Non-Axisymmetric Bouncing Dynamics on a Moving Superhydrophobic Surface
Abstract
:1. Introduction
2. Methodology
3. Results and Discussion
3.1. Momentum Transfer of Droplet on the Moving Surface
3.2. Morphology of Droplet on Moving Surface
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Cheng, X.; Sun, T.-P.; Gordillo, L. Drop impact dynamics: Impact force and stress distributions. Annu. Rev. Fluid Mech. 2022, 54, 57–81. [Google Scholar] [CrossRef]
- De Ruiter, J.; Lagraauw, R.; Van Den Ende, D.; Mugele, F. Wettability-independent bouncing on flat surfaces mediated by thin air films. Nat. Phys. 2015, 11, 48–53. [Google Scholar] [CrossRef]
- Josserand, C.; Thoroddsen, S.T. Drop impact on a solid surface. Annu. Rev. Fluid Mech. 2016, 48, 365–391. [Google Scholar] [CrossRef]
- Enright, R.; Miljkovic, N.; Sprittles, J.; Nolan, K.; Mitchell, R.; Wang, E.N. How coalescing droplets jump. ACS Nano 2014, 8, 10352–10362. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Ghigliotti, G.; Feng, J.J.; Chen, C.-H. Numerical simulations of self-propelled jumping upon drop coalescence on non-wetting surfaces. J. Fluid Mech. 2014, 752, 39–65. [Google Scholar] [CrossRef]
- Liu, X.; Cheng, P.; Quan, X. Lattice Boltzmann simulations for self-propelled jumping of droplets after coalescence on a superhydrophobic surface. Int. J. Heat Mass Transf. 2014, 73, 195–200. [Google Scholar] [CrossRef]
- Han, X.; Li, J.; Tang, X.; Li, W.; Zhao, H.; Yang, L.; Wang, L. Droplet bouncing: Fundamentals, regulations, and applications. Small 2022, 18, 2200277. [Google Scholar] [CrossRef]
- Yu, X.; Zhang, Y.; Hu, R.; Luo, X. Water droplet bouncing dynamics. Nano Energy 2021, 81, 105647. [Google Scholar] [CrossRef]
- Esmaeili, A.R.; Mir, N.; Mohammadi, R. Further step toward a comprehensive understanding of the effect of surfactant additions on altering the impact dynamics of water droplets. Langmuir 2021, 37, 841–851. [Google Scholar] [CrossRef]
- Liu, H.; Si, C.; Cai, C.; Zhao, C.; Yin, H. Experimental investigation on impact and spreading dynamics of a single ethanol–water droplet on a heated surface. Chem. Eng. Sci. 2021, 229, 116106. [Google Scholar] [CrossRef]
- Fink, V.; Cai, X.; Stroh, A.; Bernard, R.; Kriegseis, J.; Frohnapfel, B.; Marschall, H.; Wörner, M. Drop bouncing by micro-grooves. Int. J. Heat Fluid Flow 2018, 70, 271–278. [Google Scholar] [CrossRef]
- Okumura, K.; Chevy, F.; Richard, D.; Quéré, D.; Clanet, C. Water spring: A model for bouncing drops. Europhys. Lett. 2003, 62, 237. [Google Scholar] [CrossRef]
- Guo, Y.; Lian, Y.; Sussman, M. Investigation of drop impact on dry and wet surfaces with consideration of surrounding air. Phys. Fluids 2016, 28, 073303. [Google Scholar] [CrossRef]
- Stevens, C.S.; Latka, A.; Nagel, S.R. Comparison of splashing in high-and low-viscosity liquids. Phys. Rev. E 2014, 89, 063006. [Google Scholar] [CrossRef] [PubMed]
- Zen, T.-S.; Chou, F.-C.; Ma, J.-L. Ethanol drop impact on an inclined moving surface. Int. Commun. Heat Mass Transf. 2010, 37, 1025–1030. [Google Scholar] [CrossRef]
- Yu, W.; Zhu, D.; Wang, W.; Yu, Z.; Chen, S.; Zhao, J. The rebounding-coalescing behaviors in drop-on-drop impact on a superhydrophobic surface. Appl. Phys. Lett. 2022, 121, 061602. [Google Scholar] [CrossRef]
- Clanet, C.; Béguin, C.; Richard, D.; Quéré, D. Maximal deformation of an impacting drop. J. Fluid Mech. 2004, 517, 199–208. [Google Scholar] [CrossRef]
- Kreder, M.J.; Alvarenga, J.; Kim, P.; Aizenberg, J. Design of anti-icing surfaces: Smooth, textured or slippery? Nat. Rev. Mater. 2016, 1, 15003. [Google Scholar] [CrossRef]
- Ren, S.; Wang, S.; Dong, Z.; Chen, J.; Li, L. Dynamic behaviors and self-cleaning property of droplet on superhydrophobic coating in uniform DC electric field. Colloids Surf. A Physicochem. Eng. Asp. 2021, 626, 127056. [Google Scholar] [CrossRef]
- Bird, J.C.; Dhiman, R.; Kwon, H.-M.; Varanasi, K.K. Reducing the contact time of a bouncing drop. Nature 2013, 503, 385–388. [Google Scholar] [CrossRef]
- Liu, Y.; Whyman, G.; Bormashenko, E.; Hao, C.; Wang, Z. Controlling drop bouncing using surfaces with gradient features. Appl. Phys. Lett. 2015, 107, 051604. [Google Scholar] [CrossRef]
- Hou, J.; Gong, J.; Wu, X.; Huang, Q. Numerical study on impacting-freezing process of the droplet on a lateral moving cold superhydrophobic surface. Int. J. Heat Mass Transf. 2022, 183, 122044. [Google Scholar] [CrossRef]
- Gladkov, S.O. On Some Theoretical Aspects of The Evaporation Process of a Droplet and Its Optimal Size When Extinguishing Fires. Inventions 2023, 8, 35. [Google Scholar] [CrossRef]
- Reis, N.; Ainsley, C.; Derby, B. Ink-jet delivery of particle suspensions by piezoelectric droplet ejectors. J. Appl. Phys. 2005, 97, 094903. [Google Scholar] [CrossRef]
- Zhang, X.; Zhu, Z.; Zhang, C.; Yang, C. Reduced contact time of a droplet impacting on a moving superhydrophobic surface. Appl. Phys. Lett. 2020, 117, 151602. [Google Scholar] [CrossRef]
- Tao, R.; Fang, W.; Wu, J.; Dou, B.; Xu, W.; Zheng, Z.; Li, B.; Wang, Z.; Feng, X.; Hao, C. Rotating Surfaces Promote the Shedding of Droplets. Research 2023, 6, 0023. [Google Scholar] [CrossRef] [PubMed]
- Chu, F.; Li, S.; Hu, Z.; Wu, X. Regulation of droplet impacting on superhydrophobic surfaces: Coupled effects of macrostructures, wettability patterns, and surface motion. Appl. Phys. Lett. 2023, 122, 160503. [Google Scholar] [CrossRef]
- Gauthier, A.; Bird, J.C.; Clanet, C.; Quéré, D. Aerodynamic Leidenfrost effect. Phys. Rev. Fluids 2016, 1, 084002. [Google Scholar] [CrossRef]
- Zhan, H.; Lu, C.; Liu, C.; Wang, Z.; Lv, C.; Liu, Y. Horizontal motion of a superhydrophobic substrate affects the drop bouncing dynamics. Phys. Rev. Lett. 2021, 126, 234503. [Google Scholar] [CrossRef]
- García-Geijo, P.; Riboux, G.; Gordillo, J.M. Inclined impact of drops. J. Fluid Mech. 2020, 897, A12. [Google Scholar] [CrossRef]
- Wang, M.; Shi, Y.; Wang, S.; Xu, H.; Zhang, H.; Wei, M.; Wang, X.; Peng, W.; Ding, H.; Song, M. Directional droplet bouncing on a moving superhydrophobic surface. Iscience 2023, 26, 106389. [Google Scholar] [CrossRef] [PubMed]
- Shu, Y.; Chu, F.; Hu, Z.; Gao, J.; Wu, X.; Dong, Z.; Feng, Y. Superhydrophobic strategy for nature-inspired rotating microfliers: Enhancing spreading, reducing contact time, and weakening impact force of raindrops. ACS Appl. Mater. Interfaces 2022, 14, 57340–57349. [Google Scholar] [CrossRef] [PubMed]
- Moqaddam, A.M.; Chikatamarla, S.S.; Karlin, I.V. Drops bouncing off macro-textured superhydrophobic surfaces. J. Fluid Mech. 2017, 824, 866–885. [Google Scholar] [CrossRef]
- Moghtadernejad, S.; Jadidi, M.; Hanson, J.; Johnson, Z. Dynamics of droplet impact on a superhydrophobic disk. Phys. Fluids 2022, 34, 062104. [Google Scholar] [CrossRef]
- Richard, D.; Clanet, C.; Quéré, D. Contact time of a bouncing drop. Nature 2002, 417, 811. [Google Scholar] [CrossRef]
- Almohammadi, H.; Amirfazli, A. Asymmetric spreading of a drop upon impact onto a surface. Langmuir 2017, 33, 5957–5964. [Google Scholar] [CrossRef]
- Gao, S.-R.; Wei, B.-J.; Jin, J.-X.; Ye, J.-S.; Wang, Y.-F.; Zheng, S.-F.; Yang, Y.-R.; Wang, X.-D. Contact time of a droplet impacting hydrophobic surfaces. Phys. Fluids 2022, 34, 067104. [Google Scholar] [CrossRef]
- Aria, A.I.; Gharib, M. Physicochemical characteristics and droplet impact dynamics of superhydrophobic carbon nanotube arrays. Langmuir 2014, 30, 6780–6790. [Google Scholar] [CrossRef]
- Bertola, V. An experimental study of bouncing Leidenfrost drops: Comparison between Newtonian and viscoelastic liquids. Int. J. Heat Mass Transf. 2009, 52, 1786–1793. [Google Scholar] [CrossRef]
- Biance, A.-L.; Chevy, F.; Clanet, C.; Lagubeau, G.; Quéré, D. On the elasticity of an inertial liquid shock. J. Fluid Mech. 2006, 554, 47–66. [Google Scholar] [CrossRef]
- Chen, L.; Xiao, Z.; Chan, P.C.; Lee, Y.-K.; Li, Z. A comparative study of droplet impact dynamics on a dual-scaled superhydrophobic surface and lotus leaf. Appl. Surf. Sci. 2011, 257, 8857–8863. [Google Scholar] [CrossRef]
- Qian, L.; Huo, B.; Chen, Z.; Li, E.; Ding, H. Droplet bouncing on moving superhydrophobic groove surfaces. Int. J. Multiph. Flow 2023, 165, 104454. [Google Scholar] [CrossRef]
- Yarin, A.L. Drop impact dynamics: Splashing, spreading, receding, bouncing…. Annu. Rev. Fluid Mech. 2006, 38, 159–192. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, W.; Yu, W.; Yu, Z.; Chen, S.; Cao, D.; Liu, X.; Zhao, J. Non-Axisymmetric Bouncing Dynamics on a Moving Superhydrophobic Surface. Symmetry 2024, 16, 29. https://doi.org/10.3390/sym16010029
Wang W, Yu W, Yu Z, Chen S, Cao D, Liu X, Zhao J. Non-Axisymmetric Bouncing Dynamics on a Moving Superhydrophobic Surface. Symmetry. 2024; 16(1):29. https://doi.org/10.3390/sym16010029
Chicago/Turabian StyleWang, Wenhao, Wenlong Yu, Zhiyuan Yu, Shuo Chen, Damin Cao, Xiaohua Liu, and Jiayi Zhao. 2024. "Non-Axisymmetric Bouncing Dynamics on a Moving Superhydrophobic Surface" Symmetry 16, no. 1: 29. https://doi.org/10.3390/sym16010029
APA StyleWang, W., Yu, W., Yu, Z., Chen, S., Cao, D., Liu, X., & Zhao, J. (2024). Non-Axisymmetric Bouncing Dynamics on a Moving Superhydrophobic Surface. Symmetry, 16(1), 29. https://doi.org/10.3390/sym16010029