Sliding Mode Control for Stochastic SIR Models with Telegraph and Lévy Noise: Theory and Applications
Abstract
:1. Introduction
2. Model
2.1. Model Establishment
2.2. T-S Fuzzy Linearization
2.3. Construction of Sliding Surfaces
3. Main Results
3.1. Stability Analysis
3.2. Accessibility Analysis
4. Results
5. Conclusions and Outlook
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Spitale, G. COVID-19 and the ethics of quarantine: A lesson from the Eyam plague. Med. Health Care Philos. 2020, 23, 603–609. [Google Scholar] [CrossRef] [PubMed]
- De Stefani, E. The (im) morality of disease names: COVID-19. Nord. J.-Socio-Onomast. 2021, 1, 71–100. [Google Scholar] [CrossRef]
- Wang, W.; Wang, X.; Fan, X. Threshold dynamics of a reaction-advection-diffusion waterborne disease model with seasonality and human behavior change. Int. J. Biomath. 2024, 18, 2350106. [Google Scholar] [CrossRef]
- Maljkovic, B.I.; Melendrez, M.C.; Bishop-Lilly, K.A.; Rutvisuttinunt, W.; Pollett, S.; Talundzic, E.; Morton, L.; Jarman, R.G. Next generation sequencing and bioinformatics methodologies for infectious disease research and public health: Approaches, applications, and considerations for development of laboratory capacity. J. Infect. Dis. 2020, 221 (Suppl. 3), S292–S307. [Google Scholar] [CrossRef] [PubMed]
- Tian, Y.; Su, X.; Shen, C.; Ma, X. Exponentially extended dissipativity-based filtering of switched neural networks. Automatica 2024, 161, 111465. [Google Scholar] [CrossRef]
- Tian, Y.; Wang, Z. Finite-time extended dissipative filtering for singular T¡§CS fuzzy systems with nonhomogeneous Markov jump. IEEE Trans. Cybern. 2022, 52, 4574–4584. [Google Scholar] [CrossRef]
- Yang, P.; Fan, R.; Wang, Y.; Zhang, Y. Dynamics analysis of major public health emergency transmission considering the dual-layer coupling of community-resident complex networks. Chin. Phys. B 2024, 33, 070206. [Google Scholar] [CrossRef]
- Khyar, O.; Allali, K. Global dynamics of a multi-strain SEIR epidemic model with general incidence rates: Application to COVID-19 pandemic. Nonlinear Dyn. 2020, 102, 489–509. [Google Scholar] [CrossRef]
- Algehyne, E.A.; ud Din, R. On global dynamics of COVID-19 by using SQIR type model under non-linear saturated incidence rate. Alex. Eng. J. 2021, 60, 393–399. [Google Scholar] [CrossRef]
- Hussain, S.; Madi, E.N.; Khan, H.; Abdo, M.S. A Numerical and Analytical Study of a Stochastic Epidemic SIR Model in the Light of White Noise. Adv. Math. Phys. 2022, 2022, 1638571. [Google Scholar] [CrossRef]
- Geng, J.; Wang, Y.; Liu, Y.; Yan, J. Analysis of an avian influenza model with Allee effect and stochasticity. Int. J. Biomath. 2023, 16, 2250111. [Google Scholar] [CrossRef]
- Zhang, G.; Li, Z.; Din, A. A stochastic SIQR epidemic model with Levy jumps and three-time delays. Appl. Math. Comput. 2022, 431, 127329. [Google Scholar] [CrossRef] [PubMed]
- Tesfay, A.; Saeed, T.; Zeb, A.; Tesfay, D.; Khalaf, A.; Brannan, J. Dynamics of a stochastic COVID-19 epidemic model with jump-diffusion. Adv. Differ. Equ. 2021, 2021, 228. [Google Scholar] [CrossRef] [PubMed]
- Boukanjime, B.; El-Fatini, M.; Laaribi, A.; Taki, R.; Wang, K. A Markovian regime-switching stochastic hybrid time-delayed epidemic model with vaccination. Automatica 2021, 133, 109881. [Google Scholar] [CrossRef]
- Lan, G.; Song, B.; Yuan, S. Epidemic threshold and ergodicity of an SEIR model with vertical transmission under the telegraph noise. Chaos Solitons Fractals 2023, 167, 113017. [Google Scholar] [CrossRef]
- Yang, C.; Xia, J.; Park, J.H.; Shen, H.; Wang, J. Sliding mode control for uncertain active vehicle suspension systems: An event-triggered H?T control scheme. Nonlinear Dyn. 2021, 103, 3209–3221. [Google Scholar] [CrossRef]
- Nekoukar, V.; Dehkordi, N.M. Robust path tracking of a quadrotor using adaptive fuzzy terminal sliding mode control. Control Eng. Pract. 2021, 110, 104763. [Google Scholar] [CrossRef]
- Ibeas, A.; De la Sen, M.; Alonso-Quesada, S. Robust sliding control of SEIR epidemic models. Math. Probl. Eng. 2014, 103, 104764. [Google Scholar] [CrossRef]
- Teklu, S.W. Impacts of optimal control strategies on the HBV and COVID-19 co-epidemic spreading dynamics. Sci. Rep. 2024, 14, 5328. [Google Scholar] [CrossRef]
- Zhang, Y.; Song, Y.; Yang, S. T-S fuzzy observer-based adaptive tracking control for biological system with stage structure. Math. Biosci. Eng. 2022, 19, 9709–9729. [Google Scholar] [CrossRef]
- Li, H.; Shi, P.; Yao, D.; Wu, L. Observer-based adaptive sliding mode control for nonlinear Markovian jump systems. Automatica 2016, 64, 133–142. [Google Scholar] [CrossRef]
- Utkin, V.I. Sliding mode control design principles and applications to electric drives. IEEE Trans. Ind. Electron. 2002, 40, 23–36. [Google Scholar] [CrossRef]
- Yang, J.; Zhou, W.; Shi, P.; Yang, X.; Zhou, X.; Su, H. Synchronization of delayed neural networks with Levy noise and Markovian switching via sampled data. Nonlinear Dyn. 2015, 81, 1179–1189. [Google Scholar] [CrossRef]
- Zhai, G.; Chen, Q.; Tong, D.; Zhou, W.; Shen, S. Dissipative filtering of markovian jumping systems via adaptive sliding mode control. Circuits Syst. Signal Process. 2023, 43, 865–894. [Google Scholar] [CrossRef]
- Jiang, B.; Karimi, H.R.; Kao, Y.; Gao, C. A novel robust fuzzy integral sliding mode control for nonlinear semi-Markovian jump T-S fuzzy systems. IEEE Trans. Fuzzy Syst. 2018, 26, 3594–3604. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, L.; Zhang, Y.; Tian, Y.; Wei, D.; Huang, Z. Sliding Mode Control for Stochastic SIR Models with Telegraph and Lévy Noise: Theory and Applications. Symmetry 2025, 17, 963. https://doi.org/10.3390/sym17060963
Liu L, Zhang Y, Tian Y, Wei D, Huang Z. Sliding Mode Control for Stochastic SIR Models with Telegraph and Lévy Noise: Theory and Applications. Symmetry. 2025; 17(6):963. https://doi.org/10.3390/sym17060963
Chicago/Turabian StyleLiu, Lu, Yi Zhang, Yufeng Tian, Dapeng Wei, and Zhanjun Huang. 2025. "Sliding Mode Control for Stochastic SIR Models with Telegraph and Lévy Noise: Theory and Applications" Symmetry 17, no. 6: 963. https://doi.org/10.3390/sym17060963
APA StyleLiu, L., Zhang, Y., Tian, Y., Wei, D., & Huang, Z. (2025). Sliding Mode Control for Stochastic SIR Models with Telegraph and Lévy Noise: Theory and Applications. Symmetry, 17(6), 963. https://doi.org/10.3390/sym17060963