore during October 2022.