Lipschitz and Second-Order Regularities for Non-Homogeneous Degenerate Nonlinear Parabolic Equations in the Heisenberg Group
Abstract
1. Introduction
2. Main Theorems and Proof Methods
Proof Architecture and Methodological Innovations
3. Preliminaries
3.1. Heisenberg Group
3.2. Horizontal Sobolev Space
3.3. Notation
4. Crucial Caccioppli-Type Estimate
Summary of This Section
5. Proof of Theorem 1
6. Proof of Theorem 2
7. Conclusions
- (i)
- Establish the corresponding regularity results, by improving the above methods and techniques, when the non-homogeneous term does not satisfy condition (2).
- (ii)
- Extend the above regularity results to more general sub-Riemannian manifolds by improving the above methods and techniques.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ural’ceva, N.N. Degenerate quasilinear elliptic systems. Zap. Naučn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. 1968, 7, 184–222. [Google Scholar]
- Uhlenbeck, K.K. Regularity for a class of non-linear elliptic systems. Acta Math. 1977, 138, 219–240. [Google Scholar] [CrossRef]
- Evans, L.C. A new proof of local C1,α-regularity for solutions of certain degenerate elliptic p.d.e. J. Differ. Equ. 1982, 45, 356–373. [Google Scholar] [CrossRef]
- Lewis, J.L. Regularity of the derivatives of solutions to certain degenerate elliptic equations. Indiana Univ. Math. J. 1983, 32, 849–858. [Google Scholar] [CrossRef]
- Manfredi, J.J.; Weitsman, A. On the Fatou theorem for p-harmonic functions. Commun. Partial Differ. Equ. 1988, 13, 651–668. [Google Scholar] [CrossRef]
- Cordes, H.O. Zero order a priori estimates for solutions of elliptic differential equations. Proc. Sympos. Pure Math. 1961, 4, 157–166. [Google Scholar]
- Talenti, G. Sopra una classe di equazioni ellittiche a coefficienti misurabili. Ann. Mat. Pura Appl. 1965, 69, 285–304. [Google Scholar] [CrossRef]
- Maugeri, A.; Palagachev, D.K.; Softova, L.G. Elliptic and Parabolic Equations with Discontinuous Coefficients; Mathematical Research; Wiley-VCH: Berlin, Germany, 2000; Volume 109. [Google Scholar]
- Dong, H.; Peng, F.; Zhang, Y.; Zhou, Y. Hessian estimates for equations involving p-Laplacian via a fundamental inequality. Adv. Math. 2020, 370, 107212. [Google Scholar] [CrossRef]
- Lu, G. Weighted Poincaré and Sobolev inequalities for vector fields satisfying Hörmander’s condition and applications. Rev. Mat. Iberoam. 1992, 8, 367–439. [Google Scholar] [CrossRef]
- Lu, G. Embedding theorems into Lipschitz and BMO spaces and applications to quasilinear subelliptic differential equations. Publ. Mat. 1996, 40, 301–329. [Google Scholar] [CrossRef]
- Domokos, A.; Manfredi, J.J. C1,α-regularity for p-harmonic functions in the Heisenberg group for p near 2. Contemp. Math. 2005, 370, 17–23. [Google Scholar]
- Domokos, A.; Manfredi, J.J. Subelliptic cordes estimates. Proc. Am. Math. Soc. 2005, 133, 1047–1056. [Google Scholar] [CrossRef]
- Manfredi, J.J.; Mingione, G. Regularity results for quasilinear elliptic equations in the Heisenberg group. Math. Ann. 2007, 339, 485–544. [Google Scholar] [CrossRef]
- Mingione, G.; Zatorska-Goldstein, A.; Zhong, X. Gradient regularity for elliptic equations in the Heisenberg group. Adv. Math. 2009, 222, 62–129. [Google Scholar] [CrossRef]
- Ricciotti, D. p-Laplace Equation in the Heisenberg Group; Springer International Publishing: Berlin/Heidelberg, Germany, 2015. [Google Scholar] [CrossRef]
- Zhong, X. Regularity for variational problems in the Heisenberg group. arXiv 2017, arXiv:1711.03284. Available online: https://arxiv.org/abs/1711.03284 (accessed on 7 March 2018).
- Mukherjee, S.; Zhong, X. C1,α-regularity for variational problems in the Heisenberg group. Anal. PDE 2021, 14, 567–594. [Google Scholar] [CrossRef]
- Domokos, A. W2,2 estimates for solutions to non-uniformly elliptic PDE’s with measurable coefficients. J. Inequal. Pure Appl. Math. 2005, 6, 69. [Google Scholar]
- Liu, J.; Peng, F.; Zhou, Y. HWloc2,2-regularity for p-harmonic functions in Heisenberg groups. Adv. Calc. Var. 2023, 16, 379–390. [Google Scholar] [CrossRef]
- Domokos, A.; Manfredi, J.J. Nonlinear subelliptic equations. Manuscripta Math. 2009, 130, 251–271. [Google Scholar] [CrossRef]
- Domokos, A.; Manfredi, J.J. C1,α-subelliptic regularity on SU(3) and compact, semi-simple Lie groups. Anal. Math. Phys. 2020, 10, 4. [Google Scholar] [CrossRef]
- Yu, C. Second order Sobolev regularity for p-harmonic functions in SU(3). Electron. J. Differ. Equ. 2022, 2022, 27. [Google Scholar] [CrossRef]
- Citti, G.; Mukherjee, S. Regularity of quasi-linear equations with Hörmander vector fields of step two. Adv. Math. 2022, 408, 108593. [Google Scholar] [CrossRef]
- Capogna, L.; Citti, G.; Garofalo, N. Regularity for a class of quasilinear degenerate parabolic equations in the Heisenberg group. Math. Eng. 2021, 3, 1–31. [Google Scholar] [CrossRef]
- Capogna, L.; Citti, G.; Zhong, X. Lipschitz regularity for solutions of the parabolic p-Laplacian in the Heisenberg group. Ann. Fenn. Math. 2023, 48, 411–428. [Google Scholar] [CrossRef]
- Islam, S.; Alam, M.N.; Al-Asad, M.F.; Tunç, C. An analytical technique for solving new computational solutions of the modified Zakharov-Kuznetsov equation arising in electrical engineering. J. Appl. Comput. Mech. 2021, 7, 715–726. [Google Scholar]
- Alam, M.N.; Tunç, C. New solitary wave structures to the (2+1)-dimensional KD and KP equations with spatio-temporal dispersion. J. King Saud Univ. Sci. 2020, 32, 3400–3409. [Google Scholar] [CrossRef]
- DiBenedetto, E.; Friedman, A. Hölder estimates for nonlinear degenerate parabolic systems. J. Reine Angew. Math. 1985, 357, 1–22. [Google Scholar]
- Wiegner, M. On Cα-regularity of the gradient of solutions of degenerate parabolic systems. Ann. Mat. Pura Appl. 1986, 145, 385–405. [Google Scholar] [CrossRef]
- Lindqvist, P. On the time derivative in a quasilinear equation. Skr. K. Nor. Vidensk. Selsk. 2008, 2, 1–7. [Google Scholar]
- Attouchi, A.; Ruosteenoja, E. Remarks on regularity for p-laplacian type equations in non-divergence form. J. Diff. Equ. 2018, 265, 1922–1961. [Google Scholar] [CrossRef]
- DiBenedetto, E. Degenerate Parabolic Equations. In Universitext; Springer: New York, NY, USA, 1993. [Google Scholar]
- Capogna, L.; Citti, G.; Zhong, X. Regularity theory of quasilinear elliptic and parabolic equations in the Heisenberg group. Vietnam J. Math. 2024, 52, 807–827. [Google Scholar] [CrossRef]
- Yu, C.; Wang, H.; Cui, K.; Zhao, Z. Second-Order Regularity for Degenerate Parabolic Quasi-Linear Equations in the Heisenberg Group. Mathematics 2024, 12, 3494. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, H.; Yu, C.; Zhang, Z.; Zeng, Y. Lipschitz and Second-Order Regularities for Non-Homogeneous Degenerate Nonlinear Parabolic Equations in the Heisenberg Group. Symmetry 2025, 17, 799. https://doi.org/10.3390/sym17050799
Wang H, Yu C, Zhang Z, Zeng Y. Lipschitz and Second-Order Regularities for Non-Homogeneous Degenerate Nonlinear Parabolic Equations in the Heisenberg Group. Symmetry. 2025; 17(5):799. https://doi.org/10.3390/sym17050799
Chicago/Turabian StyleWang, Huiying, Chengwei Yu, Zhiqiang Zhang, and Yue Zeng. 2025. "Lipschitz and Second-Order Regularities for Non-Homogeneous Degenerate Nonlinear Parabolic Equations in the Heisenberg Group" Symmetry 17, no. 5: 799. https://doi.org/10.3390/sym17050799
APA StyleWang, H., Yu, C., Zhang, Z., & Zeng, Y. (2025). Lipschitz and Second-Order Regularities for Non-Homogeneous Degenerate Nonlinear Parabolic Equations in the Heisenberg Group. Symmetry, 17(5), 799. https://doi.org/10.3390/sym17050799