Identifying the Level of Symmetrization of Reaction Time According to Manual Lateralization between Team Sports Athletes, Individual Sports Athletes, and Non-Athletes
Abstract
:1. Introduction
- —
- O1. Identifying the differences in terms of improving reaction times: simple, optional, and cognitive in the manual executions of students—athletes who practice team sports that involve manual handling of the ball (volleyball, basketball, and handball) compared to subjects who practice individual sports (which do not require handling an object) and compared to non-athlete subjects.
- —
- O2. Identifying the differences regarding the reaction time of right- and left-handed executions depending on the manual laterality (right- and left-handedness) between the three experimental groups—team sports group (TSG), individual sports group (ISG), and non-athletes group (NAG)—through the use of computer tests.
2. Materials and Methods
2.1. Study Design
2.2. Participants
- —
- (TSG) the group of active athletes who practice a team game at performance level, totaling 102 subjects, structured according to sports as follows: 22 athletes—volleyball, 38 athletes—basketball, 42 athletes—handball; right-handed 88, left-handed 14.
- —
- (ISG) the group of athletes practicing individual sports, totaling 112 subjects, of which 42 athletes—athletic sports, 11 athletes—winter sports, 59 athletes—other individual sports; right-handed 100, left-handed 12.
- —
- (NAG) the group of non-athletes, made up of 121 students in the programs of economic sciences, physiotherapy, and other university study programs; right-handed 110, left-handed 11.
2.3. Measures
- —
- simple motor reaction time was tested with the Start/Stop Test;
- —
- choice reaction time was tested with the Check Boxes Test and Hit-the-dot Test;
- —
- cognitive reaction time was tested with the Trail Making test part A and B.
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Thomas, N.A.; Manning, R.; Saccone, E.J. Left-handers know what’s left is right: Handedness and object affordance. PLoS ONE 2019, 14, e0218988. [Google Scholar] [CrossRef] [PubMed]
- Gutwinski, S.; Löscher, A.; Mahler, L.; Kalbitzer, J.; Heinz, A.; Bermpohl, F. Understanding left-handedness. Dtsch. Arztebl. Int. 2011, 108, 849–853. [Google Scholar] [CrossRef] [PubMed]
- Corey, D.M.; Hurley, M.M.; Foundas, A.L. Right and left handedness defined: A multivariate approach using hand preference and hand performance measures. Neuropsychiatry Neuropsychol. Behav. Neurol. 2001, 14, 144–152. [Google Scholar] [PubMed]
- Güntürkün, O.; Ströckens, F.; Ocklenburg, S. Brain Lateralization: A Comparative Perspective. Physiol. Rev. 2020, 100, 1019–1063. [Google Scholar] [CrossRef] [PubMed]
- Duboc, V.; Dufourcq, P.; Blader, P.; Roussigné, M. Asymmetry of the Brain: Development and Implications. Annu. Rev. Genet. 2015, 49, 647–672. [Google Scholar] [CrossRef] [PubMed]
- Papadatou-Pastou, M.; Ntolka, E.; Schmitz, J.; Martin, M.; Munafò, M.R.; Ocklenburg, S.; Paracchini, S. Human handedness: A meta-analysis. Psychol. Bull. 2020, 146, 481–524. [Google Scholar] [CrossRef] [PubMed]
- Kunita, K.; Fujiwara, K. Influence of sports experience on distribution of pro-saccade reaction time under gap condition. J. Physiol. Anthropol. 2022, 41, 4. [Google Scholar] [CrossRef] [PubMed]
- Loffing, F.; Sölter, F.; Hagemann, N. Left preference for sport tasks does not necessarily indicate left-handedness: Sport-specific lateral preferences, relationship with handedness and implications for laterality research in behavioural sciences. PLoS ONE 2014, 9, e105800. [Google Scholar] [CrossRef]
- Gursoy, R. Effects of left- or right-hand preference on the success of boxers in Turkey. Br. J. Sports Med. 2009, 43, 142–144. [Google Scholar] [CrossRef]
- Loffing, F.; Schorer, J. Handedness and Relative Age in International Elite Interactive Individual Sports Revisited. Front. Sports Act. Living 2021, 3, 662203. [Google Scholar] [CrossRef]
- Sutter, K.; Oostwoud Wijdenes, L.; van Beers, R.J.; Medendorp, W.P. Movement preparation time determines movement variability. J. Neurophysiol. 2021, 125, 2375–2383. [Google Scholar] [CrossRef] [PubMed]
- Scanlan, A.; Humphries, B.; Tucker, P.S.; Dalbo, V. The influence of physical and cognitiv factors on reactie agility performance in men basketball players. J. Sports Sci. 2014, 32, 367–374. [Google Scholar] [CrossRef]
- Chen, Y.L.; Sie, C.C. Design Factors Affecting the Reaction Time for Identifying Toilet SiNAG: A Preliminary Study. Percept. Mot. Ski. 2016, 122, 636–649. [Google Scholar] [CrossRef] [PubMed]
- Draheim, C.; Mashburn, C.A.; Martin, J.D.; Engle, R.W. Reaction time in differential and developmental research: A review and commentary on the problems and alternatives. Psychol. Bull. 2019, 145, 508–535. [Google Scholar] [CrossRef] [PubMed]
- Rattray, B.; Smee, D. Exercise improves reaction time without compromising accuracy in a novel easy-to-administer tablet-based cognitiv task. J. Sci. Med. Sport 2013, 16, 567–570. [Google Scholar] [CrossRef] [PubMed]
- Al-Thaqib, A.; Al-Sultan, F.; Al-Zahrani, A.; Al-Kahtani, F.; Al-Regaiey, K.; Iqbal, M.; Bashir, S. Brain Training Games Enhance Cognitiv Function in Healthy Subjects. Med. Sci. Monit. Basic Res. 2018, 24, 63–69. [Google Scholar] [CrossRef] [PubMed]
- Villa-Sánchez, B.; Emadi Andani, M.; Cesari, P.; Fiorio, M. The effect of motor and cognitiv placebos on the serial reaction time task. Eur. J. Neurosci. 2021, 53, 2655–2668. [Google Scholar] [CrossRef]
- Brisswalter, J.; Arcelin, R.; Audiffren, M.; Delignières, D. Influence of physical exercise on simple reaction time: Effect of physical fitness. Percept. Mot. Ski. 1997, 85 Pt 1, 1019–1027. [Google Scholar] [CrossRef]
- Vidal, F.; Meckler, C.; Hasbroucq, T. Basics for sensorimotor information processing: Some implications for learning. Front. Psychol. 2015, 6, 33. [Google Scholar] [CrossRef]
- Serrien, D.J.; Sovijärvi-Spapé, M.M.; Farnsworth, B. Bimanual control processes and the role of handedness. Neuropsychology 2012, 26, 802–807. [Google Scholar] [CrossRef]
- Tarkka, I.M.; Hautasaari, P. Motor Action Execution in Reaction-Time Movements: Magnetoencephalographic Study. Am. J. Phys. Med. Rehabil. 2019, 98, 771–776. [Google Scholar] [CrossRef] [PubMed]
- Lakhani, B.; Bolton, D.A.; Miyasike-Dasilva, V.; Vette, A.H.; McIlroy, W.E. Speed of processing in the primary motor cortex: A continuous theta burst stimulation study. Behav. Brain Res. 2014, 261, 177–184. [Google Scholar] [CrossRef] [PubMed]
- Ciuffreda, K.J. Simple eye-hand reaction time in the retinal periphery can be reduced with training. Eye Contact Lens 2011, 37, 145–146. [Google Scholar] [CrossRef] [PubMed]
- Barthelemy, S.; Boulinguez, P. Manual reaction time asymmetries in human subjects: The role of movement planning and attention. Neurosci. Lett. 2001, 315, 41–44. [Google Scholar] [CrossRef] [PubMed]
- Davranche, K.; Audiffren, M.; Denjean, A. A distributional analysis of the effect of physical exercise on a choice reaction time task. J. Sports Sci. 2006, 24, 323–329. [Google Scholar] [CrossRef] [PubMed]
- Kagerer, F.A. Asymmetric interference in left-handers during bimanual movements reflects switch in lateralized control characteristics. Exp. Brain Res. 2016, 234, 1545–1553. [Google Scholar] [CrossRef] [PubMed]
- Quoilin, C.; Fievez, F.; Duque, J. Preparatory inhibition: Impact of choice in reaction time tasks. Neuropsychologia 2019, 129, 212–222. [Google Scholar] [CrossRef] [PubMed]
- Martin-Niedecken, A.L.; Bucher, V.; Adcock, M.; de Bruin, E.D.; Schättin, A. Impact of an exergame intervention on cognitive-motor functions and training experience in young team sports athletes: A non-randomized controlled trial. Front. Sports Act. Living 2023, 5, 1170783. [Google Scholar] [CrossRef]
- Čović, N.; Čaušević, D.; Alexe, C.I.; Rani, B.; Dulceanu, C.R.; Abazović, E.; Lupu, G.S.; Alexe, D.I. Relations between specific athleticism and morphology in young basketball players. Front. Sports Act. Living 2023, 5, 1276953. [Google Scholar] [CrossRef]
- Čaušević, D.; Čović, N.; Abazović, E.; Rani, B.; Manolache, G.M.; Ciocan, C.V.; Zaharia, G.; Alexe, D.I. Predictors of Speed and Agility in Youth Male Basketball Players. Appl. Sci. 2023, 13, 7796. [Google Scholar] [CrossRef]
- Silva, A.F.; Ramirez-Campillo, R.; Sarmento, H.; Afonso, J.; Clemente, F.M. Effects of Training Programs on Decision-Making in Youth Team Sports Players: A Systematic Review and Meta-Analysis. Front. Psychol. 2021, 12, 663867. [Google Scholar] [CrossRef]
- Farley, J.B.; Stein, J.; Keogh, J.W.L.; Woods, C.T.; Milne, N. The Relationship Between Physical Fitness Qualities and Sport-Specific Technical Skills in Female, Team-Based Ball Players: A Systematic Review. Sports Med. Open 2020, 6, 18. [Google Scholar] [CrossRef]
- McGrath, R.L.; Kantak, S.S. Reduced asymmetry in motor skill learning in left-handed compared to right-handed individuals. Hum. Mov. Sci. 2016, 45, 130–141. [Google Scholar] [CrossRef]
- Négyesi, J.; Négyesi, P.; Hortobágyi, T.; Sun, S.; Kusuyama, J.; Kiss, R.M.; Nagatomi, R. Handedness did not affect motor skill acquisition by the dominant hand or interlimb transfer to the non-dominant hand regardless of task complexity level. Sci. Rep. 2022, 12, 18181. [Google Scholar] [CrossRef]
- Janicijevic, D.; Garcia-Ramos, A. Feasibility of Volitional Reaction Time Tests in Athletes: A Systematic Review. Motor Control 2022, 26, 291–314. [Google Scholar] [CrossRef] [PubMed]
- Tønnessen, E.; Haugen, T.; Shalfawi, S.A. Reaction time aspects of elite sprinters in athletic world championships. J. Strength Cond. Res. 2013, 27, 885–892. [Google Scholar] [CrossRef] [PubMed]
- Elbadry, N.; Hamza, A.; Pietraszewski, P.; Alexe, D.I.; Lupu, G. Effect of the French Contrast Method on Explosive Strength and Kinematic Parameters of the Triple Jump among Female College Athletes. J. Hum. Kinet. 2019, 69, 225–230. [Google Scholar] [CrossRef] [PubMed]
- Dragos, O.; Alexe, D.I.; Ursu, E.V.; Alexe, C.I.; Voinea, N.L.; Haisan, P.L.; Panaet, A.E.; Albina, A.M.; Monea, D. Training in Hypoxia at Alternating High Altitudes Is a Factor Favoring the Increase in Sports Performance. Healthcare 2022, 10, 2296. [Google Scholar] [CrossRef] [PubMed]
- Tzourio-Mazoyer, N.; Zago, L.; Cochet, H.; Crivello, F. Development of handedness, anatomical and functional brain lateralization. Handb. Clin. Neurol. 2020, 173, 99–105. [Google Scholar] [CrossRef] [PubMed]
- Popowczak, M.; Cichy, I.; Rokita, A.; Domaradzki, J. The Relationship Between Reactie Agility and Change of Direction Speed in Professional Female Basketball and Handball Players. Front. Psychol. 2021, 12, 708771. [Google Scholar] [CrossRef] [PubMed]
- Heppe, H.; Kohler, A.; Fleddermann, M.T.; Zentgraf, K. The Relationship between Expertise in Sports, Visuospatial, and Basic Cognitive Skills. Front. Psychol. 2016, 7, 904. [Google Scholar] [CrossRef] [PubMed]
- Start/Stop Test. Available online: https://faculty.washington.edu/chudler/java/reacttime.html (accessed on 12 February 2023).
- Check Boxes Test. Available online: https://faculty.washington.edu/chudler/java/boxes.html (accessed on 12 February 2023).
- Hit-the-Dot Test. Available online: https://faculty.washington.edu/chudler/java/dottime.html (accessed on 12 February 2023).
- Trail Making Test Part A and, B. Available online: https://www.center-tbi.eu/files/approved-translations/Romanian/ROMANIAN_TMT.pdf (accessed on 2 December 2023).
- Badau, D.; Baydil, B.; Badau, A. Differences among Three Measures of Reaction Time Based on Hand Laterality in Individual Sports. Sports 2018, 6, 45. [Google Scholar] [CrossRef] [PubMed]
- Sanchez-Cubillo, I.; Perianez, J.A.; Adrover-Roig, D.; Rodriguez-Sanchez, J.M.; Rios-Lago, M.; Tirapu, J.; Barceló, F. Construct validity of the Trail Making Test: Role of task-switching, working memory, inhibition/interference control, and visuomotor abilities. J. Int. Neuropsychol. Soc. 2009, 15, 438–450. [Google Scholar] [CrossRef] [PubMed]
- Kaluga, E.; Straburzynska-Lupa, A.; Rostkowska, E. Hand-eye coordination, movement reaction time and hand tactile sensitivity depending on the practiced sports discipline. J. Sports Med. Phys. Fit. 2020, 60, 17–25. [Google Scholar] [CrossRef] [PubMed]
- Paul, D.J.; Gabbett, T.J.; Nassis, G.P. Agility in Team Sports: Testing, Training and Factors Affecting Performance. Sports Med. 2016, 46, 421–442. [Google Scholar] [CrossRef] [PubMed]
- Muntianu, V.A.; Abalașei, B.A.; Nichifor, F.; Dumitru, I.M. The Correlation between Psychological Characteristics and Psychomotor Abilities of Junior Handball Players. Children 2022, 9, 767. [Google Scholar] [CrossRef] [PubMed]
- Badau, D.; Badau, A. Optimizing Reaction Time in Relation to Manual and Foot Laterality in Children Using the Fitlight Technological Systems. Sensors 2022, 22, 8785. [Google Scholar] [CrossRef]
- Olex-Zarychta, D.; Raczek, J. The relationship of movement time to hand-foot laterality patterns. Laterality 2008, 13, 439–455. [Google Scholar] [CrossRef]
- Antonova, I.; van Swam, C.; Hubl, D.; Dierks, T.; Griskova-Bulanova, I.; Koenig, T. Reaction Time in a Visual 4-Choice Reaction Time Task: ERP Effects of Motor Preparation and Hemispheric Involvement. Brain Topogr. 2016, 29, 491–505. [Google Scholar] [CrossRef]
- Gutnik, B.; Lyakh, V.; Gierczuk, D.; Nash, D. Computerized and fingertip measures of reaction time compared in individuals. Homo 2016, 67, 492–497. [Google Scholar] [CrossRef]
- Jha, R.K.; Thapa, S.; Kasti, R.; Nepal, O. Influence of Body Mass Index, Handedness and Gender on Ruler Drop Method Reaction Time among Adults. J. Nepal. Health Res. Counc. 2020, 18, 108–111. [Google Scholar] [CrossRef] [PubMed]
- Dexheimer, B.; Przybyla, A.; Murphy, T.E.; Akpinar, S.; Sainburg, R. Reaction time asymmetries provide insight into mechanisms underlying dominant and non-dominant hand selection. Exp. Brain Res. 2022, 240, 2791–2802. [Google Scholar] [CrossRef] [PubMed]
- Peng, Z.; Xu, L.; Wang, H.; Song, T.; Shao, Y.; Liu, Q.; Weng, X. The Lateralization of Spatial Cognition in Table Tennis Players: Neuroplasticity in the Dominant Hemisphere. Brain Sci. 2022, 12, 1607. [Google Scholar] [CrossRef] [PubMed]
- Bhabhor, M.K.; Vidja, K.; Bhanderi, P.; Dodhia, S.; Kathrotia, R.; Joshi, V. A comparative study of visual reaction time in table tennis players and healthy controls. Indian. J. Physiol. Pharmacol. 2013, 57, 439–442. [Google Scholar] [PubMed]
- Romeas, T.; Faubert, J. Soccer athletes are superior to non-athletes at perceiving soccer-specific and non-sport specific human biological motion. Front. Psychol. 2015, 6, 1343. [Google Scholar] [CrossRef] [PubMed]
- Eckner, J.T.; Kutcher, J.S.; Richardson, J.K. Between-seasons test-retest reliability of clinically measured reaction time in National Collegiate Athletic Association Division I athletes. J. Athl. Train. 2011, 46, 409–414. [Google Scholar] [CrossRef] [PubMed]
- Deary, I.J.; Liewald, D.; Nissan, J. A free, easy-to-use, computer-based simple and four-choice reaction time programme: The Deary-Liewald reaction time task. Behav. Res. Methods 2011, 43, 258–268. [Google Scholar] [CrossRef] [PubMed]
- Schatz, P.; Ybarra, V.; Leitner, D. Validating the Accuracy of Reaction Time Assessment on Computer-Based Tablet Devices. Assessment 2015, 22, 405–410. [Google Scholar] [CrossRef]
- Burke, D.; Linder, S.; Hirsch, J.; Dey, T.; Kana, D.; Ringenbach, S.; Schindler, D.; Alberts, J. Characterizing Information Processing With a Mobile Device: Measurement of Simple and Choice Reaction Time. Assessment 2017, 24, 885–895. [Google Scholar] [CrossRef]
- Nisiyama, M.; Ribeiro-do-Valle, L.E. Relative performance of the two hands in simple and choice reaction time tasks. Braz. J. Med. Biol. Res. 2014, 47, 80–89. [Google Scholar] [CrossRef]
- Hiraoka, K.; Igawa, K.; Kashiwagi, M.; Nakahara, C.; Oshima, Y.; Takakura, Y. The laterality of stop and go processes of the motor response in left-handed and right-handed individuals. Laterality 2018, 23, 51–66. [Google Scholar] [CrossRef] [PubMed]
- Main, J.C.; Carey, D.P. One hand or the other? Effector selection biases in right and left handers. Neuropsychologia 2014, 64, 300–309. [Google Scholar] [CrossRef] [PubMed]
- Kaur, M.; Nagpal, S.; Singh, H.; Suhalka, M.L. Effect of dual task activity on reaction time in males and females. Indian. J. Physiol. Pharmacol. 2014, 58, 389–394. [Google Scholar] [PubMed]
- Bakar, Y.; Tuğral, A.; Özel, A.; Altuntaş, Y.D. Comparison of a 12-Week Whole-Body Exergaming Program on Young Adults: Differentiation in Flexibility, Muscle Strength, Reaction Time, and Walking Speed Between Sexes. Clin. Nurs. Res. 2020, 29, 424–432. [Google Scholar] [CrossRef] [PubMed]
- Nagai, T.; Schilaty, N.D.; Bates, N.A.; Bies, N.J.; McPherson, A.L.; Hewett, T.E. High school female basketball athletes exhibit decreased knee-specific choice visual-motor reaction time. Scand. J. Med. Sci. Sports. 2021, 31, 1699–1707. [Google Scholar] [CrossRef] [PubMed]
- Doğan, B. Multiple-choice reaction and visual perception in female and male elite athletes. J. Sports Med. Phys. Fit. 2009, 49, 91–96. [Google Scholar]
- Zemková, E.; Vilman, T.; Kováčiková, Z.; Hamar, D. Reaction time in the agility test under simulated competitive and noncompetitive conditions. J. Strength. Cond. Res. 2013, 27, 3445–3449. [Google Scholar] [CrossRef]
- Gautam, Y.; Bade, M. Effect of Auditory Interference on Visual Simple Reaction Time. Kathmandu Univ. Med. J. 2017, 15, 329–331. [Google Scholar]
- Jain, A.; Bansal, R.; Kumar, A.; Singh, K.D. A comparative study of visual and auditory reaction times on the basis of gender and physical activity levels of medical first year students. Int. J. Appl. Basic Med. Res. 2015, 5, 124–127. [Google Scholar] [CrossRef]
- Drugau, S.; Balint, L.; Mijaica, R. Self-Perception of Skills Specific to Professional Development in Physical Education and Sports. Bull. Transilv. Univ. Braş. 2022, 15, 71–78. [Google Scholar] [CrossRef]
- Mocanu, G.D. Analysis of differences in Muscle Power for female university students majoring in sports according to BMI levels. Balneo PRM Res. J. 2023, 14, 537. [Google Scholar] [CrossRef]
- Buzescu, R.; Nechita, F.; Cioroiu, S.G. The Relationship between Neuromuscular Control and Physical Activity in the Formation of the Visual-Psychomotor Schemes in Preschools. Sensors 2021, 21, 224. [Google Scholar] [CrossRef] [PubMed]
- Alexe, C.I.; Alexe, D.I.; Mareş, G.; Tohănean, D.I.; Turcu, I.; Burgueño, R. Validity and reliability evidence for the Behavioral Regulation in Sport Questionnaire with Romanian professional athletes. PeerJ 2022, 10, e12803. [Google Scholar] [CrossRef] [PubMed]
- Verdonck, S.; Tuerlinckx, F. Factoring out nondecision time in choice reaction time data: Theory and implications. Psychol. Rev. 2016, 123, 208–218. [Google Scholar] [CrossRef] [PubMed]
- Goble, D. Validity of using reaction time as a basis for determining motor laterality. J. Neurophysiol. 2007, 97, 1868. [Google Scholar] [CrossRef] [PubMed]
- Kreutzer, A.K. The use of integrated behavioural z-scoring in behavioural neuroscience—A perspective article. J. Neurosci. Methods 2023, 384, 109751. [Google Scholar] [CrossRef]
- Sanger, T.D. Basic and Translational Neuroscience of Childhood-Onset Dystonia: A Control-Theory Perspective. Annu. Rev. Neurosci. 2018, 41, 41–59. [Google Scholar] [CrossRef]
- Scholz, F.; Gumbsch, C.; Otte, S.; Butz, M.V. Inference of affordances and active motor control in simulated agents. Front. Neurorobot. 2022, 16, 881673. [Google Scholar] [CrossRef]
- Wilson, R.I.; du Lac, S. Sensory and motor systems. Curr. Opin. Neurobiol. 2011, 21, 517–519. [Google Scholar] [CrossRef]
- Li, K.Z.; Lindenberger, U. Relations between aging sensory/sensorimotor and cognitive functions. Neurosci. Biobehav. Rev. 2002, 26, 777–783. [Google Scholar] [CrossRef]
- Adam, J.J.; Van Gerven, P.W.M. Proactive motor control within and between hands: Effects of age, motor set, and cue type. Acta Psychol. 2021, 212, 103214. [Google Scholar] [CrossRef]
- Fuglevand, A.J. Mechanical properties and neural control of human hand motor units. J. Physiol. 2011, 589 Pt 23, 5595–5602. [Google Scholar] [CrossRef]
Test | Manual Lateralization | Hand of Execution | Mean | SD | Ske | CV (%) | ΔX | t | p | 95%CI Lower | 95%CI Upper |
---|---|---|---|---|---|---|---|---|---|---|---|
Start/Stop Test | right-handedness | RH | 0.26 | 0.02 | −0.65 | 7.69 | −0.02 | −2.70 | 0.012 | −0.06 | −0.01 |
LH | 0.28 | 0.01 | 0.99 | 3.57 | |||||||
left-handedness | RH | 0.29 | 0.04 | −0.86 | 13.79 | 0.03 | 3.36 | 0.003 | 0.01 | 0.04 | |
LH | 0.26 | 0.02 | 0.40 | 7.69 | |||||||
Check Boxes Test | right-handedness | RH | 32.34 | 6.24 | 0.13 | 19.30 | 6.65 | 7.98 | 0.000 | 4.99 | 8.30 |
LH | 25.69 | 1.43 | 0.38 | 5.57 | |||||||
left-handedness | RH | 26.10 | 5.12 | 0.04 | 19.61 | −4.43 | −7.73 | 0.000 | −13.23 | −7.62 | |
LH | 30.53 | 4.21 | 0.35 | 13.79 | |||||||
Hit-the-dot Test | right-handedness | RH | 34.20 | 4.40 | −0.57 | 12.87 | 6.97 | 1.44 | 0.000 | 3.92 | 7.87 |
LH | 27.23 | 4.56 | 0.53 | 16.75 | |||||||
left-handedness | RH | 19.34 | 3.57 | −0.01 | 18.46 | −10.35 | −5.66 | 0.000 | −14.28 | −6.41 | |
LH | 29.69 | 5.90 | −0.84 | 19.87 | |||||||
Trail Making Test—part A | right-handedness | RH | 27.44 | 7.00 | 0.96 | 25.51 | −5.42 | −0.77 | 0.012 | −11.29 | 2.44 |
LH | 32.86 | 5.96 | 0.82 | 18.14 | |||||||
left-handedness | RH | 32.93 | 7.32 | −0.07 | 22.23 | 1.68 | 3.46 | 0.002 | 0.27 | 4.08 | |
LH | 33.25 | 5.05 | −0.11 | 15.19 | |||||||
Trail Making Test—part B | right-handedness | RH | 36.86 | 8.90 | 0.48 | 24.15 | −6.04 | 0.44 | 0.031 | −8.57 | 1.49 |
LH | 42.90 | 6.87 | 0.62 | 16.01 | |||||||
left-handedness | RH | 46.17 | 8.78 | 0.67 | 19.02 | 8.37 | 4.02 | 0.001 | 4.03 | 12.69 | |
LH | 37.80 | 6.52 | −0.01 | 17.25 |
Test | Manual Lateralization | Hand of Execution | Mean | SD | Ske | CV (%) | ΔX | t | p | 95%CI Lower | 95%CI Upper |
---|---|---|---|---|---|---|---|---|---|---|---|
Start/Stop Test | right-handedness | RH | 0.32 | 0.01 | −0.05 | 3.13 | −0.02 | −3.26 | 0.005 | −0.02 | −0.01 |
LH | 0.34 | 0.02 | 0.50 | 5.88 | |||||||
left-handedness | RH | 0.33 | 0.03 | −0.81 | 9.09 | 0.03 | 4.93 | 0.000 | 0.017 | 0.04 | |
LH | 0.30 | 0.06 | −0.17 | 20.00 | |||||||
Check Boxes Test | right-handedness | RH | 30.63 | 5.82 | 0.27 | 19.00 | 8.63 | 6.07 | 0.000 | 5.63 | 11.64 |
LH | 22.00 | 4.43 | −0.22 | 20.14 | |||||||
left-handedness | RH | 22.32 | 4.47 | 0.36 | 20.03 | −4.84 | −5.16 | 0.000 | −9.67 | −4.02 | |
LH | 27.16 | 4.28 | 0.86 | 15.76 | |||||||
Hit-the-dot Test | right-handedness | RH | 31.82 | 3.18 | 0.39 | 9.99 | 8.07 | 6.81 | 0.000 | 5.51 | 10.63 |
LH | 23.75 | 3.93 | 0.24 | 16.55 | |||||||
left-handedness | RH | 20.80 | 3.90 | 0.03 | 18.75 | −7.78 | −17.87 | 0.000 | −9.75 | −7.79 | |
LH | 28.58 | 0.900 | −0.53 | 3.15 | |||||||
Trail Making Test—part A | right-handedness | RH | 29.47 | 4.80 | 0.28 | 16.29 | −5.78 | −2.59 | 0.023 | −10.60 | −0.946 |
LH | 35.25 | 6.48 | 0.49 | 18.38 | |||||||
left-handedness | RH | 39.20 | 7.759 | −0.58 | 19.79 | 5.15 | 2.31 | 0.033 | 3.36 | 9.93 | |
LH | 34.35 | 5.52 | −0.97 | 16.07 | |||||||
Trail Making Test—part B | right-handedness | RH | 39.87 | 6.83 | 0.91 | 17.13 | −6.82 | −4.38 | 0.000 | −10.07 | −3.54 |
LH | 46.69 | 4.75 | 0.69 | 10.17 | |||||||
left-handedness | RH | 49.40 | 7.91 | −0.08 | 16.01 | 9.85 | 7.05 | 0.000 | 7.61 | 11.08 | |
LH | 39.55 | 2.51 | 0.89 | 6.35 |
Test | Manual Lateralization | Hand of Execution | Mean | SD | Ske | CV (%) | ΔX | t | p | 95%CI Lower | 95%CI Upper |
---|---|---|---|---|---|---|---|---|---|---|---|
Start/Stop Test | right-handedness | RH | 0.34 | 0.03 | −0.23 | 8.82 | −0.03 | −4.18 | 0.000 | −0.03 | −0.01 |
LH | 0.37 | 0.02 | −0.30 | 5.41 | |||||||
left-handedness | RH | 0.34 | 0.04 | 0.40 | 11.76 | 0.03 | 3.27 | 0.002 | 0.01 | 0.04 | |
LH | 0.31 | 0.03 | −0.14 | 9.68 | |||||||
Check Boxes Test | right-handedness | RH | 29.67 | 5.78 | 0.77 | 19.48 | 6.86 | 5.76 | 0.000 | 4.44 | 9.25 |
LH | 22.81 | 4.76 | 0.95 | 20.87 | |||||||
left-handedness | RH | 19.64 | 3.75 | 0.92 | 19.09 | −9.63 | −7.22 | 0.000 | −12.36 | −6.88 | |
LH | 29.27 | 5.96 | 0.77 | 20.36 | |||||||
Hit-the-dot Test | right-handedness | RH | 29.31 | 3.83 | −0.80 | 13.07 | 6.72 | 8.23 | 0.000 | 5.07 | 8.38 |
LH | 22.59 | 3.31 | 0.72 | 14.65 | |||||||
left-handedness | RH | 20.64 | 4.21 | 0.32 | 20.40 | −5.72 | −6.02 | 0.000 | −7.64 | −3.78 | |
LH | 26.36 | 3.92 | −0.74 | 14.87 | |||||||
Trail Making Test—part A | right-handedness | RH | 32.77 | 6.28 | −0.05 | 19.16 | −2.31 | −3.97 | 0.000 | −6.48 | −1.13 |
LH | 35.08 | 3.98 | 0.840 | 11.35 | |||||||
left-handedness | RH | 35.90 | 6.87 | −0.08 | 19.14 | 2.05 | 6.39 | 0.000 | 0.52 | 4.59 | |
LH | 37.85 | 4.80 | −0.08 | 12.68 | |||||||
Trail Making Test—part B | right-handedness | RH | 44.38 | 6.75 | −0.59 | 15.21 | −3.41 | −2.60 | 0.013 | −6.06 | −0.76 |
LH | 47.79 | 5.13 | 0.71 | 10.73 | |||||||
left-handedness | RH | 50.29 | 11.71 | 0.42 | 23.28 | 9.93 | 6.35 | 0.000 | 8.17 | 15.68 | |
LH | 40.36 | 6.57 | 0.70 | 16.28 |
Test | Hand of Execution | Groups | Mean Difference | Sum of Squares | df | Mean Square | F | p |
---|---|---|---|---|---|---|---|---|
Start/Stop Test | RH | ISG-TSG | 0.06 | 0.25 | 2 | 0.12 | 214.30 | 0.000 |
NAG-TSG | 0.08 | |||||||
NAG-ISG | 0.02 | |||||||
LH | ISG-TSG | 0.04 | 0.13 | 2 | 0.06 | 43.75 | 0.000 | |
NAG-TSG | 0.05 | |||||||
NAG-ISG | 0.01 | |||||||
Check Boxes Test | RH | ISG-TSG | −1.71 | 288.30 | 2 | 144.15 | 4.08 | 0.018 |
NAG-TSG | −2.67 | |||||||
NAG-ISG | −0.96 | |||||||
LH | ISG-TSG | −3.78 | 21.20 | 2 | 10.60 | 0.48 | 0.014 | |
NAG-TSG | −6.46 | |||||||
NAG-ISG | −2.68 | |||||||
Hit-the-dot Test | RH | ISG-TSG | −2.38 | 374.12 | 2 | 187.06 | 12.92 | 0.000 |
NAG-TSG | −4.89 | |||||||
NAG-ISG | 2.51 | |||||||
LH | ISG-TSG | 1.46 | 100.06 | 2 | 50.03 | 3.24 | 0.041 | |
NAG-TSG | 1.30 | |||||||
NAG-ISG | −0.16 | |||||||
Trail Making Test—part A | RH | ISG-TSG | 2.03 | 485.07 | 2 | 242.53 | 6.64 | 0.002 |
NAG-TSG | 5.33 | |||||||
NAG-ISG | 3.30 | |||||||
LH | ISG-TSG | 6.27 | 505.85 | 2 | 252.92 | 4.70 | 0.010 | |
NAG-TSG | 2.97 | |||||||
NAG-ISG | −3.30 | |||||||
Trail Making Test—part B | RH | ISG-TSG | 3.01 | 1046.74 | 2 | 523.37 | 9.36 | 0.000 |
NAG-TSG | 7.52 | |||||||
NAG-ISG | 4.51 | |||||||
LH | ISG-TSG | 3.23 | 2456.91 | 2 | 1228.45 | 13.16 | 0.000 | |
NAG-TSG | 4.12 | |||||||
NAG-ISG | 0.89 |
Tests | Hand of Execution | Groups | Mean Difference | Sum of Squares | df | Mean Square | F | p |
---|---|---|---|---|---|---|---|---|
Start/Stop Test | RH | ISG-TSG | 0.06 | 0.04 | 2 | 0.03 | 80.95 | 0.000 |
NAG-TSG | 0.09 | |||||||
NAG-ISG | 0.03 | |||||||
LH | ISG-TSG | 0.04 | 0.02 | 2 | 0.01 | 17.98 | 0.000 | |
NAG-TSG | 0.05 | |||||||
NAG-ISG | 0.01 | |||||||
Check Boxes Test | RH | ISG-TSG | −3.69 | 99.27 | 2 | 49.63 | 3.04 | 0.048 |
NAG-TSG | −2.88 | |||||||
NAG-ISG | 0.81 | |||||||
LH | ISG-TSG | −3.37 | 72.39 | 2 | 36.19 | 1.37 | 0.026 | |
NAG-TSG | −1.26 | |||||||
NAG-ISG | 2.11 | |||||||
Hit-the-dot Test | RH | ISG-TSG | −3.48 | 178.76 | 2 | 89.38 | 6.03 | 0.005 |
NAG-TSG | −4.64 | |||||||
NAG-ISG | −1.16 | |||||||
LH | ISG-TSG | −1.11 | 125.69 | 2 | 62.84 | 3.35 | 0.044 | |
NAG-TSG | −3.33 | |||||||
NAG-ISG | −3.22 | |||||||
Trail Making Test—part A | RH | ISG-TSG | 2.39 | 145.97 | 2 | 72.98 | 2.33 | 0.019 |
NAG-TSG | 2.22 | |||||||
NAG-ISG | 0.17 | |||||||
LH | ISG-TSG | 1.1 | 177.86 | 2 | 88.93 | 3.47 | 0.040 | |
NAG-TSG | 4.6 | |||||||
NAG-ISG | 3.5 | |||||||
Trail Making Test—part B | RH | ISG-TSG | 3.79 | 199.74 | 2 | 99.87 | 3.20 | 0.050 |
NAG-TSG | 4.89 | |||||||
NAG-ISG | 1.1 | |||||||
LH | ISG-TSG | 1.75 | 84.41 | 2 | 42.22 | 1.25 | 0.029 | |
NAG-TSG | 2.56 | |||||||
NAG-ISG | 0.81 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Badau, D.; Badau, A.; Joksimović, M.; Manescu, C.O.; Manescu, D.C.; Dinciu, C.C.; Margarit, I.R.; Tudor, V.; Mujea, A.M.; Neofit, A.; et al. Identifying the Level of Symmetrization of Reaction Time According to Manual Lateralization between Team Sports Athletes, Individual Sports Athletes, and Non-Athletes. Symmetry 2024, 16, 28. https://doi.org/10.3390/sym16010028
Badau D, Badau A, Joksimović M, Manescu CO, Manescu DC, Dinciu CC, Margarit IR, Tudor V, Mujea AM, Neofit A, et al. Identifying the Level of Symmetrization of Reaction Time According to Manual Lateralization between Team Sports Athletes, Individual Sports Athletes, and Non-Athletes. Symmetry. 2024; 16(1):28. https://doi.org/10.3390/sym16010028
Chicago/Turabian StyleBadau, Dana, Adela Badau, Marko Joksimović, Catalin Octavian Manescu, Dan Cristian Manescu, Corina Claudia Dinciu, Iulius Radulian Margarit, Virgil Tudor, Ana Maria Mujea, Adriana Neofit, and et al. 2024. "Identifying the Level of Symmetrization of Reaction Time According to Manual Lateralization between Team Sports Athletes, Individual Sports Athletes, and Non-Athletes" Symmetry 16, no. 1: 28. https://doi.org/10.3390/sym16010028
APA StyleBadau, D., Badau, A., Joksimović, M., Manescu, C. O., Manescu, D. C., Dinciu, C. C., Margarit, I. R., Tudor, V., Mujea, A. M., Neofit, A., & Teodor, D. F. (2024). Identifying the Level of Symmetrization of Reaction Time According to Manual Lateralization between Team Sports Athletes, Individual Sports Athletes, and Non-Athletes. Symmetry, 16(1), 28. https://doi.org/10.3390/sym16010028