Generalized Logistic Neural Networks in Positive Linear Framework
Abstract
:1. Introduction
2. Basics
3. Main Results
4. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Anastassiou, G.A. A “K-Attainable” inequality related to the convergence of Positive Linear Operators. J. Approx. Theory 1985, 44, 380–383. [Google Scholar] [CrossRef]
- Anastassiou, G.A. Moments in Probability and Approximation Theory; Pitman Research Notes in Mathematics Series; Longman Scientific & Technical: Essex, UK; New York, NY, USA, 1993. [Google Scholar]
- Anastassiou, G.A. Quantitative Approximations; Chapmen & Hall/CRC: London, UK; New York, NY, USA, 2001. [Google Scholar]
- Anastassiou, G.A. Trigonometric and Hyperbolic Generated Approximation Theory; World Scientific: Singapore; New York, NY, USA, 2025. [Google Scholar]
- Anastassiou, G.A. Parametrized, Deformed and General Neural Networks; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 2023. [Google Scholar]
- Anastassiou, G.A. Neural Networks a Positive Linear Operators. Mathematics 2025, 13, 1112. [Google Scholar] [CrossRef]
- Shisha, O.; Mond, B. The degree of convergence of sequences of linear positive operators. Proc. Natl. Acad. Sci. USA 1968, 60, 1196–1200. [Google Scholar] [CrossRef] [PubMed]
- Shisha, O.; Mond, B. The degree of Approximation to Periodic Functions by Linear Positive Operators. J. Approx. Theory 1968, 1, 335–339. [Google Scholar] [CrossRef]
- Chen, Z.; Cao, F. The approximation operators with sigmoidal functions. Comput. Math. Appl. 2009, 58, 758–765. [Google Scholar] [CrossRef]
- Costarelli, D.; Spigler, R. Approximation results for neural network operators activated by sigmoidal functions. Neural Netw. 2013, 44, 101–106. [Google Scholar] [CrossRef]
- Costarelli, D.; Spigler, R. Multivariate neural network operators with sigmoidal activation functions. Neural Netw. 2013, 48, 72–77. [Google Scholar] [CrossRef]
- Haykin, S. Neural Networks: A Comprehensive Foundation, 2nd ed.; Prentice Hall: New York, NY, USA, 1998. [Google Scholar]
- McCulloch, W.; Pitts, W. A logical calculus of the ideas immanent in nervous activity. Bull. Math. Biophys. 1943, 7, 115–133. [Google Scholar] [CrossRef]
- Mitchell, T.M. Machine Learning; WCB-McGraw-Hill: New York, NY, USA, 1997. [Google Scholar]
- Dansheng, Y.; Feilong, C. Construction and approximation rate for feed-forward neural network operators with sigmoidal functions. J. Comput. Appl. Math. 2025, 453, 116150. [Google Scholar]
- Siyu, C.; Bangti, J.; Qimeng, Q.; Zhi, Z. Hybrid neural-network FEM approximation of diffusion coeficient in elyptic and parabolic problems. IMA J. Numer. Anal. 2024, 44, 3059–3093. [Google Scholar]
- Lucian, C.; Danillo, C.; Mariarosaria, N.; Pantiş, A. The approximation capabilities of Durrmeyer-type neural network operators. J. Appl. Math. Comput. 2024, 70, 4581–4599. [Google Scholar]
- Warin, X. The GroupMax neural network approximation of convex functions. IEEE Trans. Neural Netw. Learn. Syst. 2024, 35, 11608–11612. [Google Scholar] [CrossRef] [PubMed]
- Fabra, A.; Guasch, O.; Baiges, J.; Codina, R. Approximation of acoustic black holes with finite element mixed formulations and artificial neural network correction terms. Finite Elem. Anal. Des. 2024, 241, 104236. [Google Scholar] [CrossRef]
- Grohs, P.; Voigtlaender, F. Proof of the theory-to-practice gap in deep learning via sampling complexity bounds for neural network approximation spaces. Found. Comput. Math. 2024, 24, 1085–1143. [Google Scholar] [CrossRef]
- Basteri, A.; Trevisan, D. Quantitative Gaussian approximation of randomly initialized deep neural networks. Mach. Learn. 2024, 113, 6373–6393. [Google Scholar] [CrossRef]
- De Ryck, T.; Mishra, S. Error analysis for deep neural network approximations of parametric hyperbolic conservation laws. Math. Comp. 2024, 93, 2643–2677. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, B.; Lai, Y.; Fang, L. Hull form optimization reserach based on multi-precision back-propagation neural network approximation model. Internal. J. Numer. Methods Fluid 2024, 96, 1445–1460. [Google Scholar] [CrossRef]
- Yoo, J.; Kim, J.; Gim, M.; Lee, H. Error estimates of physics-informed neural networks for initial value problems. J. Korean Soc. Ind. Appl. Math. 2024, 28, 33–58. [Google Scholar]
- Kaur, J.; Goyal, M. Hyers-Ulam stability of some positive linear operators. Stud. Univ. Babeş-Bolyai Math. 2025, 70, 105–114. [Google Scholar] [CrossRef]
- Abel, U.; Acu, A.M.; Heilmann, M.; Raşa, I. On some Cauchy problems and positive linear operators. Mediterr. J. Math. 2025, 22, 20. [Google Scholar] [CrossRef]
- Moradi, H.R.; Furuichi, S.; Sababheh, M. Operator quadratic mean and positive linear maps. J. Math. Inequal. 2024, 18, 1263–1279. [Google Scholar] [CrossRef]
- Bustamante, J.; Torres-Campos, J. Power series and positive linear operators in weighted spaces. Serdica Math. J. 2024, 50, 225–250. [Google Scholar] [CrossRef]
- Acu, A.-M.; Rasa, I.; Sofonea, F. Composition of some positive linear integral operators. Demonstr. Math. 2024, 57, 20240018. [Google Scholar] [CrossRef]
- Patel, P.G. On positive linear operators linking gamma, Mittag-Leffler and Wright functions. Int. J. Appl. Comput. Math. 2024, 10, 152. [Google Scholar] [CrossRef]
- Ansari, K.J.; Özger, F. Pointwise and weighted estimates for Bernstein-Kantorovich type operators including beta function. Indian J. Pure Appl. Math. 2024. [Google Scholar] [CrossRef]
- Savaş, E.; Mursaleen, M. Bézier Type Kantorovich q-Baskakov Operators via Wavelets and Some Approximation Properties. Bull. Iran. Math. Soc. 2023, 49, 68. [Google Scholar] [CrossRef]
- Cai, Q.; Aslan, R.; Özger, F.; Srivastava, H.M. Approximation by a new Stancu variant of generalized (λ,μ)-Bernstein operators. Alex. Eng. J. 2024, 107, 205–214. [Google Scholar] [CrossRef]
- Ayman-Mursaleen, M.; Nasiruzzaman, M.; Sharma, S.; Cai, Q. Invariant means and lacunary sequence spaces of order (α, β). Demonstr. Math. 2024, 57, 20240003. [Google Scholar] [CrossRef]
- Ayman-Mursaleen, M.; Nasiruzzaman, M.; Rao, N. On the Approximation of Szász-Jakimovski-Leviatan Beta Type Integral Operators Enhanced by Appell Polynomials. Iran. J. Sci. 2025. [Google Scholar] [CrossRef]
- Alamer, A.; Nasiruzzaman, M. Approximation by Stancu variant of λ-Bernstein shifted knots operators associated by Bézier basis function. J. King Saud Univ. Sci. 2024, 36, 103333. [Google Scholar] [CrossRef]
- Ayman-Mursaleen, M.; Nasiruzzaman, M.; Rao, N.; Dilshad, M.; Nisar, K.S. Approximation by the modified λ-Bernstein-polynomial in terms of basis function. AIMS Math. 2024, 9, 4409–4426. [Google Scholar] [CrossRef]
- Ayman-Mursaleen, M.; Lamichhane, B.P.; Kilicman, A.; Senu, N. On q-statistical approximation of wavelets aided Kantorovich q-Baskakov operators. Filomat 2024, 38, 3261–3274. [Google Scholar] [CrossRef]
- Peetre, J. A Theory of Interpolation of Normed Spaces; Notes Universidade de Brasilia: Brasília, Brazil, 1963. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Anastassiou, G.A. Generalized Logistic Neural Networks in Positive Linear Framework. Symmetry 2025, 17, 746. https://doi.org/10.3390/sym17050746
Anastassiou GA. Generalized Logistic Neural Networks in Positive Linear Framework. Symmetry. 2025; 17(5):746. https://doi.org/10.3390/sym17050746
Chicago/Turabian StyleAnastassiou, George A. 2025. "Generalized Logistic Neural Networks in Positive Linear Framework" Symmetry 17, no. 5: 746. https://doi.org/10.3390/sym17050746
APA StyleAnastassiou, G. A. (2025). Generalized Logistic Neural Networks in Positive Linear Framework. Symmetry, 17(5), 746. https://doi.org/10.3390/sym17050746