On the Classification of Totally Geodesic and Parallel Hypersurfaces of the Lie Group Nil4
Abstract
1. Introduction
- 1.
- ;
- 2.
- ;
- 3.
- ;
- 4.
- ;
- 5.
- ,
2. Preliminary
2.1. On the Geometry Property of
2.2. Introduction to in Total, Geodesic and Parallel Hypersurface
3. Hypersurfaces of with in Total, Symmetry Form
- Subcase 2a: . From and analyzing the -component of we derive:From Equation (5), it is observed that the coefficients , , and exhibit proportionality. We introduce real constants and such that and . Through normalization enforced by the condition , which translates to , we deduce that , , and must be constant functions. To investigate the integrability of the distribution , the Frobenius theorem imposes the following necessary conditions:Further analysis of the -component within the curvature tensor expression yields additional constraints that refine these conditions, ensuring the structural consistency required for the distribution’s integrability.
- Subcase 2b–2d: , , or . Each leads to contradictions. For example, if , the -component of force , contradicting .
- Subcase 4a: Only . Directly yields , consistent with the unit normal condition.
- Subcase 4b–4d: Other single non-zero . Each leads to contradictions. For example, if , the curvature component forces , contradicting .
4. Parallel Hypersurfaces of
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, B.Y. A Comprehensive Survey on Parallel Submanifolds in Riemannian and Pseudo-Riemannian Manifolds. Axioms 2019, 8, 120. [Google Scholar] [CrossRef]
- Jentsch, T. Extrinsic homogeneity of parallel submanifolds II. Differ. Geom. Appl. 2011, 29, 214–232. [Google Scholar] [CrossRef]
- Jentsch, T. Extrinsic homogeneity of parallel submanifolds. Manuscripta Math. 2012, 137, 347–382. [Google Scholar] [CrossRef][Green Version]
- Calvaruso, G.; Van der Veken, J. Parallel surfaces in three-dimensional Lorentzian Lie groups. Taiwan. J. Math. 2010, 14, 223–250. [Google Scholar] [CrossRef]
- Calvaruso, G.; Van der Veken, J. Lorentzian symmetric three-spaces and the classification of their parallel surfaces. Internat. J. Math. 2009, 20, 1185–1205. [Google Scholar] [CrossRef]
- Calvaruso, G.; Van der Veken, J. Parallel surfaces in three-dimensional reducible spaces. Proc. Roy. Soc. Edinb. Sect. A 2013, 143, 483–491. [Google Scholar] [CrossRef]
- Calvaruso, G.; Van der Veken, J. Parallel surfaces in Lorentzian three-manifolds admitting a parallel null vector field. J. Phys. A 2010, 43, 325207. [Google Scholar] [CrossRef]
- Djellali, N.; Hasni, A.; Cherif, A.M.; Belkhelfa, M. Classification of Codazzi and note on minimal hypersurfaces in Nil4. Int. Electron. J. Geom. 2023, 16, 707–714. [Google Scholar] [CrossRef]
- Calvaruso, G.; Pellegrino, L.; Van der Veken, J. Totally geodesic and parallel hypersurfaces of Gödel-type spacetimes. J. Geom. Phys. 2024, 198, 105108. [Google Scholar] [CrossRef]
- Calvaruso, G.; Storm, R.; Van der Veken, J. Parallel and totally geodesic hypersurfaces of non-reductive homogeneous four-manifolds. Math. Nachr. 2020, 293, 1707–1729. [Google Scholar] [CrossRef]
- Calvaruso, G.; Pellegrino, L.; Van der Veken, J. Totally geodesic and parallel hypersurfaces of Siklos spacetimes. Int. J. Geom. Methods Mod. Phys. 2024, 21, 2450123. [Google Scholar] [CrossRef]
- Calvaruso, G.; Pellegrino, L. Totally geodesic and parallel hypersurfaces of Cahen-Wallach spacetimes. Results Math. 2024, 79, 255. [Google Scholar] [CrossRef]
- Jiang, J.; Yang, Y. Totally geodesic and parallel hypersurfaces of 4-dimensional Lorentzian nilpotent Lie groups. Bull. Korean Math. Soc. 2025, 62, 945–960. [Google Scholar] [CrossRef]
- Erjavec, Z.; Inoguchi, J.i. Codazzi and totally umbilical hypersurfaces in . Glasg. Math. J. 2025, 67, 487–493. [Google Scholar] [CrossRef]
- D’haene, M.; Inoguchi, J.i.; Van der Veken, J. Parallel and totally umbilical hypersurfaces of the four-dimensional Thurston geometry . Math. Nachr. 2024, 297, 1879–1891. [Google Scholar] [CrossRef]
- Magnin, L. Sur les algèbres de Lie nilpotentes de dimension ≤7. J. Geom. Phys. 1986, 3, 119–144. [Google Scholar] [CrossRef]
- Bakhshandeh-Chamazkoti, R. Lorentz Ricci solitons of four-dimensional non-Abelian nilpotent Lie groups. Mediterr. J. Math. 2022, 19, 111. [Google Scholar] [CrossRef]
- Jiang, J.; Yang, Y. Generalized Ricci solitons of four-dimensional non-Abelian nilpotent Lie groups. J. Nonlinear Math. Phys. 2025, 32, 43. [Google Scholar] [CrossRef]
- Taleb, R.; Batat, W. Homogeneous Lorentzian structures of 4-dimensional nilpotent Lie groups. Ann. Polon. Math. 2023, 131, 263–294. [Google Scholar] [CrossRef]
- Batat, W.; Taleb, R. Classification of homogeneous structures on 4-dimensional nilpotent Lie groups. J. Korean Math. Soc. 2025, 62, 51–75. [Google Scholar] [CrossRef]
- Abedi Karimi, H.; Nasehi, M.; Salimi Moghaddam, H.R. Douglas (α,β)-metrics on four-dimensional nilpotent Lie groups. J. Finsler Geom. Appl. 2020, 1, 15–26. [Google Scholar]
- Shukilovich, T. Isometry groups of four-dimensional nilpotent Lie groups. Fundam. Prikl. Mat. 2015, 20, 257–271. [Google Scholar] [CrossRef]
- Bokan, N.; Šukilović, T.; Vukmirović, S. Lorentz geometry of 4-dimensional nilpotent Lie groups. Geom. Dedicata 2015, 177, 83–102. [Google Scholar] [CrossRef]
| Group | Normal Vector Field | Parallel | In Total, Geodesic |
|---|---|---|---|
| ✓ | × | ||
| ✓ | × | ||
| ✓ | × | ||
| ✓ | × | ||
| ✓ | × | ||
| ✓ | × | ||
| × | × | × | |
| ✓ | × |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, G.; Jiang, J. On the Classification of Totally Geodesic and Parallel Hypersurfaces of the Lie Group Nil4. Symmetry 2025, 17, 1979. https://doi.org/10.3390/sym17111979
Huang G, Jiang J. On the Classification of Totally Geodesic and Parallel Hypersurfaces of the Lie Group Nil4. Symmetry. 2025; 17(11):1979. https://doi.org/10.3390/sym17111979
Chicago/Turabian StyleHuang, Guixian, and Jinguo Jiang. 2025. "On the Classification of Totally Geodesic and Parallel Hypersurfaces of the Lie Group Nil4" Symmetry 17, no. 11: 1979. https://doi.org/10.3390/sym17111979
APA StyleHuang, G., & Jiang, J. (2025). On the Classification of Totally Geodesic and Parallel Hypersurfaces of the Lie Group Nil4. Symmetry, 17(11), 1979. https://doi.org/10.3390/sym17111979
