Generalized Gamma Frailty and Symmetric Normal Random Effects Model for Repeated Time-to-Event Data
Abstract
1. Introduction
2. Generalized Gamma Frailty and Normal Random Effects Model
2.1. Generalized Gamma Distribution
2.2. Weibull-Generalized Gamma–Normal Model
3. Likelihood Function and Estimation Method
4. Simulation Study and Model Discrimination
5. Illustrative Real-Life Data Analyses
5.1. Asthma Study
5.2. Bladder Study
6. Discussion and Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviation
GG | generalized gamma |
References
- Duchateau, L.; Janssen, P. The Frailty Model; Springer: New York, NY, USA, 2007. [Google Scholar]
- Hinde, J.; Demetrio, C. Overdispersion: Models and estimation. Comput. Stat. Data Anal. 1998, 27, 151–170. [Google Scholar] [CrossRef]
- Molenberghs, G.; Verbeke, G.; Demetrio, C. A family of generalized linear models for repeated measures with normal and conjugate random effects. Stat. Sci. 2010, 25, 325–347. [Google Scholar] [CrossRef]
- Molenberghs, G.; Verbeke, G.; Efendi, A.; Braekers, R.; Demetrio, C. A combined gamma frailty and normal random-effects model for repeated, overdispersed time-to-event data. Stat. Methods Med. Res. 2015, 24, 434–452. [Google Scholar] [CrossRef] [PubMed]
- Engel, B.; Keen, A. A simple approach for the analysis of generalized linear mixed models. Stat. Neerl. 1994, 48, 1–22. [Google Scholar] [CrossRef]
- Breslow, N.; Clayton, D. Approximate inference in generalized linear mixed models. J. Am. Stat. Assoc. 1993, 88, 9–25. [Google Scholar] [CrossRef]
- Balakrishnan, N.; Peng, Y. Generalized gamma frailty. model. Stat. Med. 2006, 25, 2797–2816. [Google Scholar] [CrossRef] [PubMed]
- Stacy, E. A generalization of the gamma distribution. Ann. Math. Stat. 1962, 33, 1187–1192. [Google Scholar] [CrossRef]
- Johnson, N.; Kotz, S.; Balakrishnan, N. Continuous Univariate Distributions, 2nd ed.; John Wiley & Sons: Hoboken, NJ, USA, 1995; Volume 2. [Google Scholar]
- Prentice, R. A log gamma model and its maximum likelihood estimation. Biometrika 1974, 61, 539–544. [Google Scholar] [CrossRef]
- Lawless, J. Statistical Models and Methods for Lifetime Data, 2nd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2003. [Google Scholar]
- Yamaguchi, K. Accelerated failure-time regression models with a regression model of surviving fraction: An application to the analysis of ‘permanent employment’ in Japan. J. Am. Stat. Assoc. 1992, 87, 284–292. [Google Scholar] [PubMed]
- Peng, Y.; Dear, K.; Denham, J. A generalized F mixture model for cure rate estimation. Stat. Med. 1998, 17, 813–830. [Google Scholar] [CrossRef]
- Balakrishnan, N.; Pal, S. An EM algorithm for the estimation of parameters of a flexible cure rate model with generalized gamma lifetime and model discrimination using likelihood-and information-based methods. Comput. Stat. 2015, 30, 151–189. [Google Scholar] [CrossRef]
- Shin, J.; Chang, J.; Kim, N. Statistical modeling of speech signals based on generalized gamma distribution. IEEE Signal Process. Lett. 2005, 12, 258–261. [Google Scholar] [CrossRef]
- Cox, C.; Chu, H.; Schneider, M.; Muñoz, A. Parametric survival analysis and taxonomy of hazard functions for the generalized gamma distribution. Stat. Med. 2007, 26, 4352–4374. [Google Scholar] [CrossRef] [PubMed]
- Asher, I.; Pearce, N. Global burden of asthma among children. Int. J. Tuberc. Lung Dis. 2014, 18, 1269–1278. [Google Scholar] [CrossRef] [PubMed]
- Andrews, D.F.; Herzberg, A.M. Data: A Collection of Problems from Many Fields for the Student and Research Worker; Springer: New York, NY, USA, 2012. [Google Scholar]
- Wei, L.J.; Lin, D.Y.; Weissfeld, L. Regression analysis of multivariate incomplete failure time data by modeling marginal distributions. J. Am. Stat. Assoc. 1989, 84, 1065–1073. [Google Scholar] [CrossRef]
True | Parameter | Fitted Models | |||||||
---|---|---|---|---|---|---|---|---|---|
Gamma | Lognormal | Weibull | GG | ||||||
Bias | MSE | Bias | MSE | Bias | MSE | Bias | MSE | ||
Gamma | 2.78 | 1.55 | 0.27 | 7.54 | 0.12 | 7.19 | 2.26 | 2.95 | |
−0.61 | 0.10 | 66.57 | 68.57 | −7.97 | 2.08 | 6.63 | 5.52 | ||
0.49 | 1.33 | −5.51 | 3.30 | −6.09 | 3.06 | −2.00 | 2.03 | ||
Lognormal | 1.81 | 2.15 | −0.17 | 6.69 | −0.57 | 7.41 | 1.85 | 4.48 | |
−2.29 | 0.13 | −0.60 | 5.38 | −28.62 | 8.94 | −11.78 | 4.04 | ||
−4.67 | 1.82 | −4.08 | 2.17 | −5.64 | 3.41 | −2.21 | 2.46 | ||
Weibull | 4.47 | 1.54 | −1.79 | 8.49 | −0.99 | 7.29 | 1.15 | 2.59 | |
0.67 | 0.14 | 128.56 | 241.43 | 4.11 | 2.93 | 16.29 | 19.13 | ||
4.35 | 1.44 | −3.41 | 4.25 | −5.16 | 3.26 | −1.09 | 2.27 | ||
Gamma | 0.47 | 0.19 | −0.27 | 2.15 | −0.32 | 1.70 | 0.20 | 1.25 | |
−0.65 | 0.20 | 65.68 | 50.46 | −7.50 | 0.97 | 9.87 | 9.16 | ||
3.13 | 0.49 | −0.17 | 0.71 | −0.42 | 0.54 | −0.18 | 0.42 | ||
Lognormal | 1.78 | 0.20 | 0.62 | 1.47 | 0.79 | 1.83 | 0.68 | 1.47 | |
−5.71 | 1.18 | 1.58 | 1.25 | −27.59 | 7.83 | −8.47 | 8.31 | ||
2.80 | 0.53 | −0.76 | 0.40 | −0.66 | 0.49 | −0.86 | 0.44 | ||
Weibull | 0.44 | 0.22 | 0.35 | 2.59 | 0.86 | 2.02 | 0.66 | 1.49 | |
0.71 | 0.09 | 123.45 | 171.49 | 3.21 | 0.80 | 14.46 | 15.26 | ||
3.86 | 0.81 | 3.22 | 0.92 | 1.39 | 0.53 | 1.20 | 0.46 | ||
Gamma | 0.58 | 0.23 | 0.50 | 1.20 | 0.27 | 0.99 | 0.11 | 0.56 | |
−0.03 | 0.08 | 64.03 | 44.18 | −7.37 | 0.80 | 6.40 | 5.74 | ||
2.57 | 0.33 | 1.00 | 0.33 | 0.88 | 0.24 | 0.98 | 0.20 | ||
Lognormal | 1.86 | 0.12 | 0.25 | 0.75 | −0.29 | 0.98 | 0.07 | 0.85 | |
−5.65 | 1.09 | 0.21 | 0.65 | −27.90 | 7.89 | −7.84 | 3.79 | ||
3.12 | 0.52 | 0.04 | 0.18 | 0.18 | 0.25 | −0.02 | 0.23 | ||
Weibull | 0.18 | 0.13 | 0.69 | 1.51 | 1.09 | 0.90 | 0.93 | 0.69 | |
0.70 | 0.03 | 123.48 | 165.46 | 3.05 | 0.56 | 8.50 | 7.64 | ||
3.52 | 0.85 | 3.50 | 0.71 | 1.16 | 0.28 | 1.23 | 0.27 | ||
Gamma | 0.86 | 0.06 | 0.13 | 0.63 | 0.13 | 0.52 | 0.50 | 0.23 | |
0.12 | 0.06 | 62.72 | 41.13 | −7.61 | 0.74 | 4.92 | 4.47 | ||
2.50 | 0.25 | 1.57 | 0.19 | 0.86 | 0.13 | 1.27 | 0.12 | ||
Lognormal | 2.16 | 0.11 | 0.52 | 0.32 | 0.21 | 0.46 | 0.51 | 0.36 | |
−4.75 | 0.87 | 0.55 | 0.31 | −27.60 | 7.67 | −4.92 | 3.02 | ||
2.52 | 0.31 | 0.69 | 0.08 | 0.56 | 0.11 | 0.66 | 0.10 | ||
Weibull | 0.24 | 0.09 | 0.39 | 0.93 | 0.47 | 0.52 | 0.41 | 0.36 | |
0.73 | 0.04 | 124.71 | 161.58 | 3.78 | 0.45 | 6.53 | 4.13 | ||
4.09 | 1.13 | 5.67 | 0.74 | 1.99 | 0.24 | 1.70 | 0.17 |
True | Parameter | Fitted Gamma | |||
---|---|---|---|---|---|
Pseudo-Likelihood [4] | MC-Based Likelihood | ||||
Bias | Mean s.e. | Bias | Mean s.e. | ||
Gamma | −0.1076 | 0.2224 | 0.0047 | 0.138 | |
1.3588 | 0.1256 | 0.0313 | 0.0134 | ||
−0.0985 | 0.1499 | 0.0058 | 0.0991 | ||
1.1035 | 0.0861 | 0.0257 | 0.0075 |
True Model | Fitted Model | ||||
---|---|---|---|---|---|
Gamma | Lognormal | Weibull | GG* | GG | |
Gamma | 0.572 | 0.086 | 0.074 | 0.268 | 0.840 |
Lognormal | 0.234 | 0.318 | 0.200 | 0.248 | 0.566 |
Weibull | 0.484 | 0.070 | 0.144 | 0.302 | 0.446 |
Gamma | 0.312 | 0.202 | 0.328 | 0.158 | 0.470 |
Lognormal | 0.078 | 0.544 | 0.306 | 0.072 | 0.616 |
Weibull | 0.262 | 0.092 | 0.496 | 0.150 | 0.646 |
Gamma | 0.400 | 0.138 | 0.276 | 0.186 | 0.586 |
Lognormal | 0.048 | 0.614 | 0.284 | 0.054 | 0.668 |
Weibull | 0.290 | 0.040 | 0.514 | 0.156 | 0.670 |
Gamma | 0.348 | 0.102 | 0.314 | 0.236 | 0.584 |
Lognormal | 0.062 | 0.678 | 0.188 | 0.072 | 0.750 |
Weibull | 0.192 | 0.020 | 0.622 | 0.166 | 0.788 |
Patient ID | Drug | Begin | End | Status |
---|---|---|---|---|
1 | 0 | 0 | 15 | 1 |
1 | 0 | 22 | 90 | 1 |
1 | 0 | 96 | 325 | 1 |
1 | 0 | 329 | 332 | 1 |
1 | 0 | 338 | 369 | 1 |
1 | 0 | 370 | 412 | 1 |
1 | 0 | 418 | 422 | 1 |
1 | 0 | 426 | 474 | 1 |
1 | 0 | 477 | 526 | 1 |
1 | 0 | 530 | 600 | 0 |
2 | 1 | 0 | 180 | 1 |
2 | 1 | 189 | 267 | 1 |
2 | 1 | 273 | 581 | 1 |
2 | 1 | 582 | 600 | 0 |
Parameter | Gamma | Lognormal | Weibull | GG | |
---|---|---|---|---|---|
Intercept | −3.995 (0.501) | −4.009 (15.681) | −4.011 (8.922) | −4.009 (15.681) | |
Treatment effect | −0.082 (0.084) | −0.084 (0.084) | −0.092 (0.085) | −0.084 (0.084) | |
Scale parameter | 0.814 (0.404) | 0.878 (13.771) | 0.804 (7.170) | 0.878 (13.771) | |
Shape parameter | α * | 6.995 (0.001) | - | - | - |
Shape parameter | q | - | - | - | 0 |
Shape parameter | - | 0.462 (0.057) | 3.693 (0.608) | 0.462 (0.057) | |
SD random effect | 0.472 (0.041) | 0.460 (0.041) | 0.486 (0.042) | 0.460 (0.041) | |
logL | −9314.007 | −9310.748 | −9317.422 | −9310.748 | |
AIC | 18,638.014 | 18,631.496 | 18,644.843 | 18,631.496 |
Model | Z-Value | p-Value |
---|---|---|
Exponential–Gamma–Normal | −1.0550 | 0.1457 |
Exponential–Lognormal–Normal | −1.0024 | 0.1581 |
Exponential–Weibull–Normal | −1.0873 | 0.1385 |
Exponential–GG–Normal | −1.0547 | 0.1458 |
Parameter | Gamma | Lognormal | Weibull | GG | |
---|---|---|---|---|---|
Intercept | −4.021 (0.070) | −3.988 (13.552) | −4.033 (23.971) | −3.988 (13.552) | |
Treatment effect | −0.112 (0.099) | −0.108 (0.099) | −0.127 (0.101) | −0.108 (0.099) | |
Scale parameter | 0.787 (0.0001) | 0.822 (11.140) | 0.780 (18.705) | 0.822 (11.140) | |
Shape parameter | α * | 3.836 (0.001) | - | - | - |
Shape parameter | q | - | - | - | 0 |
Shape parameter | - | 0.630 (0.058) | 2.310 (0.256) | 0.630 (0.058) | |
SD random effect | 0.567 (0.001) | 0.560 (0.050) | 0.561 (0.051) | 0.5601 (0.050) | |
logL | −8326.454 | −8319.916 | −8328.188 | −8319.916 | |
AIC | 16,662.908 | 16,649.832 | 16,666.376 | 16,649.832 |
Parameter | Gamma | Lognormal | Weibull | GG | |
---|---|---|---|---|---|
Intercept | −4.207 (0.058) | −4.244 (0.069) | −4.158 (0.077) | −4.197 (0.065) | |
Treatment effect | −0.092 (0.082) | −0.081 (0.084) | -0.097 (0.084) | −0.088 (0.086) | |
Shape parameter | α * | 7.839 (0.0002) | - | - | - |
Shape parameter | q | - | - | - | −0.510 (0.001) |
Shape parameter | - | 3.715 (0.609) | 0.440 (0.059) | 0.461 (0.009) | |
SD random effect | 0.473 (0.0004) | 0.482 (0.040) | 0.461 (0.040) | 0.473 (0.043) | |
logL | −9313.029 | −9315.605 | −9314.543 | −9312.541 | |
AIC | 18,634.058 | 18,639.210 | 18,637.086 | 18,635.082 |
Parameter | Gamma | Lognormal | Weibull | GG | |
---|---|---|---|---|---|
Intercept | −4.258 (0.089) | −4.184 (0.090) | −4.282 (0.082) | −4.184 (0.090) | |
Treatment effect | −0.112 (0.113) | −0.108 (0.099) | −0.127 (0.101) | −0.108 (0.099) | |
Shape parameter | α * | 3.5634 (0.0016) | - | - | - |
Shape parameter | q | - | - | - | 0 |
Shape parameter | - | 0.630 (0.058) | 2.310 (0.256) | 0.630 (0.058) | |
SD random effect | 0.562 (0.007) | 0.560 (0.050) | 0.561 (0.051) | 0.560 (0.050) | |
logL | −8324.160 | −8319.916 | −8328.188 | −8319.916 | |
AIC | 16,656.320 | 16,647.832 | 16,664.376 | 16,647.832 |
Model | Z-Value | p-Value |
---|---|---|
Exponential—Gamma–Normal without censoring | −1.1262 | 0.1300 |
Exponential–Lognormal–Normal without censoring | −1.1567 | 0.1237 |
Exponential–Weibull–Normal without censoring | −0.9667 | 0.1669 |
Exponential–GG–Normal without censoring | −1.0315 | 0.1512 |
Exponential–Gamma–Normal with censoring | −0.9885 | 0.1615 |
Exponential–Lognormal–Normal with censoring | −1.0983 | 0.1360 |
Exponential–Weibull–Normal with censoring | −1.2637 | 0.1032 |
Exponential–GG–Normal with censoring | −1.1079 | 0.1340 |
Parameter | Gamma | Lognormal | Weibull | GG | |
---|---|---|---|---|---|
Treatment effect | −0.349 (0.125) | −0.316 (0.323) | −0.533 (0.337) | −0.533 (0.337) | |
Scale parameter | 0.187 (0.012) | 0.051 (0.028) | 0.072 (0.037)) | 0.072 (0.037) | |
Shape parameter | α * | 0.528 (0.002) | - | - | - |
Shape parameter | q | - | - | - | - |
Shape parameter | - | 0.132 (1.010) | 4.307 (8.419) | 4.307 (8.419) | |
SD random effect | 0.240 (0.013) | 1.069 (0.200) | 1.057 (0.206) | 1.057 (0.206) | |
logL | −449.5437 | −441.8936 | −441.6807 | −441.6807 | |
AIC | 891.7872 | 891.3614 | 891.3614 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, K.; Wang, Y.Q.; Zhu, X.; Balakrishnan, N. Generalized Gamma Frailty and Symmetric Normal Random Effects Model for Repeated Time-to-Event Data. Symmetry 2025, 17, 1760. https://doi.org/10.3390/sym17101760
Liu K, Wang YQ, Zhu X, Balakrishnan N. Generalized Gamma Frailty and Symmetric Normal Random Effects Model for Repeated Time-to-Event Data. Symmetry. 2025; 17(10):1760. https://doi.org/10.3390/sym17101760
Chicago/Turabian StyleLiu, Kai, Yan Qiao Wang, Xiaojun Zhu, and Narayanaswamy Balakrishnan. 2025. "Generalized Gamma Frailty and Symmetric Normal Random Effects Model for Repeated Time-to-Event Data" Symmetry 17, no. 10: 1760. https://doi.org/10.3390/sym17101760
APA StyleLiu, K., Wang, Y. Q., Zhu, X., & Balakrishnan, N. (2025). Generalized Gamma Frailty and Symmetric Normal Random Effects Model for Repeated Time-to-Event Data. Symmetry, 17(10), 1760. https://doi.org/10.3390/sym17101760