Abundant Soliton Solutions to the Generalized Reaction Duffing Model and Their Applications
Abstract
1. Introduction
2. The Generalized Reaction Duffing Model
3. Description of Analytical Approaches
3.1. Mapping Method
3.2. Bernoulli Sub-ODE Approach
4. Implementation and Applications of the Analytical Techniques
4.1. Mapping Method
4.2. Bernoulli Sub-ODE Approach
5. Graphical Findings and Discussion
6. Analogy of Present and Previous Results
7. Stability Analysis
8. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Malik, S.; Hashemi, M.S.; Kumar, S.; Rezazadeh, H.; Mahmoud, W.; Osman, M.S. Application of new Kudryashov method to various nonlinear partial differential equations. Opt. Quantum Electron. 2023, 55, 8. [Google Scholar] [CrossRef]
- Mollenauer, L.F.; Gordon, J.P. Solitons in Optical Fibers: Fundamentals and Applications; Elsevier Academic Press: Berkeley, CA, USA, 2006. [Google Scholar]
- Wein, F.; Dunning, P.D.; Norato, J.A. A review on feature-mapping methods for structural optimization. Struct. Multidiscip. Optim. 2020, 62, 1597–1638. [Google Scholar] [CrossRef]
- He, J.H.; Wu, X.H. Exp-function method for nonlinear wave equations. Chaos Solitons Fractals 2006, 30, 700–708. [Google Scholar] [CrossRef]
- Bekir, A. New solitons and periodic wave solutions for some nonlinear physical models by using the sine–cosine method. Phys. Scr. 2008, 77, 045008. [Google Scholar] [CrossRef]
- Guo, M.; Dong, H.; Liu, J.; Yang, H. The time-fractional mZK equation for gravity solitary waves and solutions using sech-tanh and radial basic function method. Nonlinear Anal. Model. Control 2019, 24, 1–19. [Google Scholar] [CrossRef]
- Zahran, E.H.; Khater, M.M. Modified extended tanh-function method and its applications to the Bogoyavlenskii equation. Appl. Math. Model. 2016, 40, 1769–1775. [Google Scholar] [CrossRef]
- Abdou, M.A. The extended F-expansion method and its application for a class of nonlinear evolution equations. Chaos Solitons Fractals 2007, 31, 95–104. [Google Scholar] [CrossRef]
- Zayed, E.M.E.; Arnous, A.H. DNA dynamics studied using the homogeneous balance method. Chin. Phys. Lett. 2012, 29, 080203. [Google Scholar] [CrossRef]
- Hussain, A.; Chahlaoui, Y.; Zaman, F.D.; Parveen, T.; Hassan, A.M. The Jacobi elliptic function method and its application for the stochastic NNV system. Alex. Eng. J. 2023, 81, 347–359. [Google Scholar] [CrossRef]
- Biswas, A.; Yildirim, Y.; Yasar, E.; Zhou, Q.; Moshokoa, S.P.; Belic, M. Optical solitons for Lakshmanan–Porsezian–Daniel model by modified simple equation method. Optik 2018, 160, 24–32. [Google Scholar] [CrossRef]
- Turkyilmazoglu, M. Parametrized adomian decomposition method with optimum convergence. ACM TRansactions Model. Comput. Simul. 2017, 27, 1–22. [Google Scholar] [CrossRef]
- Iqbal, M.S.; Seadawy, A.R.; Baber, M.Z.; Qasim, M. Application of modified exponential rational function method to Jaulent–Miodek system leading to exact classical solutions. Chaos Solitons Fractals 2022, 164, 112600. [Google Scholar] [CrossRef]
- Marinca, V.; Herisanu, N.; Marinca, V.; Herisanu, N. Optimal Homotopy Asymptotic Method; Springer International Publishing: New York, NY, USA, 2015; pp. 9–22. [Google Scholar]
- Aderyani, S.R.; Saadati, R.; Vahidi, J.; Allahviranloo, T. The exact solutions of the conformable time-fractional modified nonlinear Schrödinger equation by the Trial equation method and modified Trial equation method. Adv. Math. Phys. 2022, 2022, 4318192. [Google Scholar] [CrossRef]
- He, J.H.; Latifizadeh, H. A general numerical algorithm for nonlinear differential equations by the variational iteration method. Int. J. Numer. Methods Heat Fluid Flow 2020, 30, 4797–4810. [Google Scholar] [CrossRef]
- Akinfe, K.T. A reliable analytic technique for the modified prototypical Kelvin–Voigt viscoelastic fluid model by means of the hyperbolic tangent function. Partial. Differ. Equations Appl. Math. 2023, 7, 100523. [Google Scholar] [CrossRef]
- Ma, W.X.; Zhang, Y.J. Darboux transformations of integrable couplings and applications. Rev. Math. Phys. 2018, 30, 1850003. [Google Scholar] [CrossRef]
- Ashraf, R.; Hussain, S.; Ashraf, F.; Akgül, A.; El Din, S.M. The extended Fan’s sub-equation method and its application to nonlinear Schrödinger equation with saturable nonlinearity. Results Phys. 2023, 52, 106755. [Google Scholar] [CrossRef]
- Wazwaz, A.M. The Hirota’s bilinear method and the tanhcoth method for multiple-soliton solutions of the Sawada–Kotera–Kadomtsev–Petviashvili equation. Appl. Math. Comput. 2008, 200, 160–166. [Google Scholar]
- Akram, G.; Sadaf, M.; Zainab, I. The dynamical study of Biswas–Arshed equation via modified auxiliary equation method. Optik 2022, 255, 168614. [Google Scholar] [CrossRef]
- Rani, A.; Zulfiqar, A.; Ahmad, J.; Hassan, Q.M.U. New soliton wave structures of fractional Gilson-Pickering equation using tanh-coth method and their applications. Results Phys. 2021, 29, 104724. [Google Scholar] [CrossRef]
- Yin, Y.H.; Lü, X.; Ma, W.X. Bäcklund transformation, exact solutions and diverse interaction phenomena to a (3+1)-dimensional nonlinear evolution equation. Nonlinear Dyn. 2022, 108, 4181–4194. [Google Scholar] [CrossRef]
- Fokas, A.S.; Its, A.R.; Kapaev, A.A.; Novokshenov, V.Y. Painlevé Transcendents: The Riemann-Hilbert Approach; American Mathematical Society: Providence, RI, USA, 2023; Volume 128. [Google Scholar]
- Alaroud, M. Application of Laplace residual power series method for approximate solutions of fractional IVP’s. Alex. Eng. J. 2022, 61, 1585–1595. [Google Scholar] [CrossRef]
- Liu, H.; Geng, X. Initial–boundary problems for the vector modified Korteweg–de Vries equation via Fokas unified transform method. J. Math. Anal. Appl. 2016, 440, 578–596. [Google Scholar] [CrossRef]
- Huang, S.; Chaudhary, K.; Garmire, L.X. More is better: Recent progress in multi-omics data integration methods. Front. Genet. 2017, 8, 84. [Google Scholar] [CrossRef]
- Kovacic, I.; Brennan, M.J. The Duffing Equation: Nonlinear Oscillators and Their Behaviour; John Wiley & Sons: Hoboken, NJ, USA, 2011. [Google Scholar]
- Long-Jye, S.; Hsien-Keng, C.; Juhn-Horng, C.; Lap-Mou, T. Chaotic dynamics of the fractionally damped Duffing equation. Chaos Solitons Fractals 2007, 32, 1459–1468. [Google Scholar]
- Mohammed, W.W.; Al-Askar, F.M.; Cesarano, C. The analytical solutions of the stochastic mKdV equation via the mapping method. Mathematics 2022, 10, 4212. [Google Scholar] [CrossRef]
- Rehman, H.U.; Saleem, M.S.; Zubair, M.; Jafar, S.; Latif, I. Optical solitons with Biswas–Arshed model using mapping method. Optik 2019, 194, 163091. [Google Scholar] [CrossRef]
- Zayed, E.M.; Alurrfi, K.A. Solitons and other solutions for two nonlinear Schrödinger equations using the new mapping method. Optik 2017, 144, 132–148. [Google Scholar] [CrossRef]
- Rabie, W.B.; Khalil, T.A.; Badra, N.; Ahmed, H.M.; Mirzazadeh, M.; Hashemi, M.S. Soliton Solutions and Other Solutions to the (4+1)-Dimensional Davey–Stewartson–Kadomtsev–Petviashvili Equation using Modified Extended Mapping Method. Qual. Theory Dyn. Syst. 2024, 23, 87. [Google Scholar] [CrossRef]
- Hassan, S.Z.; Abdelrahman, M.A. A Riccati–Bernoulli sub-ODE method for some nonlinear evolution equations. Int. J. Nonlinear Sci. Numer. Simul. 2019, 20, 303–313. [Google Scholar] [CrossRef]
- Zheng, B. A new Bernoulli sub-ODE method for constructing traveling wave solutions for two nonlinear equations with any order. Univ. Politech. Buchar. Sci. Bull. Ser. A 2011, 73, 85–94. [Google Scholar]
- Alharbi, A.R.; Almatrafi, M.B. Riccati–Bernoulli sub-ODE approach on the partial differential equations and applications. Int. J. Math. Comput. Sci. 2020, 15, 367–388. [Google Scholar]
- Peng, Y.Z. Exact solutions for some nonlinear partial differential equations. Phys. Lett. A 2003, 314, 401–408. [Google Scholar] [CrossRef]
- Khan, K.; Akbar, M.A. Study of explicit travelling wave solutions of nonlinear evolution equations. Partial. Differ. Equations Appl. Math. 2023, 7, 100475. [Google Scholar] [CrossRef]
- Yousaf, M.Z.; Abbas, M.; Abdullah, F.A.; Nazir, T.; Alzaidi, A.S.; Emadifar, H. Construction of travelling wave solutions of coupled Higgs equation and the Maccari system via two analytical approaches. Opt. Quantum Electron. 2024, 56, 967. [Google Scholar] [CrossRef]
- Triki, H.; Jovanoski, Z.; Biswas, A. Shock wave solutions to the Bogoyavlensky–Konopelchenko equation. Indian J. Phys. 2014, 88, 71–74. [Google Scholar] [CrossRef]
- Cakicioglu, H.; Ozisik, M.; Secer, A.; Bayram, M. Kink Soliton Dynamic of the (2+1)-Dimensional Integro-Differential Jaulent-Miodek Equation via a Couple of Integration Techniques. Symmetry 2023, 15, 1090. [Google Scholar] [CrossRef]
- Aminikhah, H.; Refahi, A.; Rezazadeh, H. Functional variable method for solving the generalized reaction Duffing model and the perturbed Boussinesq equation. Adv. Model. Optim 2015, 17, 55–65. [Google Scholar]
- Tian, B.; Gao, Y.T. Observable solitonic features of the generalized reaction Duffing Model. Z. Naturforsch. A 2002, 57, 39–44. [Google Scholar] [CrossRef]
- Kim, J.J.; Hong, W.P. New solitary-wave solutions for the generalized reaction Duffing model and their dynamics. Z. Naturforsch. A 2004, 59, 721–728. [Google Scholar] [CrossRef]
- Yan, Z.; Zhang, H. Explicit and exact solutions for the generalized reaction duffing equation. Commun. Nonlinear Sci. Numer. Simul. 1999, 4, 224–227. [Google Scholar] [CrossRef]
- Hussain, E.; Mahmood, I.; Shah, S.A.A.; Khatoon, M.; Az-Zo’bi, E.A.; Ragab, A.E. The study of coherent structures of combined KdV–mKdV equation through integration schemes and stability analysis. Opt. Quantum Electron. 2024, 56, 723. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vivas-Cortez, M.; Aftab, M.; Abbas, M.; Alosaimi, M. Abundant Soliton Solutions to the Generalized Reaction Duffing Model and Their Applications. Symmetry 2024, 16, 847. https://doi.org/10.3390/sym16070847
Vivas-Cortez M, Aftab M, Abbas M, Alosaimi M. Abundant Soliton Solutions to the Generalized Reaction Duffing Model and Their Applications. Symmetry. 2024; 16(7):847. https://doi.org/10.3390/sym16070847
Chicago/Turabian StyleVivas-Cortez, Miguel, Maryam Aftab, Muhammad Abbas, and Moataz Alosaimi. 2024. "Abundant Soliton Solutions to the Generalized Reaction Duffing Model and Their Applications" Symmetry 16, no. 7: 847. https://doi.org/10.3390/sym16070847
APA StyleVivas-Cortez, M., Aftab, M., Abbas, M., & Alosaimi, M. (2024). Abundant Soliton Solutions to the Generalized Reaction Duffing Model and Their Applications. Symmetry, 16(7), 847. https://doi.org/10.3390/sym16070847