Radius Results for Certain Strongly Starlike Functions
Abstract
1. Introduction and Preliminaries
2. Main Results
- (a)
- in the disc
- (b)
- in the disc
- (c)
- in the disc
- (d)
- in the disc , where is the smallest positive root of the equation
- (e)
- in the discAll these radii cannot be improved since the functionplays the role of an extremal function.
- (a)
- for to be in , we must have
- (b)
- if
- (c)
- ifthat isSince , we see that condition (8) will be satisfied ifHence, . To establish the sharpness, we consider at , and haveandThus,
- (d)
- From (4), a computation givesTherefore, ifthat isThus, we see that condition (9) will be satisfied ifSo, the functionis decreasing in and . Hence, in the disc . Consider the function at , we havewhereThis shows that the radius is sharp.
- (e)
- ifwhich impliesIt is easy to see that the inequalityis sufficient for (11). Thus, we have the required result. To establish the sharpness, we consider at such that
3. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Stankiewicz, J. Quelques problèmes extrèmaux dans les classes des fonctions α-angulairement ètoilèes. Ann. Univ. Mariae Curie-Skłodowska Sect. A 1966, 20, 59–75. [Google Scholar]
- Stankiewicz, J. On a family of starlike functions. Ann. Univ. Mariae Curie-Skłodowska Sect. A 1968, 22–24, 175–181. [Google Scholar]
- Brannan, D.A.; Kirwan, W.E. On some classes of bounded univalent functions. J. Lond. Math. Soc. 1969, 2, 431–443. [Google Scholar] [CrossRef]
- Ma, W.; Minda, D. An internal geometric characterization of strongly starlike functions. Ann. Univ.Mariae Curie Skłodowska Sect. A 1991, 20, 89–97. [Google Scholar]
- Lecko, A. Some Methods in the Theory of Univalent Functions; Oficyna Wydawnicza Poltechniki Rzeszowskiej: Rzeszów, Poland, 2005. [Google Scholar]
- Lecko, A. Strongly starlike and spirallike functions. Ann. Polon. Math. 2005, 85, 165–192. [Google Scholar] [CrossRef]
- Sugawa, T. A self-duality of strong starlikeness. Kodai Math. J. 2005, 28, 382–389. [Google Scholar] [CrossRef]
- Mocanu, P.T. Some starlikeness conditions for analytic functions. Rev. Roumanie Math. Pures Appl. 1988, 33, 117–124. [Google Scholar]
- Mocanu, P.T. Two simple conditions for starlikeness. Mathematica 1992, 34, 175–181. [Google Scholar]
- Nunokawa, M. On the order of strongly starlikeness of strongly convex functions. Proc. Jpn. Acad. Ser. A 1993, 69, 234–237. [Google Scholar] [CrossRef]
- Obradović, M. Simple sufficient conditions for starlikeness. Mat. Vesnik. 1997, 49, 241–244. [Google Scholar]
- Tuneski, N. On some simple sufficient conditions for univalence. Math. Bohem. 2001, 126, 229–236. [Google Scholar] [CrossRef]
- Kwon, O.S.; Lecko, A.; Sim, Y.J. On the fourth coefficient of functions in the Carathéodory class. Comput. Methods Funct. Theory 2018, 18, 307–314. [Google Scholar] [CrossRef]
- Sim, Y.J.; Kwon, O.S.; Cho, N.E.; Srivastava, H.M. Some sets of sufficient conditions for Carathéodory functions. J. Comput. Anal. Appl. 2016, 21, 1243–1254. [Google Scholar]
- Nunokawa, M.; Kwon, O.S.; Sim, Y.J.; Cho, N.E. Sufficient conditions for Carathéodory functions. Filomat 2018, 32, 1097–1106. [Google Scholar] [CrossRef]
- Nunokawa, M.; Sokół, J. New conditions for starlikeness and strongly starlikeness of order alpha. Houst. J. Math. 2017, 43, 333–344. [Google Scholar]
- Nunokawa, M.; Sokół, J. Some applications of first-order differential subordinations. Math. Slovaca 2017, 67, 939–944. [Google Scholar] [CrossRef]
- Cho, N.E. Oh Sang Kwon, and Young Jae Sim. Differential inequalities for spirallike and strongly starlike functions. Adv. Differ. Equ. 2021, 1, 1–12. [Google Scholar]
- Kowalczyk, B.; Lecko, A. The second Hankel determinant of the logarithmic coefficients of strongly starlike and strongly convex functions. Rev. Real Acad. Cienc. Fis. Nat. Ser. A Mat. 2023, 117, 91. [Google Scholar] [CrossRef]
- Seoudy, T.; Aouf, M.K. Fekete-Szegö Problem for Certain Subclass of Analytic Functions with Complex Order Defined by q-Analogue of Ruscheweyh Operator. Constr. Math. Anal. 2020, 3, 36–44. [Google Scholar] [CrossRef]
- Aouf, M.K.; Seoudy, T. Certain Class of Bi-Bazilevic Functions with Bounded Boundary Rotation Involving Salăgeăn Operator. Constr. Math. Anal. 2020, 3, 139–149. [Google Scholar] [CrossRef]
- Akgül, A.; Cotîrlă, L.-I. Coefficient Estimates for a Family of Starlike Functions Endowed with Quasi Subordination on Conic Domain. Symmetry 2022, 14, 582. [Google Scholar] [CrossRef]
- Cotîrlă, L.-I.; Kupán, P.A.; Szász, R. New Results about Radius of Convexity and Uniform Convexity of Bessel Functions. Axioms 2022, 11, 380. [Google Scholar] [CrossRef]
- Cotîrlǎ, L.-I.; Murugusundaramoorthy, G. Starlike Functions Based on Ruscheweyh q-Differential Operator defined in Janowski Domain. Fractal Fract. 2023, 7, 148. [Google Scholar] [CrossRef]
- Shanmugam, T.N. Convolution and differential subordination. Internat. J. Math. Math. Sci. 1989, 12, 333–340. [Google Scholar] [CrossRef]
- Ma, W.C.; Minda, D. A unified treatment of some special classes of univalent functions. Conf. Proc. Lect. Notes Anal. 1992, 1, 157–169. [Google Scholar]
- Sokół, J.; Stankiewicz, J. Radius of convexity of some subclasses of strongly starlike functions. Zesz. Nauk. Politech. Rzesz. Mat. 1996, 19, 101–105. [Google Scholar]
- Masih, V.S.; Kanas, S. Subclasses of Starlike and Convex Functions Associated with the Limaçon Domain. Symmetry 2020, 12, 942. [Google Scholar] [CrossRef]
- Sokół, J. On some subclass of strongly starlike functions. Demonstr. Math. 1998, 31, 81–86. [Google Scholar] [CrossRef]
- Kanas, S.; Wisniowska, A. Conic regions and k-uniform convexity. J. Comput. Appl. Math. 1999, 105, 327–336. [Google Scholar] [CrossRef]
- Kanas, S.; Wisniowska, A. Conic domains and starlike functions. Rev. Roum. Math. Pures Appl. 2000, 45, 647–658. [Google Scholar]
- Janowski, W. Extremal problems for a family of functions with positive real part and for some related families. Ann. Polon. Math. 1970, 23, 159–177. [Google Scholar] [CrossRef]
- Liu, L.; Liu, J.L. Properties of Certain Multivalent Analytic Functions Associated with the Lemniscate of Bernoulli. Axioms 2021, 10, 160. [Google Scholar] [CrossRef]
- Masih, V.S.; Ebadian, A.; Sokół, J. On strongly starlike functions related to the Bernoulli lemniscate. Tamkang J. Math. 2022, 53, 187–199. [Google Scholar] [CrossRef]
- Al-Shbeil, I.; Saliu, A.; Cătaş, A.; Malik, S.N.; Oladejo, S.O. Some Geometrical Results Associated with Secant Hyperbolic Functions. Mathematics 2022, 10, 2697. [Google Scholar] [CrossRef]
- Kargar, R.; Trojnar-Spelina, L. Starlike functions associated with the generalized Koebe function. Anal. Math. Phys. 2021, 11, 146. [Google Scholar] [CrossRef]
- Saliu, A.; Noor, K.I.; Hussain, S.; Darus, M. Some results for the family of univalent functions related with limaçon domain. AIMS Math. 2021, 6, 3410–3431. [Google Scholar] [CrossRef]
- Saliu, A.; Jabeen, K.; Al-shbeil, I.; Oladejo, S.O.; Cătaş, A. Radius and differential subordination results for starlikeness associated with limaçon class. J. Funct. Spaces 2022, 15, 8264693. [Google Scholar] [CrossRef]
- Murugusundaramoorthy, G.; Vijaya, K. Certain Subclasses of Analytic Functions Associated with Generalized Telephone Numbers. Symmetry 2022, 14, 1053. [Google Scholar] [CrossRef]
- Malik, S.N.; Raza, M.; Xin, Q.; Sokół, J.; Manzoor, R.; Zainab, S. On Convex Functions Associated with Symmetric Cardioid Domain. Symmetry 2021, 13, 2321. [Google Scholar] [CrossRef]
- Bano, K.; Raza, M.; Xin, Q.; Tchier, F.; Malik, S.N. Starlike Functions Associated with Secant Hyperbolic Function. Symmetry 2023, 15, 737. [Google Scholar] [CrossRef]
- Sokół, J. Radius problems in the class SL*. Appl. Math. Comput. 2009, 214, 569–573. [Google Scholar] [CrossRef]
- Cang, Y.-L.; Liu, J.-L. Radius of convexity for certain analytic functions associated with the lemniscate of Bernoulli. Expo. Math. 2015, 33, 387–391. [Google Scholar] [CrossRef]
- Bano, K.; Raza, M. Starlikness associated with limacon. Filomat 2023, 37, 851–862. [Google Scholar]
- Pinchuk, B. A variational method for functions of bounded boundary rotation. Trans. Am. Math. Soc. 1969, 138, 107–113. [Google Scholar] [CrossRef]
- Goodman, A.W. Univalent Functions; Mariner Publishing Co.: Tampa, FL, USA, 1983; Volumes I and II. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saliu, A.; Jabeen, K.; Xin, Q.; Tchier, F.; Malik, S.N. Radius Results for Certain Strongly Starlike Functions. Symmetry 2023, 15, 1124. https://doi.org/10.3390/sym15051124
Saliu A, Jabeen K, Xin Q, Tchier F, Malik SN. Radius Results for Certain Strongly Starlike Functions. Symmetry. 2023; 15(5):1124. https://doi.org/10.3390/sym15051124
Chicago/Turabian StyleSaliu, Afis, Kanwal Jabeen, Qin Xin, Fairouz Tchier, and Sarfraz Nawaz Malik. 2023. "Radius Results for Certain Strongly Starlike Functions" Symmetry 15, no. 5: 1124. https://doi.org/10.3390/sym15051124
APA StyleSaliu, A., Jabeen, K., Xin, Q., Tchier, F., & Malik, S. N. (2023). Radius Results for Certain Strongly Starlike Functions. Symmetry, 15(5), 1124. https://doi.org/10.3390/sym15051124

