Fixed Point Results via Orthogonal -Contraction in Orthogonal Complete Metric Space
Abstract
:1. Introduction
2. Preliminaries
- is nondecreasing,
- for each sequence if ,
- there exist and such that .
- is continuous on instead of the axiom .
3. Absolute Results
- is α-admissible map with respect to ,
- is an -contraction,
- there exists such that ,
- is an -continuous.
- is α-admissible map with respect to ,
- is an -contraction,
- There exists such that ,
- if is an -sequence in such that with as , then, either or holds for all .
4. Application
- There exists a map such that for all with , we have for all ,
- There exists such that for all , ,
- For all and for all and imply ,
- For all and for all .
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Banach, S. Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales. Fundam. Math. 1922, 3, 133–181. [Google Scholar] [CrossRef]
- Droz, M.; Stierlin, R.; Hersch, J.; Gutknecht, M.; Henrici, P.; Boutellier, R.; Burckhardt, J.J.; Gander, W. Buchbesprechungen. Z. Angew. Math. Phys. 1985, 36, 784–788. [Google Scholar] [CrossRef]
- Emmanouil, Z. An extension of Banach’s contraction principle. Proc. Am. Math. Soc. 2010, 12, 7–10. [Google Scholar]
- Samet, B.; Vetro, C.; Vetro, P. Fixed point theorems for α-ψ -contractive type mappings. Nonlinear Anal. 2012, 75, 2154–2165. [Google Scholar] [CrossRef]
- Salimi, P.; Latif, A.; Hussain, N. Modified α-Ψ-contractive mappings with applications. Fixed Point Theory Appl. 2013, 2013, 19. [Google Scholar] [CrossRef]
- Hussain, N.; Kutbi, M.A.; Salimi, P. Fixed point theory in α-complete metric spaces with applications. Abstr. Appl. Anal. 2014, 2014, 11. [Google Scholar] [CrossRef]
- Jleli, M.; Samet, B. A new generalization of the Banach contraction principle. J. Inequal. Appl. 2014, 2014, 8. [Google Scholar] [CrossRef]
- Zheng, D.; Cai, Z.; Wang, P. New fixed point theorems for θ-ϕ-contraction in complete metric spaces. J. Nonlinear Sci. Appl. 2017, 10, 2662–2670. [Google Scholar] [CrossRef]
- Gordji, M.E.; Rameani, M.; Sen, M.D.L.; Cho, Y.J. On orthogonal sets and Banach fixed point theorem. Fixed Point Theory 2017, 18, 569–578. [Google Scholar] [CrossRef]
- Hussain, N.; Parvaneh, V.; Samet, B.; Vetro, C. Some fixed point theorems for generalized contractive mappings in complete metric spaces. Fixed Point Theory Appl. 2015, 2015, 17. [Google Scholar] [CrossRef]
- Ahmad, J.; Al-Mazrooei, A.E.; Cho, Y.J.; Yang, Y.O. Fixed point results for generalized Θ-contractions, J. Nonlinear Sci. Appl. 2017, 10, 2350–2358. [Google Scholar] [CrossRef]
- Sawangsup, K.; Sintunavarat, W.; Cho, Y.J. Fixed point theorems for orthogonal F-contraction mappings on O-complete metric spaces. J. Fixed Point Theory Appl. 2020, 22, 1–14. [Google Scholar] [CrossRef]
- Hussain, N.; Al-Mazrooei, A.E.; Ahmad, J. Fixed point results for generalized (α-η)-Θ-contractions with applications. J. Nonlinear Sci. Appl. 2017, 10, 4197–4208. [Google Scholar] [CrossRef]
- Karapinar, E. α-ψ-Geraghty contraction type mappings and some related fixed point results. Filomat 2014, 28, 37–48. [Google Scholar] [CrossRef]
- Prakasam, S.K.; Gnanaprakasam, A.J.; Mani, G.; Jarad, F. Solving an integral equation via orthogonal generalized α-ψ-Geraghty contractions. AIMS Math. 2023, 8, 5899–5917. [Google Scholar] [CrossRef]
- Nallaselli, G.; Gnanaprakasam, A.J.; Mani, G.; Ege, O. Solving integral equations via admissible contraction mappings. Filomat 2022, 36, 4947–4961. [Google Scholar] [CrossRef]
- Nallaselli, G.; Gnanaprakasam, A.J.; Mani, G.; Javed, K.; Almalki, Y. Solution of nonlinear Fredholm integral equations on almost Z-contraction. J. Math. 2023, 2023, 1–9. [Google Scholar] [CrossRef]
- Nazam, M.; Aydi, H.; Hussain, A. Existence theorems for (ψ, ϕ)-orthogonal interpolative contractions and an application to fractional differential equations. Optimization 2023, 72, 1899–1929. [Google Scholar] [CrossRef]
- Nazam, M.; Javed, K.; Arshad, M. The (ψ, ϕ)-orthogonal interpolative contractions and an application to fractional differential equations. Filomat 2023, 37, 1167–1185. [Google Scholar] [CrossRef]
- Nazam, M.; Chandok, S.; Hussain, A.; Sulmi, H.H.A. On the iterative multivalued ⊥-preserving mappings and an application to fractional differential equation. Axioms 2023, 12, 53. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, X.; Nallaselli, G.; Haq, A.U.; Gnanaprakasam, A.J.; Baloch, I.A.
Fixed Point Results via Orthogonal
Liu X, Nallaselli G, Haq AU, Gnanaprakasam AJ, Baloch IA.
Fixed Point Results via Orthogonal
Liu, Xiaolan, Gunasekaran Nallaselli, Absar Ul Haq, Arul Joseph Gnanaprakasam, and Imran Abbas Baloch.
2023. "Fixed Point Results via Orthogonal
Liu, X., Nallaselli, G., Haq, A. U., Gnanaprakasam, A. J., & Baloch, I. A.
(2023). Fixed Point Results via Orthogonal