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Abstract: In this publication, we establish a suitable symmetry structure for orthogonal (α− y−G)-
contractive mappings and prove fixed point results for an orthogonal (α− y−G)-contractive via
orthogonal metric spaces. We give an application to strengthen our main results from the existing lit-
erature to prove the existence of a unique analytical solution to the differential equation by converting
it into an integral equation through fixed point analysis.
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1. Introduction

Fixed point theory is a fascinating subject with an enormous number of symmetry
applications in various fields of mathematics. The Banach fixed point theorem is the most
significant test for the solutions of some problems in mathematics and engineering. In 1922,
Stefan Banach [1] introduced contraction principle theorems. It has shown symmetry in
the existing problems in various fields of mathematical analysis and a simple structure.
In 1985, Droz et al. [2] presented as an abstract formulation of Picard’s method of suc-
cessive approximations. In 2010, Emmanouil [3] established an extension of the Banach
fixed point theorem. Very recently, in 2012, Samet et al. [4] introduced the concepts of
α− ψ-contractive and α-admissible maps, as well as proved some fixed point theorems for
such functions stated on complete metric spaces (complete metric space). Following that,
in 2013, Salimi, Latif, and Hussain [5] modified α− ψ-contractive maps. In 2014, Hussain,
Kutbi, and Salimi [6] updated the version of α− ψ-contractive and also described fixed
point theories that are appropriate generalizations in α-admissible via complete metric
spaces with an application of the recent results in symmetry manner. In 2014, Jleli and
Samet [7] created a novel sort of G-contraction and produced a unique fixed point for like
contraction in the notion of nonspecific metric spaces. In 2017, Zheng et al. [8] introduced a
new concept of θ − φ-contractions and established some fixed point results for such map-
pings in complete metric spaces. On the other side, Gordji, Rameani, De La Sen, and Cho [9]
presented the idea of an orthogonal set, sometimes known as a O-set, as well as certain
examples and properties of these sets. In 2017, Hussain et al. [10] improved and expanded
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certain fixed point theorems for generalized G-contractive axioms in complete metric space
occupation. For further details, see [11–20].

This paper is written as follows. In the first part, we give the required background
about an orthogonal α− y−G-complete metric space and an orthogonal α− y-continuous
function. In the next section, we state and prove the main results of an orthogonal α− y−G-
complete metric space and an orthogonal α− y-continuous. Finally, we give an application
of the differential equation of fixed point theorem to an orthogonal α− y−G-complete
metric space and an orthogonal α− y-continuous.

2. Preliminaries

Definition 1. [10] Let G : R+ → (1, ∞) be a function satisfying

(G1) G is nondecreasing,
(G2) for each sequence {αn} ⊂ R+, lim

n→∞
G(αn) = 1 if lim

n→∞
(αn) = 0,

(G3) there exist 0 < θ < 1 and κ ∈ (0, ∞] such that lim
α→0+

G(α)−1
αθ = κ.

Definition 2. [10] A self-map M : U → U is known to be G-contraction if there exists such a
function G satisfying (G1)− (G3) and a constant θ ∈ R+ such that for all x, y ∈ U,

d(Mx,My) 6= 0 implies G(d(Mx,My)) ≤ [G(d(x, y))]θ .

Theorem 1. [7] Let (U, d) be a complete metric space and M : U→ U be a G-contraction, then M
has a unique fixed point.

Jleli et al. [7], denoted by the Ψ set of all functions G : R+ → (∞, ∞) satisfying the
above axioms (G1)− (G3).

Theorem 2. [10] Let (U, d) be a complete metric space and a self-map M : U→ U. If there exist
G ∈ Ψ and real numbers α > 0, l > 0,M > 0, x > 0 with 0 ≤ α + l+ m+ 2k < 1 such that

G(d(Mx,My)) ≤ [G(d(x, y))]α · [G(d(x,Mx))]l·
[G(d(y,My))]m · [G(d(x,My) + d(y,Mx))]k

for all x, y ∈ U, then M has a unique fixed point.

Ahmad, Al-Mazrooei, Cho, and YangAhmad [11] used by Ω the family of all maps
fulfilling the axioms (G1), (G2) and also utilized the weaker axiom

(G′3)G is continuous on R+ instead of the axiom (G3).

Example 1. [11] LetG1(δ) = e
√

δ,G2(δ) = e
√

δeδ ,G3(δ) = eδ,G4(δ) = coshδ,G5(δ) = 1+ ln
(1 + δ) and G6(δ) = eδeδ

for all δ > 0. Then G1,G2,G3,G4,G5,G6 ∈ Ω.

Example 2. [11] Note that the axioms G3 and G′3 are independent. Indeed, for η > 1,G(δ) = eδη

fulfills the axioms (G1) and (G2), but it does not fulfill (G3), while it fulfills the axiom (G′3). Hence,
Ω * Ψ. For η > 1, $ ∈ (0, 1

η ) and G(δ) = 1 + δ$(1 + [δ]) where [δ] denotes the integral part of

δ, fulfills the axioms (G1) and (G2), but it does not fulfill (G′3), while it assures the axiom (G3) for
any θ ∈ ( 1

η , 1). Therefore, Ψ + Ω. Also, if we let G(δ) = eηδ
, then G ∈ Ψ and G ∈ Ω. Hence,

Ψ ∩Ω 6= ∅.

Definition 3. [9] Let U 6= φ and a binary relation ⊥⊆ U× U. If ⊥ satisfies the following axiom,

there exists x0 ∈ U [(for all y ∈ U, y ⊥ x0) or (for all y ∈ U, x0 ⊥ y)],

then, it is known as O-set and x0 is an orthogonal element. We will denote this O-set by (U,⊥).



Symmetry 2023, 15, 1762 3 of 12

Example 3. [9] Let (U, d) be a metric space and M : U→ U be a Picard operator, that is, M has a
unique fixed point x∗ ∈ U and lim

n→∞
Mn(y) = x∗ for all y ∈ U. Define ⊥ on U by y ⊥ x if

lim
n→∞

d(x,Mn(y)) = 0.

Then, (U,⊥) is an O-set.

Example 4. [9] Let U be an inner product space with the inner product < ·, · >. Define the binary
relation ⊥ on U by x ⊥ y if < x, y >= 0. Easily seen that 0 ⊥ x for all x ∈ U. Therefore, (U,⊥)
is an O-set.

Definition 4. [9] A sequence {xn}∞
n=1 of an O-set is known as an orthogonal sequence (shortly,

O-sequence) if

(∀n ∈ N , xn ⊥ xn+1) or (∀n ∈ N , xn+1 ⊥ xn).

Definition 5. [12] The triple (U,⊥, d) is known as orthogonal metric space (shortly, OMS) if
(U,⊥) is an O-set and (U, d) is a metric space.

Definition 6. [9] A self-map M defined on OMS U is known as orthogonal continuous (or
⊥-continuous) in x ∈ U if there exists an O-sequence {xn}∞

n=1 in U which implies xn → x

as n→ ∞, that is, M(xn) → M(x) as n→ ∞. Also, M is known as ⊥-continuous on U if M is
⊥-continuous at x ∈ U.

Definition 7. [9] Let (U,⊥, d) be an OMS. If every O-Cauchy sequence in U is convergent, then,
U is said to be orthogonal complete (shortly, O-complete).

Definition 8. [9] A self-map M defined on O-set U is known as ⊥-preserving for each x ⊥ y if
Mx ⊥My. Also, M : U→ U is known to be weakly ⊥-preserving forever x ⊥ y if M(x) ⊥M(y)
or M(y) ⊥M(x).

Definition 9. [15] Let M : U→ U be a self-map and let α : U× U→ [0, ∞) be a function. Then,
M is called an orthogonally α-admissible whenever x ⊥ y, α(x, y) ≥ 1 =⇒ α(Mx,My) ≥ 1.

Definition 10. [5] Let M : U→ U be a self-map and let α, η : U× U→ [0, ∞) be two functions.
Then, M is called an orthogonally α-admissible with respect to η if x, y ∈ U with x ⊥ y, α(x, y) ≥ y

(x, y) =⇒ α(Mx,My) ≥ y(Mx,My).

Definition 11. [6] Let α, y : U× U → [0, ∞) be two functions. Then, M is known to be an or-
thogonally α − y-continuous (shortly, O − (α − y)-continuous) on (U,⊥, d), if for x ∈ U, an
O-sequence {xn}∞

n=1, which implies xn → x as n → ∞, α(xn, xn+1) ≥ y(xn, xn+1) for all
n ∈ N implies Mxn →Mx.

Definition 12. [6] A map M : U → U is known as orbitally ⊥-continuous at η ∈ U if
lim
n→∞

Mnx = η =⇒ lim
n→∞

MMnx = Mη. The map M is orbitally ⊥-continuous on U if M
is orbitally ⊥-continuous at η ∈ U.

Remark 1. [6] Consider a self-map M on orbitally M-complete metric space U. Define α, y :
U× U→ [0,+∞) by

α(x, y) =

{
5, if x, y ∈ O(ϑ),
0, otherwise,

and y(x, y) = 1,
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where O(ϑ) is an orbit of a point ϑ ∈ U. If M : U→ U is an orbitally ⊥-continuous on (U,⊥, d),
then, M is an O− (α− y)-continuous on (U,⊥, d).

In this section, we define an O− α− y−G-contraction and prove some fixed point
theorems, inspired by Hussain and Gordji and also utilized the axiom (G′3) in the proof
of fixed point theorems in the notion of an O− (α− y−G)-contraction map via complete
metric space.

3. Absolute Results

First, we define an O− α− y−G-contractions. We also prove fixed point theorems
for an O− (α− y−G)-contractive map via orthogonal complete metric space.

Definition 13. Let (U,⊥, d) be an OMS and M be a self-map on U. Also, we assume two functions
α, y : U×U→ [0,+∞). M is said to be an O− α− y−G-contraction (shortly, O− (α− y−G)-
contraction) if for x, y ∈ U with x ⊥ y and y(x,Mx) ≤ α(x, y) and d(Mx,My) > 0, we have

G(d(Mx,My)) ≤ [G(d(x, y))]θ ,

where G ∈ Ω and θ ∈ (0, 1).

Theorem 3. Let (U,⊥, d) be an orthogonal complete metric space. Let M : U→ U be a self-map
satisfying the axioms:

(i) M is α-admissible map with respect to y,
(ii) M is an O− (α− y−G)-contraction,
(iii) there exists x0 ∈ U such that α(x0,Mx0) ≥ y(x0,Mx0),
(iv) M is an O− (α− y)-continuous.

Then, M has a fixed point. Furthermore, M has a unique fixed point whenever α(x, y) ≥ y(x, x)
for all x, y ∈ Fix(M).

Proof. From orthogonality, it follows that

x0 ⊥M(x0) or M(x0) ⊥ x0.

Let M : U → U be a mapping with Fix(M) 6= ∅. For a given x0 ∈ U, the fixed point
iteration method generates a sequence {xn} in U as follows:

x1 = M(x0), x2 = M(x1) = M2x0, . . . , xn = Mxn−1 = Mnx0

for every n ∈ N ∪ {0}. If xn∗ = xn∗+1 for each n∗ ∈ N ∪ {0}, then, xn∗ is a fixed point of
M and so, the proof is obvious. Suppose it is not true, then xn 6= xn+1 for all n ∈ N ∪ {0}.
Thus, we have d(Mxn−1,Mxn) > 0 for all n ∈ N ∪ {0}. From M is⊥-preserving, we have

xn ⊥ xn+1 or xn+1 ⊥ xn (1)

for all n ∈ N ∪ {0}. It provides that {xn}∞
n=1 is an O-sequence. Let x0 ∈ U such that

α(x0,Mx0) > y(x0,Mx0). Now, since M is an α-admissible map with respect to y, then,
α(x0, x1) = α(x0,Mx0) > y(x0,Mx0) = y(x0, x1). By continuing in this way, we have

y(xn−1,Mxn−1) = y(xn−1, xn) ≤ α(xn−1, xn) for all n ∈ N .
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Since M is an O− (α− y−G)-contractive map, we have

1 < G(d(xn, xn+1))

= G(d(Mxn−1,Mxn))

≤ [G(d(xn−1, xn))]θ

= [G(d(Mxn−2,Mxn−1))]
θ

≤ [G(d(xn−2, xn−1))]
θ2

. . .

≤ [G(d(x0, x1))]
θn

for all n ∈ N . Since G ∈ Ω, letting lim
n→∞

in the above inequality, we obtain

lim
n→∞

G(d(xn, xn+1)) = 1.

By (G2), we have

lim
n→∞

d(xn, xn+1) = 0. (2)

Now, we will show that {xn}∞
n=1 is an O-Cauchy sequence. Suppose that {xn}∞

n=1 is
not an O-Cauchy sequence; if there exist ε > 0 and sequences {η(n)}∞

n=1 and {µ(n)}∞
n=1 of

N such that for η(n) > µ(n) > n, we have

d(xη(n), xµ(n)) ≥ ε.

Then,

d(xη(n)−1, xµ(n)) < ε, (3)

for all n ∈ N . So, by triangle inequality and (3), we have

ε ≤ d(xη(n), xµ(n)) ≤ d(xη(n), xη(n)−1) + d(xη(n)−1, xµ(n)) ≤ d(xη(n), xη(n)−1) + ε.

By letting the limit and using (3), we obtain

lim
n→∞

d(xη(n), xµ(n)) = ε. (4)

From (2), choose a natural number n0 ∈ N such that

d(xη(n), xη(n)+1) <
ε

4
and d(xµ(n), xµ(n)+1) <

ε

4
, (5)

for all n ≥ n0. Next, we claim that Mxη(n) 6= Mxµ(n) for all n ≥ n0, that is,

d(xη(n)+1, xµ(n)+1) = d(Mxη(n),Mxµ(n)) > 0. (6)

Arguing by contradiction, there exists N0 ≥ n0 such that d(xη(n)+1, xµ(n)+1) = 0. It
follows from (2), (5), and (6) that

ε ≤ d(xη(n), xµ(n))

≤ d(xη(n), xη(n)+1) + d(xη(n)+1, xµ(n)+1) + d(xη(n)+1, xµ(n))]

≤ ε

4
+ 0 +

ε

4

=
ε

2
,
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a contradiction. Therefore, (5) holds. Then, by the axiom, we obtain

G(d(Mxη(n),Mxµ(n))) ≤ [G(d(xη(n), xµ(n)))]
θ . (7)

By the limit as n → +∞ and condition (G′3), (4) and (7), we obtain G(ε) ≤ [G(ε)]θ ,
a contradiction. Therefore, {xn}∞

n=1 is an O-Cauchy sequence. By O-completeness of U,
there exists z ∈ U such that xn → z as n → ∞. Now, since M is O− (α− y)-continuous
and y(xn−1, xn) ≤ α(xn−1, xn), so

d(z,Mz) = lim
n→∞

d(xn,Mxn) = lim
n→∞

d(xn, xn+1) = d(z, z) = 0.

Hence, z is a fixed point of M.
Now, we prove that z is a unique fixed point of M. Let σ be another fixed point of

M. If xn → σ as n → ∞, we have z = σ. If xn does not converge to σ as n → ∞, there
is a subsequence {xnθ

} such that Mxnθ
6= σ for all θ ∈ N . By the choice of x0, in the

proof of the first part, thus, we have (x0 ⊥ σ) or (σ ⊥ x0). Since M is ⊥-preserving and
Mnσ = σ for all n ∈ N , we have (Mnx0 ⊥ σ) or (σ ⊥ Mnx0) for all n ∈ N . Since
O− (α− y−G)-contractive map, we have

G(d(z, σ)) = [G(d(z, σ))]θ ,

a contradiction because θ ∈ R+. Thus, z is the unique fixed point of M.

Theorem 4. Let (U,⊥, d) be an orthogonal complete metric space. Let M : U→ U be a self-map
postulating the axioms:

(i) M is α-admissible map with respect to y,
(ii) M is an O− α− y−G-contraction,
(iii) There exists x0 ∈ U such that α(x0,Mx0) ≥ y(x0,Mx0),
(iv) if {xn}∞

n=1 is an O-sequence in U such that α(xn, xn+1) > y(xn, xn+1) with xn → x as
n → ∞, then, either y(Mxn,M2xn) ≤ α(Mxn, x) or y(M2xn,M3xn) ≤ α(M2xn, x) holds
for all n ∈ N .

Then, M has a fixed point. Moreover, M has a unique fixed point whenever α(x, y) ≥ y(x, x)
for all x, y ∈ Fix(M).

Proof. From orthogonality, it follows that

x0 ⊥M(x0) or M(x0) ⊥ x0.

Let

x1 = M(x0), x2 = M(x1) = M2x0, . . . , xn = Mxn−1 = Mnx0

for all n ∈ N ∪ {0}. If xn∗ = xn∗+1 for some n∗ ∈ N ∪ {0}, then, xn∗ is a fixed point of M
and so the proof is obvious. Suppose it is not true, then xn 6= xn+1 for all n ∈ N ∪ {0}.
Thus, we have d(Mxn−1,Mxn) > 0 for all n ∈ N ∪ {0}. Since M is⊥-preserving, we have

xn ⊥ xn+1 or xn+1 ⊥ xn (8)

for all n ∈ N ∪ {0}. It provides that {xn}∞
n=1 is an O-sequence. Let x0 ∈ U such that

α(x0,Mx0) > y(x0,Mx0). Proof of Theorem 3, it implies that

α(xn, xn+1) > y(xn, xn+1) and xn → x∗ as n→ ∞,

where xn+1 = Mxn. So, axiom (iv),

either y(Mxn,M2xn) ≤ α(Mxn, x∗) or y(M2xn,M3xn) ≤ α(M2xn, x∗) true for all n ∈ N .



Symmetry 2023, 15, 1762 7 of 12

This shows that y(xnθ+1, xnθ+2) ≤ α(xnθ+1, x) or y(xnθ+2, xnθ+3) ≤ α(xnθ+2, x) is true
for all n ∈ N . Consequently, there exists a subsequence {xnθ

} of {xn}∞
n=1 such that

y(xnθ
,Mxnθ

) = y(xnθ
, xnθ+1) ≤ α(xnθ

, x∗), (9)

and so from (7), we conclude that

G(d(Mxnθ
, Fx∗)) ≤ [G(d(xnθ

, x∗))]λ < G(d(xnθ
, x∗)).

From (G1), we have

d(xnθ+1,Mx∗) < dxnθ
, x∗).

Letting the limit as θ → ∞ in the above inequality, we have d(x∗,Mx∗) = 0, i.e., x∗ = Mx∗.
Similarly, uniqueness follows in the same way as Theorem 3.

Let α(x, y) = y(x, y) = 1 for all x, y ∈ U, then we provide the following result as
a corollary.

Corollary 1. Let (U,⊥, d) be an orthogonal complete metric space and M : U→ U be a self-map.
If for all x, y ∈ U, x ⊥ y with d(Mx,My) > 0, we obtain G(d(Mx,My)) ≤ [G(d(x, y))]θ ,
for each M ∈ Ω. Then, M has a unique fixed point.

A self-map M has the property P , if Fix (Mn) = F̆ (M) for every n ∈ N .

Theorem 5. Let (U,⊥, d) be an orthogonal complete metric space and M : U → U be
a α-continuous self-map. Suppose there exists some θ ∈ R+ such that

G(d(Mx,M2x)) ≤ [G(d(x,Mx))]θ (10)

holds for all x ∈ U with d(Mx,M2x) > 0 for each G ∈ Ω. If M is an α-admissible and there exist
x0 ∈ U such that α(x0,Mx0) > 1, then M has the property P .

Proof. From orthogonality, it follows that

x0 ⊥M(x0) or M(x0) ⊥ x0.

Let

x1 = M(x0), x2 = M(x1) = M2x0, . . . , xn = Mxn−1 = Mnx0

for all n ∈ N ∪ {0}. If xn∗ = xn∗+1 for some n∗ ∈ N ∪ {0}, then xn∗ is a fixed point of M
and so the proof is obvious. Suppose it is not true, then xn 6= xn+1 for all n ∈ N ∪ {0}.
Thus, we have d(Mxn−1,Mxn) > 0 for all n ∈ N ∪ {0}. Since M is⊥-preserving, we have

xn ⊥ xn+1 or xn+1 ⊥ xn (11)

for all n ∈ N ∪ {0}. We conclude that {xn}∞
n=1 is an O-sequence. Let x0 ∈ U such that

α(x0,Mx0) > 1. Now, since M is α-admissible map, so α(x1, x2) = α(Mx0,Mx1) > 1.
Proceeding in this way, we obtain

α(xn−1, xn) ≥ 1

for all n ∈ N . From (10), we have

1 < G(d(Mxn−1,M2xn−1)) ≤ [G(d(xn−1,Mxn−1))]
θ ,
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which implies

1 < G(d(xn, xn+1)) ≤ [G(d(xn−1, xn))]θ ,

and so

1 < G(d(xn, xn+1)) ≤ [G(d(xn−1, xn))]θ .

Therefore,

1 < G(d(xn, xn+1)) ≤ [G(d(xn−1, xn))]θ ≤ [G(d(xn−2, xn−1))]
θ2 ≤ · · · ≤ [G(d(x0, x1))]θ

n
.

By the limit as n → ∞ in the above inequality, we obtain lim
n→∞

G(d(xn, xn+1)) = 1,
and from G ∈ Ω we have

lim
n→∞

d(xn, xn+1) = 0. (12)

Now, we show that {xn}∞
n=1 is an O-Cauchy sequence. Suppose {xn}∞

n=1 is not an O-
Cauchy sequence, there exists ε > 0 and O-sequences {η(n)}∞

n=1 and {µ(n)}∞
n=1 of natural

numbers such that for η(n) > µ(n) > n, we have

d(xη(n),Mxµ(n)−1) = d(xη(n), xµ(n)) ≥ ε. (13)

Then

d(xη(n)−1,Mxµ(n)−1) < ε

for all n ∈ N . So, by triangle inequality and by Equation (13), we have

ε ≤ d(xη(n),Mxµ(n)−1) ≤ d(xη(n), xη(n)−1) + d(xη(n)−1,Mxµ(n)−1)

≤ d(xη(n), xη(n)−1) + ε.

By applying the limit and by Equation (12), we have

lim
n→∞

d(xη(n),Mxµ(n)−1) = ε.

On the other hand, by (12), there exists a natural number n0 ∈ N such that

d(xη(n), xη(n)+1) <
ε

4
and d(xµ(n), xµ(n)+1) <

ε

4
(14)

for all n ≥ n0. Next, we claim that

d(Mxη(n),M2xµ(n)−1) = d(xη(n)+1,Mxµ(n)) > 0 (15)

for all n ≥ n0. On the contrary, assume that there exists $ > n0 such that

d(Mxη($),M2xµ($)−1) = d(xη($)+1,Mxµ($)) = 0. (16)
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Then, from (14)–(16), we obtain

ε ≤ d(xη($),Mxµ($)−1) ≤ d(xη($), xη($)+1) + d(xη($)+1,Mxµ($)−1)

≤ d(xη($), xη($)+1) + d(xη($)+1, xµ($)+1) + d(xµ($)+1,Mxµ($)−1)

= d(xη($), xη($)+1) + d(xη($)+1,Fxµ($)) + d(xµ($)+1, xµ($)

<
ε

4
+ 0 +

ε

4

=
ε

2
,

a contradiction. Thus,

d(Mxη(n),M2xµ(n)−1) = d(xη(n)+1,Mxµ(n)) > 0,

G(d(Mxη(n),M2xµ(n)−1)) ≤ [G(d(xη(n),Mxµ(n)−1))]
θ , (17)

are established, which shows that

G(d(xη(n)+1, xµ(n)+1)) ≤ [G(d(xη(n), xµ(n)))]
θ .

From (G3), (13) and (17), we have G(ε) ≤ [G(ε)]θ , a contradiction because θ ∈ R+.
Therefore, {xn}∞

n=1 is an O-Cauchy sequence. By O-completeness of U, there exists x∗ ∈ U

such that xn → x∗ as n → ∞. Now, since M is α-continuous and α(xn−1, xn) > 1, we
have, xn+1 = Mxn → Mx∗ as n → ∞, i.e., x∗ = Mx∗. Therefore, M has a fixed point and
M(Mn) = M(M) for n = 1. Let n > 1. On the contrary, suppose that ϑ ∈ M(Mn) and
ϑ /∈M(M). Then, d(ϑ,Mϑ) > 0. Now, we obtain

1 < G(d(ϑ,Mϑ)) = G(d(M(Mn−1ϑ)),M2(Mn−1ϑ))

≤ [G(d(Mn−1ϑ,Mnϑ))]θ

≤ [G(d(Mn−2ϑ,Mn−1ϑ))]θ
2

≤ . . .

≤ [G(d(ϑ,Mϑ))]θ
n
.

By the limit as n → ∞ in the above inequality, we conclude that G(d(ϑ,Mϑ)) = 1.
Hence, from (G2), d(ϑ,Mϑ) = 0, a contradiction. Hence, M(Mn) = M(M) for all
n ∈ N .

Example 5. Let U = [0, ∞) and d : U× U→ [0, ∞) be a map defined by

d(x, y) = |x− y| for all x, y ∈ U.

Consider the sequence {Sn}n∈N defined as

Sn =
n

6
(2n+ 1)(n+ 1) for all n ∈ N ∪ {0}.

Define a relation ⊥ on U by

x ⊥ y⇐⇒ xy ∈ {x, y} ⊆ {Sn}.

Thus, (U,⊥, d) is an orthogonal complete metric space. Now, we will define a map M : U→ U by

Mx =

{
S0, if S0 ≤ x ≤ S1,
Sn−1(Sn+1−x)+Sn(x−Sn)

Sn+1−Sn , if Sn ≤ x ≤ Sn+1, for each n ≥ 1.
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Now, we show that M is ⊥-preserving. Let x, y ∈ U with x ⊥ y and d(Mx,My) > 0. Then,
M is an orthogonal-preserving. Now, we show that M is an O− (α− y−G)-contractive map.
Define α, y : U× U → [0, ∞) by α(x, y) = d(x, y) and y(x, y) = 1

2(1+δ)
d(x, y) for all x, y ∈ U

with x⊥y, where δ > 0. Now, assume that there exists some θ ∈ (0, 1) such that

1
2(1 + δ)

d(x,Mx) ≤ d(x, y) implies G(d(Mx,My)) ≤ [G(d(x, y))]θ (18)

for x, y ∈ U with x⊥y, d(Mx,My) > 0, where G ∈ Ψ. Since, 1
2(1+δ)

d(x, x) ≤ d(x, y) for all
x, y ∈ U with x⊥y, so y(x, y) ≤ α(x, y) for all x, y ∈ U with x⊥y. Let y(x,Mx) ≤ α(x, y). So,

1
2(1+δ)

d(x,Mx) ≤ d(x, y). Then, from (18), we obtain

G(d(Mx,My)) ≤ [G(d(x, y))]θ . (19)

Hence, all conditions of Theorem 3 hold and M has a unique fixed point.

4. Application

Consider the ordinary differential equation{
− d2x

dδ2 = I(δ, x(δ)), δ ∈ [0, 1],
x(0) = x(1) = 0.

(20)

where I : [0, 1]×R → R is a continuous function and the space of all continuous func-
tions C(I) be defined on I = [0, 1]. Assume that d(x, y) = |x− y| for all x, y ∈ C(I).
Clearly, (C(I), d) is an orthogonal complete metric space. Assume that the following
conditions hold:

(i) There exists a map ξ : R2 → R such that for all w,κ ∈ R with ξ(w,κ) ≥ 0, we have
|I(δ,w)− I(δ,κ)| ≤ (|w−κ|)θ for all δ ∈ I, θ ∈ (0, 1),

(ii) There exists x1 ∈ C(I) such that for all δ ∈ I, ξ(x1(δ),
∫ 1

0 I(δ, x1(δ))dδ) ≥ 0,
(iii) For all δ ∈ I and for all x, y, z ∈ C(I), ξ(x(δ), y(δ)) ≥ 0 and ξ(y(δ), z(δ)) ≥ 0 imply

ξ(x(δ), z(δ)) ≥ 0,
(iv) For all δ ∈ I and for all x, y ∈ C(I).

We can now guarantee that the prescribed second order differential equation has a
solution. The above procedure demonstrates similar results, but differs from [18].

Theorem 6. Assume the conditions (i)–(iv) are satisfied. Then, (20) has at least one solution
x∗ ∈ C(I).

Proof. Let U = {x ∈ C(I,R) : x(δ) > 0}∀δ ∈ I. We consider the following orthogonality
relation in U:

x ⊥ y⇐⇒ x(δ)y(δ) ≥ (x(δ) ∨ y(δ))

for all δ ∈ I. Clearly, (U,⊥, d) is an orthogonal metric space.
Next, we will prove that U is an O-complete (not necessarily complete). Consider the

O-Cauchy sequence {xn}∞
n=1 in U. Easily, we demonstrate that {xn}∞

n=1 is convergent to a
point x ∈ C(I). It is enough to prove that x ∈ U. Fix δ ∈ I. Since ⊥-preserving, we have

xn(δ)xn+1(δ) ≥ (xn(δ) ∨ xn+1(δ))

for each n ∈ N . Since xn(δ) > 0 for all n ∈ N , there exists a subsequence {xn(θ)}
in {xn}∞

n=1 for which {xn(θ)(δ)} ≥ 1 for each θ ∈ N . It is convergence to real numbers
x(δ) =⇒ x(δ) ≥ 1. But since δ ∈ I is arbitrary, it shows that x ≥ 1 and hence x ∈ U.
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It is easily shown that x∗ ∈ C(I) is a solution of (20) if x∗ ∈ C(I) is a solution of the
integral equation. A self-map M : C(I)→ C(I) is defined by

Mx(δ) =
∫ 1

0
I(δ, x(δ))dδ for all δ ∈ I.

Therefore, the differential equation (20) makes it easy to find x∗ ∈ C(I), i.e., a fixed
point of M. Let x, y ∈ C(I) such that ξ(x(δ), y(δ)) ≥ 0 for all δ ∈ I. From (i), we have

|Mx(δ)−My(δ)| =
∣∣∣ ∫ 1

0
[I(δ, x(δ))− I(δ, y(δ))]dδ

∣∣∣
≤
∫ 1

0
|I(δ, x(δ))− I(δ, y(δ))|dδ

≤
∫ 1

0
|x(δ)− y(δ)|θdδ

= |x(δ)− y(δ)|θ
∫ 1

0
dδ

= |x(δ)− y(δ)|θ .

This implies that

d(Mx,My) ≤ (d(x, y))θ .

Moreover, we find that

G(d(Mx,My)) ≤ G(d(x, y))θ ≤ [G(d(x, y))]θ

for all x, y ∈ C(I) such that ξ(x(δ), y(δ)) ≥ 0 for all δ ∈ I.
Therefore, all the conditions of the Theorem 6 are satisfied. Hence, M has a fixed point

x∗ ∈ C(I) such that Mx∗ = x∗ is a solution of (20).

5. Conclusions

In this manuscript, we established the notion of O − (α − y−G)-contraction with an
orthogonal metric space. We established certain fixed point theorems in these O− (α− y−G)-
contractions on an orthogonal metric space. We gave an application of differential equations
to support our finding fixed point results via O− (α− y−G)-contraction on an orthogonal
metric space.
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