Kink Soliton Dynamic of the (2+1)-Dimensional Integro-Differential Jaulent–Miodek Equation via a Couple of Integration Techniques
Abstract
:1. Introduction
2. Mathematical Analysis of the Investigated Problem
3. Proposed Methods and Their Applications
3.1. Generalized Kudryashov Method and Its Implementatiton
3.2. A Sub-Version of Auxiliary Method and Its Implementatiton
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Kudryashov, N.A. One method for finding exact solutions of nonlinear differential equations. Commun. Nonlinear Sci. Numer. Simul. 2012, 17, 2248–2253. [Google Scholar] [CrossRef]
- Kudryashov, N.A. Highly dispersive solitary wave solutions of perturbed nonlinear Schrödinger equations. Appl. Math. Comput. 2020, 371, 124972. [Google Scholar] [CrossRef]
- Aksoy, E.; Bekir, A.; Çevikel, A.C. Study on fractional differential equations with modified riemann-liouville derivative via kudryashov method. Int. J. Nonlinear Sci. Numer. Simul. 2019, 20, 511–516. [Google Scholar] [CrossRef]
- Wazwaz, A.M. The tanh-coth method for solitons and kink solutions for nonlinear parabolic equations. Appl. Math. Comput. 2007, 188, 1467–1475. [Google Scholar] [CrossRef]
- Gozukizil, O.F.; Salhi, A. New travelling wave solutions of two nonlinear physical models by using a modified tanh-coth method. J. Algorithms Comput. Technol. 2019, 9, 1–12. [Google Scholar] [CrossRef]
- Gozukizil, O.F.; Akcagil, S. The tanh-coth method for some nonlinear pseudoparabolic equations with exact solutions. Adv. Differ. Equ. 2013, 2013, 143. [Google Scholar] [CrossRef]
- Kudryashov, N.A. Method for finding highly dispersive optical solitons of nonlinear differential equations. Optik 2022, 206, 163550. [Google Scholar] [CrossRef]
- Rezazadeh, H.; Ullah, N.; Akinyemi, L.; Shah, A.; Mirhosseini, A.; Seyed, M.; Chu, Y.M.; Ahmad, H. Optical soliton solutions of the generalized non-autonomous nonlinear Schrödinger equations by the new Kudryashov’s method. Results Phys. 2021, 24, 104179. [Google Scholar] [CrossRef]
- Arnous, A.H.; Biswas, A.; Kara, A.H.; Yildirim, Y.; Alshehri, H.M.; Belic, M.R. Highly dispersive optical solitons and conservation laws in absence of self–phase modulation with new Kudryashov’s approach. Phys. Lett. Sect. A Gen. At. Solid State Phys. 2022, 431, 128001. [Google Scholar] [CrossRef]
- Inc, M.; Aliyu, A.I.; Yusuf, A.; Baleanu, D.; Nuray, E. Complexiton and solitary wave solutions of the coupled nonlinear Maccari’s system using two integration schemes. Mod. Phys. Lett. B 2018, 32, 1850014. [Google Scholar] [CrossRef]
- Patel, P.M.; Pradhan, V.H. Exact Travelling Wave Solutions of Richards’ Equation by Modified F-expansion Method. Procedia Eng. 2015, 127, 759–766. [Google Scholar] [CrossRef]
- Shukri, S.; Al-Khaled, K. The extended tanh method for solving systems of nonlinear wave equations. Appl. Math. Comput. 2010, 217, 1997–2006. [Google Scholar] [CrossRef]
- Wazwaz, A.M. The extended tanh method for the Zakharov-Kuznetsov (ZK) equation, the modified ZK equation, and its generalized forms. Commun. Nonlinear Sci. Numer. Simul. 2008, 13, 1039–1047. [Google Scholar] [CrossRef]
- Wazwaz, A.M. Abundant solitons solutions for several forms of the fifth-order KdV equation by using the tanh method. Appl. Math. Comput. 2006, 182, 283–300. [Google Scholar] [CrossRef]
- Mbusi, S.O.; Muatjetjeja, B.; Adem, A.R. Exact Lagrangian Formulation, Conservation Laws, Travelling Wave Solutions: A Generalized Benney-Luke Equation. Mathematics 2021, 9, 1480. [Google Scholar] [CrossRef]
- Rezazadeh, H.; Korkmaz, A.; Eslami, M.; Vahidi, J.; Asghari, R. Traveling wave solution of conformable fractional generalized reaction Duffing model by generalized projective Riccati equation method. Opt. Quantum Electron. 2018, 50, 1–13. [Google Scholar] [CrossRef]
- Shahoot, A.M.; Alurrfi, K.A.E.; Hassan, I.M.; Almsri, A.M. Solitons and Other Exact Solutions for Two Nonlinear PDEs in Mathematical Physics Using the Generalized Projective Riccati Equations Method. Adv. Math. Phys. 2018, 2018, 6870310. [Google Scholar] [CrossRef]
- Akram, G.; Sadaf, M.; Arshed, S.; Sameen, F. Bright, dark, kink, singular and periodic soliton solutions of Lakshmanan–Porsezian–Daniel model by generalized projective Riccati equations method. Optik 2021, 241, 167051. [Google Scholar] [CrossRef]
- Kudryashov, N.A. A note on the (G′/G)-expansion method. Appl. Math. Comput. 2010, 217, 1755–1758. [Google Scholar] [CrossRef]
- Zhang, Z.; Wu, J. Generalized (G′/G)-expansion method and exact traveling wave solutions of the perturbed nonlinear Schrödinger’s equation with Kerr law nonlinearity in optical fiber materials. Opt. Quantum Electron. 2017, 49, 52. [Google Scholar] [CrossRef]
- Javadi, S.; Moradi, E.; Fardi, M.; Abbasian, S. Solving Equal-width Wave-burgers Equation By (G′/G)-expansion Method. J. Math. Comput. Sci. 2014, 11, 246–251. [Google Scholar] [CrossRef]
- Cinar, M.; Onder, I.; Secer, A.; Yusuf, A.; Sulaiman, T.A.; Bayram, M.; Aydin, H. Soliton Solutions of (2+1) Dimensional Heisenberg Ferromagnetic Spin Equation by the Extended Rational sine-cosine and sinh-cosh Method. Int. J. Appl. Comput. Math. 2021, 7, 1–17. [Google Scholar] [CrossRef]
- Mahak, N.; Akram, G. Application of extended rational trigonometric techniques to investigate solitary wave solutions. Opt. Quantum Electron. 2021, 53, 1–14. [Google Scholar] [CrossRef]
- Wang, K.J.; Liu, J.H.; Wu, J. Soliton solutions to the Fokas system arising in monomode optical fibers. Optik 2022, 251, 168319. [Google Scholar] [CrossRef]
- Alquran, M.; Ali, M.; Jadallah, H. New topological and non-topological unidirectional-wave solutions for the modified-mixed KdV equation and bidirectional-waves solutions for the Benjamin Ono equation using recent techniques. J. Ocean Eng. Sci. 2022, 7, 163–169. [Google Scholar] [CrossRef]
- Hassan, M.M.; Abdel-Razek, M.A.; Shoreh, A.A.H. New Exact Solutions of some (2+1)-Dimensional Nonlinear Evolution Equations Via Extended Kudryashov Method. Rep. Math. Phys. 2014, 74, 347–358. [Google Scholar] [CrossRef]
- Yasar, E.; Yildirim, Y.; Adem, A.R. Perturbed optical solitons with spatio-temporal dispersion in (2+1)-dimensions by extended Kudryashov method. Optik 2018, 158, 1–14. [Google Scholar] [CrossRef]
- El-Borai, M.M.; El-Owaidy, H.M.; Ahmed, H.M.; Arnous, A.; Moshokoa, S.; Biswas, A.; Belic, M. Topological and singular soliton solution to Kundu–Eckhaus equation with extended Kudryashov’s method. Optik 2017, 128, 57–62. [Google Scholar] [CrossRef]
- Fu, L.; Yang, H. An Application of (3+1)-Dimensional Time-Space Fractional ZK Model to Analyze the Complex Dust Acoustic Waves. Complexity 2019, 2019, 2806724. [Google Scholar] [CrossRef]
- Kudryashov, N.A. Exact solutions of the generalized Kuramoto—Sivashinsky equation. Int. J. Geom. Methods Mod. Phys. 1990, 147, 287–291. [Google Scholar] [CrossRef]
- Hietarinta, J. Hirota’s Bilinear Method and its Generalization. Int. J. Mod. Phys. 1997, 12, 43–51. [Google Scholar] [CrossRef]
- Shuwei, X.; Jingsong, H.; Lihong, W. The Darboux transformation of the derivative nonlinear Schrödinger equation. J. Phys. Math. Theor. 2011, 44, 305203. [Google Scholar] [CrossRef]
- Elsayed, M.E.Z.; Abdul-Ghani, A.-N. The solitary wave ansatz method for finding the exact bright and dark soliton solutions of two nonlinear Schrödinger equations. J. Assoc. Arab. Univ. Basic Appl. Sci. 2016, 24, 184–190. [Google Scholar] [CrossRef]
- Ghanbari, B.; Kumar, S.; Niwas, M.; Baleanu, D. The Lie symmetry analysis and exact Jacobi elliptic solutions for the Kawahara–KdV type equations. Results Phys. 2021, 23, 2211–3797. [Google Scholar] [CrossRef]
- Sahoo, S.; Saha Ray, S.; Abdou, M.A.M.; Inc, M.; Chu, Y.-M. New Soliton Solutions of Fractional Jaulent-Miodek System with Symmetry Analysis. Symmetry 2020, 12, 1001. [Google Scholar] [CrossRef]
- Zadeh, A.H.; Jacob, K.; Shah, N.A.; Chung, J.D. Fractional-View Analysis of Jaulent-Miodek Equation via Novel Analytical Techniques. J. Funct. Spaces 2022, 2022, 11. [Google Scholar] [CrossRef]
- Veeresha, P.; Prakasha, D.G.; Magesh, N.; Nandeppanavar, M.M.; John Christopher, A.J. Numerical simulation for fractional Jaulent–Miodek equation associated with energy-dependent Schrödinger potential using two novel techniques. Waves Random Complex Media 2021, 31, 1141–1162. [Google Scholar] [CrossRef]
- Alshammari, S.; Al-Sawalha, M.M.; Shah, R. Approximate Analytical Methods for a Fractional-Order Nonlinear System of Jaulent–Miodek Equation with Energy-Dependent Schrödinger Potential. Waves Random Complex Media 2023, 7, 140. [Google Scholar] [CrossRef]
- Li, Y.; Liu, X.; Xin, X. Explicit solutions, conservation laws of the extended (2+1)-dimensional jaulent-miodek equation. arXiv 2015, arXiv:1512.09196. [Google Scholar] [CrossRef]
- Jaulent, M.; Miodek, I. Nonlinear evolution equations associated with ‘enegry-dependent Schrödinger potentials’. Lett. Math. Phys. 1976, 1, 243–250. [Google Scholar] [CrossRef]
- Seadawy, A.R.; Arshad, M.; Lu, D. The weakly nonlinear wave propagation of the generalized third-order nonlinear Schrödinger equation and its applications. Waves Random Complex Media 2022, 32, 819–831. [Google Scholar] [CrossRef]
- Kamimura, Y. Energy-Dependent Reflectionless Inverse Scattering. Publ. Res. Inst. Math. Sci. 2022, 58, 379–440. [Google Scholar] [CrossRef]
- Cinar, M.; Onder, I.; Secer, A.; Bayram, M.; Sulaiman, A.T.; Yusuf, A. Solving the fractional Jaulent–Miodek system via a modified Laplace decomposition method. Waves Random Complex Media 2022. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, D.S. Exotic wave patterns in Riemann problem of the high-order Jaulent–Miodek equation: Whitham modulation theory. Stud. Appl. Math. 2022, 149, 12513. [Google Scholar] [CrossRef]
- Ma, H.C.; Deng, A.P.; Yu, Y.D. Lie symmetry group of (2+1)-dimensional Jaulent-Miodek equation. Therm. Sci. 2014, 18, 1547–1552. [Google Scholar] [CrossRef]
- Ma, H.C.; Qin, Z.Y.; Deng, A.P. Symmetry transformation and new exact multiple kink and singular kink solutions for (2+1)-dimensional nonlinear models generated by the Jaulent-Miodek Hierarchy. Commun. Theor. Phys. 2013, 59, 141–145. [Google Scholar] [CrossRef]
- Hang-yu, R.; Sen-yue, L. New Symmetries of the Jaulent-Miodek Hierarchy. J. Phys. Soc. Jpn. 1993, 62, 1917–1921. [Google Scholar] [CrossRef]
- Yongyi, G.; Bingmao, D.; Jianming, L. Exact Traveling Wave Solutions to the (2+1)-Dimensional Jaulent-Miodek Equation. Adv. Math. Phys. 2018, 2018, 5971646. [Google Scholar] [CrossRef]
- Geng, X.; Guan, L.; Xue, B. A hierarchy of generalized Jaulent-Miodek equations and their explicit solutions. Int. J. Geom. Methods Mod. Phys. 2018, 15, 1850002. [Google Scholar] [CrossRef]
- Taha, W.M.; Noorani, M.S.M. Exact solutions of equation generated by the jaulent-miodek hierarchy by (G′/G)-expansion method. Math. Probl. Eng. 2013, 2013, 392830. [Google Scholar] [CrossRef]
- Kaplan, M.; Bekir, A.; Akbulut, A. A generalized Kudryashov method to some nonlinear evolution equations in mathematical physics. Nonlinear Dyn. 2016, 85, 2843–2850. [Google Scholar] [CrossRef]
- Apeanti, W.O.; Lu, D.; Yaro, D.; Akuamoah, S.W. Dispersive traveling wave solutions of nonlinear optical wave dynamical models. Mod. Phys. Lett. B 2019, 33, 1950120. [Google Scholar] [CrossRef]
- Liu, D.Y.; Tian, B.; Jiang, Y.; Sun, W.R. Soliton solutions and Bäcklund transformations of a (2+1)-dimensional nonlinear evolution equation via the Jaulent–Miodek hierarchy. Nonlinear Dyn. 2014, 78, 2341–2347. [Google Scholar] [CrossRef]
- Feng, D.; Li, J. Bifurcations of travelling wave solutions for Jaulent-Miodek equations. Appl. Math. Mech. (Engl. Ed.) 2007, 28, 999–1005. [Google Scholar] [CrossRef]
- Ji-Huan, H.; Li-Na, Z. Generalized solitary solution and compacton-like solution of the Jaulent–Miodek equations using the Exp-function method. Phys. Lett. A 2008, 372, 1044–1047. [Google Scholar] [CrossRef]
- Wazwaz, A.M. Multiple kink solutions and multiple singular kink solutions for (2+1)-dimensional nonlinear models generated by the Jaulent-Miodek hierarchy. Phys. Lett. Sect. A Gen. At. Solid State Phys. 2009, 373, 1844–1846. [Google Scholar] [CrossRef]
- Mbusi, S.; Muatjetjeja, B.; Adem, A.R. On the exact solutions and conservation laws of a generalized (1+2)-dimensional Jaulent-Miodek equation with a power law nonlinearity. Int. J. Nonlinear Anal. Appl. 2022, 13, 1721–1735. [Google Scholar] [CrossRef]
- Motsepa, T.; Abudiab, M.; Khalique, C. A Study of an Extended Generalized (2+1)-dimensional Jaulent–Miodek Equation. Int. J. Nonlinear Sci. Numer. Simul. 2018, 19, 391–395. [Google Scholar] [CrossRef]
- Iqbal, M.S.; Seadawy, A.R.; Baber, M.Z.; Qasim, M. Application of modified exponential rational function method to Jaulent–Miodek system leading to exact classical solutions. Chaos Solitons Fractals 2022, 164, 112600. [Google Scholar] [CrossRef]
- Guiping, S.; Jalil, M.; Syed, M.Z.; Dinh, T.N.H.; Trung-Hieu, L. The New Solitary Solutions to the Time-Fractional Coupled Jaulent–Miodek Equation. Discret. Dyn. Nat. Soc. 2021, 2021, 2429334. [Google Scholar] [CrossRef]
- Sadat, R.; Kassem, M. Explicit Solutions for the (2+1)-Dimensional Jaulent–Miodek Equation Using the Integrating Factors Method in an Unbounded Domain. Math. Comput. Appl. 2018, 23, 15. [Google Scholar] [CrossRef]
- Kaewta, S.; Sirisubtawee, S.; Sungnul, S. Application of the exp-function and generalized kudryashov methods for obtaining new exact solutions of certain nonlinear conformable time partial integro-differential equations. Computation 2021, 2021, 52. [Google Scholar] [CrossRef]
- Kaewta, S.; Sirisubtawee, S.; Khansai, N. Explicit Exact Solutions of the (2+1)-Dimensional Integro-Differential Jaulent–Miodek Evolution Equation Using the Reliable Methods. Int. J. Math. Math. Sci. 2020, 2020, 2916395. [Google Scholar] [CrossRef]
- Pei, J.T.; Bai, Y.S. Lie symmetries, conservation laws and exact solutions for Jaulent-Miodek equations. Symmetry 2019, 11, 1319. [Google Scholar] [CrossRef]
- Li, C.; Guo, Q. On the solutions of the space–time fractional coupled Jaulent–Miodek equation associated with energy-dependent Schrödinger potential. Appl. Math. Lett. 2021, 121, 107517. [Google Scholar] [CrossRef]
- Chen, J.; Li, E.; Xue, Y. Evolution of initial discontinuities in the Riemann problem for the Jaulent–Miodek equation with positive dispersion. Appl. Math. Comput. 2022, 419, 126869. [Google Scholar] [CrossRef]
- Zhang, Y.Y.; Liu, X.Q.; Wang, G.W. Symmetry reductions and exact solutions of the (2+1)-dimensional Jaulent-Miodek equation. Appl. Math. Comput. 2012, 219, 911–916. [Google Scholar] [CrossRef]
- KLi, J.; Chen, G. On a Class of Singular Nonlinear Traveling Wave Equations. Int. J. Bifurc. Chaos 2007, 17, 4049–4065. [Google Scholar] [CrossRef]
- Li, J.; Chen, F. Exact travelling wave solutions and their dynamical behavior for a class coupled nonlinear wave equations. Discret. Contin. Dyn.-Syst.-D 2013, 18, 163–172. [Google Scholar] [CrossRef]
- Ozisik, M.; Cinar, M.; Secer, A.; Bayram, M. Optical solitons with Kudryashov’s sextic power-law nonlinearity. Optik 2022, 261, 169202. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cakicioglu, H.; Ozisik, M.; Secer, A.; Bayram, M. Kink Soliton Dynamic of the (2+1)-Dimensional Integro-Differential Jaulent–Miodek Equation via a Couple of Integration Techniques. Symmetry 2023, 15, 1090. https://doi.org/10.3390/sym15051090
Cakicioglu H, Ozisik M, Secer A, Bayram M. Kink Soliton Dynamic of the (2+1)-Dimensional Integro-Differential Jaulent–Miodek Equation via a Couple of Integration Techniques. Symmetry. 2023; 15(5):1090. https://doi.org/10.3390/sym15051090
Chicago/Turabian StyleCakicioglu, Hasan, Muslum Ozisik, Aydin Secer, and Mustafa Bayram. 2023. "Kink Soliton Dynamic of the (2+1)-Dimensional Integro-Differential Jaulent–Miodek Equation via a Couple of Integration Techniques" Symmetry 15, no. 5: 1090. https://doi.org/10.3390/sym15051090