Postural Stability Romberg’s Test in 3D Using an Inertial Sensor in Healthy Adults
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Test Procedures
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gurfinkel, E.V. Physical foundations of stabilography. Agressologie 1973, 14, (Spec No C). 9–13. [Google Scholar] [PubMed]
- Bizzo, G.; Guillet, M.; Patat AGagey, P.M. Specifications for building a vertical force platform designed for clinical stabilometry. Med. Biol. Eng. Comput. 1985, N23, 474–476. [Google Scholar] [CrossRef]
- Gagey, P.M.; Weber, B. Posturologie. In Regulation et Dereglements de la Station Debout; Masson: Paris, France, 1995; p. 145. [Google Scholar]
- Winter, D.A. A.B.C. of Balance during Standing and Walking; University of Waterloo Press: Waterloo, ON, Canada, 1995; p. 56. [Google Scholar]
- Zampogna, A.; Mileti, I.; Palermo, E.; Celletti, C.; Paoloni, M.; Manoni, A.; Mazzetta, I.; Costa, G.D.; Pérez-López, C.; Camerota, F.; et al. Fifteen Years of Wireless Sensors for Balance Assessment in Neurological Disorders. Sensors 2020, 20, 3247. [Google Scholar] [CrossRef] [PubMed]
- Ghislieri, M.; Gastaldi, L.; Pastorelli, S.; Tadano, S.; Agostini, V. Wearable Inertial Sensors to Assess Standing Balance: A Systematic Review. Sensors 2019, 19, 4075. [Google Scholar] [CrossRef] [PubMed]
- Zemková, E.; Ďurinová, E.; Džubera, A.; Chochol, J.; Koišová, J.; Šimonová, M.; Zapletalová, L. Simultaneous measurement of centre of pressure and centre of mass in assessing postural sway in healthcare workers with non-specific back pain: Protocol for a cross-sectional study. BMJ Open 2021, 11, e050014. [Google Scholar] [CrossRef]
- Lesinski, M.; Muehlbauer, T.; Granacher, U. Concurrent validity of the Gyko inertial sensor system for the assessment of vertical jump height in female sub-elite youth soccer players. BMC Sports Sci. Med. Rehabil. 2016, 8, 35. [Google Scholar] [CrossRef]
- Pinho, A.S.; Salazar, A.P.; Hennig, E.M.; Spessato, B.C.; Domingo, A.; Pagnussat, A.S. Can We Rely on Mobile Devices and Other Gadgets to Assess the Postural Balance of Healthy Individuals? A Systematic Review. Sensors 2019, 19, 2972. [Google Scholar] [CrossRef]
- Alessandrini, M.; Micarelli, A.; Viziano, A.; Pavone, I.; Costantini, G.; Casali, D.; Paolizzo, F.; Saggio, G. Body-worn triaxial accelerometer coherence and reliability related to static posturography in unilateral vestibular failure. Acta Otorhinolaryngol. Ital. 2017, 37, 231–236. [Google Scholar] [CrossRef]
- Ekvall Hansson, E.; Tornberg, Å. Coherence and reliability of a wearable inertial measurement unit for measuring postural sway. BMC Res. Notes 2019, 12, 201. [Google Scholar] [CrossRef]
- Noamani, A.; Nazarahari, M.; Lewicke, J.; Vette, A.H.; Rouhani, H. Validity of using wearable inertial sensors for assessing the dynamics of standing balance. Med. Eng. Phys. 2020, 77, 53–59. [Google Scholar] [CrossRef]
- Lee, C.H.; Sun, T.L. Evaluation of postural stability based on a force plate and inertial sensor during static balance measurements. J. Physiol. Anthr. 2018, 37, 27. [Google Scholar] [CrossRef] [PubMed]
- Reynard, F.; Christe, D.; Terrier, P. Postural control in healthy adults: Determinants of trunk sway assessed with a chest-worn accelerometer in 12 quiet standing tasks. PLoS ONE 2019, 14, e0211051. [Google Scholar] [CrossRef] [PubMed]
- Onell, A. The vertical ground reaction force for analysis of balance? Gait Posture 2000, 12, 7–13. [Google Scholar] [CrossRef]
- Skvortsov, D.V. Diagnosis of Motor Pathology with Instrumental Methods: Gait Analysis, Stabilometry. Nauch.-Med. Firma MBN. 2007; p. 640. Available online: https://rehabrus.ru/Docs/Diagn_dvig_patalogii_2007.pdf (accessed on 20 April 2018). (In Russian)
- Pagnacco, G.; Heiss, D.G.; Oggero, E. Muscular contractions and their effect on the vertical ground reaction force during quiet stance. Part I: Hypothesis and experimental investigation. Biomed. Sci. Instrum. 2001, 37, 227–232. [Google Scholar] [PubMed]
- Conforto, S.; Schmid, M.; Camomilla, V.; D’Alessio, T.; Cappozzo, A. Hemodynamics as a possible internal mechanical disturbance to balance. Gait Posture 2001, 14, 28–35. [Google Scholar] [CrossRef]
- Zagorodniy, N.V.; Polyaev, B.A.; Skvortsov, D.V.; Karpovich, N.I.; Damazh, A.V. Spatial stabilometry with the use of three-component telemetric accelerometers (piloting study). Lech. Fiscultura I Sport. Med. 2013, 3, 4–10. [Google Scholar]
- Borges, A.P.; Carneiro, J.A.; Zaia, J.E.; Carneiro, A.A.; Takayanagui, O.M. Evaluation of postural balance in mild cognitive impairment through a three-dimensional electromagnetic system. Braz. J. Otorhinolaryngol. 2016, 82, 433–441. [Google Scholar] [CrossRef]
- Conceição, L.B.; Baggio, J.A.O.; Mazin, S.C.; Edwards, D.J.; Santos, T.E.G. Normative data for human postural vertical: A systematic review and meta-analysis. PLoS ONE 2018, 13, e0204122. [Google Scholar] [CrossRef]
- Ferreira Ade, S.; Baracat, P.J. Test-retest reliability for assessment of postural stability using center of pressure spatial patterns of three-dimensional statokinesigrams in young health participants. J. Biomech. 2014, 47, 2919–2924. [Google Scholar] [CrossRef]
- Ruhe, A.; Fejer, R.; Walker, B. The test-retest reliability of centre of pressure measures in bipedal static task conditions—A systematic review of the literature. Gait Posture 2010, 32, 436–445. [Google Scholar] [CrossRef] [PubMed]
- Scoppa, F.; Capra, R.; Gallamini, M.; Shiffer, R. Clinical stabilometry standardization. Basic definitions – acquisition interval – sampling frequency. Gait Posture 2013, 37, 290–292. [Google Scholar] [CrossRef] [PubMed]
- Mancini, M.; Salarian, A.; Carlson-Kuhta, P.; Zampieri, C.; King, L.; Chiari, L.; Horak, F.B. ISway: A sensitive, valid and reliable measure of postural control. J. Neuroeng. Rehabil. 2012, 9, 59. [Google Scholar] [CrossRef] [PubMed]
- Hanakova, L.; Socha, V.; Kutílek, P. Assessmetn of postural instability in patients with a neurological disorder using a tri-axial accelerotmeter. Acta Polytech. 2015, 55, 229. [Google Scholar] [CrossRef][Green Version]
- Lauk, M.; Chow, C.C.; Pavlik, A.E.; Collins, J.J. Human balance out of equilibrium: Nonequilibrium statistical mechanics in posture control. Phys. Rev. Lett. 1998, 80, 413–416. [Google Scholar] [CrossRef]
- Musha, T. 1/f fluctuations in biological systems. In Sixth International Conference on Noise in Physical Systems; Meijer, P.H.E., Mountain, R.D., Soulen, R.J., Jr., Eds.; Department of Commerce and National Bureau of Standards: Washington, DC, USA, 1981; pp. 143–146. [Google Scholar]
- Solomon, A.J.; Jacobs, J.V.; Lomond, K.V.; Henry, S.M. Detection of postural sway abnormalities by wireless inertial sensors in minimally disabled patients with multiple sclerosis: A case-control study. J. Neuroeng. Rehabil. 2015, 12, 74. [Google Scholar] [CrossRef]
- Baker, N.; Gough, C.; Gordon, S.J. Inertial Sensor Reliability and Validity for Static and Dynamic Balance in Healthy Adults: A Systematic Review. Sensors 2021, 21, 5167. [Google Scholar] [CrossRef]
- Hansen, C.; Beckbauer, M.; Romijnders, R.; Warmerdam, E.; Welzel, J.; Geritz, J.; Emmert, K.; Maetzler, W. Reliability of IMU-Derived Static Balance Parameters in Neurological Diseases. Int. J. Environ. Res. Public Health. 2021, 18, 3644. [Google Scholar] [CrossRef]
- Tigrini, A.; Verdini, F.; Fioretti, S.; Mengarelli, A. Long term correlation and inhomogeneity of the inverted pendulum sway time-series under the intermittent control paradigm. Commun. Nonlinear Sci. Numer. Simul. 2022, 108, 106198. [Google Scholar] [CrossRef]
- Saraiva, M.; Vilas-Boas, J.P.; Fernandes, O.J.; Castro, M.A. Effects of Motor Task Difficulty on Postural Control Complexity during Dual Tasks in Young Adults: A Nonlinear Approach. Sensors 2023, 23, 628. [Google Scholar] [CrossRef]
- Felius, R.A.W.; Geerars, M.; Bruijn, S.M.; Wouda, N.C.; Van Dieën, J.H.; Punt, M. Reliability of IMU-based balance assessment in clinical stroke rehabilitation. Gait Posture 2022, 98, 62–68. [Google Scholar] [CrossRef] [PubMed]
Measures, Abbreviation | Name | Description |
---|---|---|
S, m2/s4 | Area of oscillation (95%) | The projection area of the 95% confidence acceleration ellipsoid |
Jerk, m2/s5 | Jerk rate | Time derivative of acceleration |
Dist, m/s2 | Mean distance from the centre | Mean distance from center of acceleration trajectory |
Rms, m/s2 | Root mean square acceleration | Root mean square of CoP acceleration time series |
Path, m/s2 | Sway path length | Sway path, total length of CoP acceleration trajectory |
Range, m/s2 | Oscillation range | Acceleration range |
Mf, Hz | Mean frequency | Mean frequency, the number, per second, of loops that have to be run by the CoP acceleration to cover a total trajectory |
Area, m2/s5 | Path area (sway area) | Sway area, computed as the area spanned from the CoP acceleration per unit of time |
Pwr, m2/s4 | Total power | Total power (amplitude squared) |
F50, Hz | Frequency | Median frequency, frequency below which the 50% of Pwr is present |
F95, Hz | Power frequency 95% | 95% power frequency, frequency below which the 95% of Pwr is present |
Cf, Hz | Centroidal frequency | Centroidal frequency |
Fd | Frequency dispersion | Frequency dispersion |
Measures | Eyes Open | Eyes Closed | ||
---|---|---|---|---|
Min | Max | Min | Max | |
S, m2/s4 | 3.96 × 10−4 | 6.67 × 10−3 | 4.42 × 10−4 | 1.13 × 10−2 |
Jerk, m2/s5 | 0.11 | 1.09 | 0.07 | 1.83 |
Dist, m/s2 | 5.17 × 10−3 | 1.96 × 10−2 | 6.03 × 10−3 | 2.42 × 10−2 |
Rms, m/s2 | 5.89 × 10−3 | 1.96 × 10−2 | 5.93 × 10−3 | 1.97 × 10−2 |
Path, m/s2 | 2.01 | 6.64 | 1.82 | 7.82 |
Range, m/s2 | 3.12 × 10−2 | 1.23 × 10−1 | 2.82 × 10−2 | 1.56 × 10−1 |
Mf, Hz | 1.27 | 2.82 | 1.12 | 2.79 |
Area, m2/s5 | 1.12 × 10−5 | 1.69 × 10−4 | 9.13 × 10−6 | 3.18 × 10−4 |
Pwr, m2/s4 | 1.09 × 10−3 | 3.73 × 10−2 | 1.74 × 10−3 | 7.6 × 10−2 |
F50, Hz | 1.19 | 2.23 | 1.23 | 2.2 |
F95, Hz | 3.74 | 5.33 | 3.76 | 5.36 |
Cf, Hz | 2.7 | 9.37 | 2.79 | 11.68 |
Fd | 8.09 | 325.4 | 9.81 | 423.37 |
Measures | Eyes Open | Eyes Closed | ||
---|---|---|---|---|
Min | Max | Min | Max | |
S, m2/s4 | 2.65 × 10−4 | 4.59 × 10−3 | 2.7 × 10−4 | 1.1 × 10−2 |
Jerk, m2/s5 | 0.049 | 0.84 | 0.04 | 1.69 |
Dist, m/s2 | 3.92 × 10−3 | 1.62 × 10−2 | 4.13 × 10−3 | 2.17 × 10−2 |
Rms, m/s2 | 4.33 × 10−3 | 1.43 × 10−2 | 4.61 × 10−3 | 2.01 × 10−2 |
Path, m/s2 | 1.57 | 5.73 | 1.57 | 7.87 |
Range, m/s2 | 2.16 × 10−2 | 1.35 × 10−1 | 1.8 × 10−2 | 1.57 × 10−1 |
Mf, Hz | 1.07 | 2.63 | 1.07 | 2.72 |
Area, m2/s5 | 7.49 × 10−6 | 1.7 × 10−4 | 5.63 × 10−6 | 3.68 × 10−4 |
Pwr, m2/s4 | 9.94 × 10−3 | 8.89 × 10−2 | 9.8 × 10−3 | 7.3 × 10−2 |
F50, Hz | 0.73 | 2.76 | 1.03 | 3.09 |
F95, Hz | 3.67 | 6.13 | 3.78 | 6.79 |
Cf, Hz | 2.89 | 7.64 | 2.86 | 8.24 |
Fd | 7.96 | 239.49 | 5.19 | 273.92 |
Measures | Eyes Open | Eyes Closed | ||
---|---|---|---|---|
Min | Max | Min | Max | |
S, m2/s4 | 7.8 × 10−4 | 6.79 × 10−3 | 4.9 × 10−4 | 7.87 × 10−3 |
Jerk, m2/s5 | 0.12 | 1.05 | 0.11 | 1.32 |
Dist, m/s2 | 5.74 × 10−3 | 1.7 × 10−2 | 6.67 × 10−3 | 2.2 × 10−2 |
Rms, m/s2 | 5.99 × 10−3 | 1.93 × 10−2 | 5.94 × 10−3 | 1.8 × 10−2 |
Path, m/s2 | 2.22 | 6.66 | 1.9 | 6.96 |
Range, m/s2 | 3.2 × 10−2 | 1.15 × 10−1 | 2.86 × 10−2 | 1.38 × 10−1 |
Mf, Hz | 1.14 | 2.7 | 1.07 | 2.97 |
Area, m2/s5 | 1.5 × 10−5 | 1.64 × 10−4 | 1.31 × 10−5 | 2.99 × 10−3 |
Pwr, m2/s4 | 9.25 × 10−4 | 4.37 × 10−2 | 1.19 × 10−3 | 1.02 × 10−1 |
F50, Hz | 1.43 | 2.74 | 1.39 | 2.66 |
F95, Hz | 3.9 | 5.3 | 3.94 | 5.33 |
Cf, Hz | 2.91 | 7.86 | 2.96 | 9.66 |
Fd | 6.57 | 255.11 | 7.38 | 341.13 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Skvortsov, D.; Painev, N. Postural Stability Romberg’s Test in 3D Using an Inertial Sensor in Healthy Adults. Symmetry 2023, 15, 1125. https://doi.org/10.3390/sym15051125
Skvortsov D, Painev N. Postural Stability Romberg’s Test in 3D Using an Inertial Sensor in Healthy Adults. Symmetry. 2023; 15(5):1125. https://doi.org/10.3390/sym15051125
Chicago/Turabian StyleSkvortsov, Dmitry, and Nikita Painev. 2023. "Postural Stability Romberg’s Test in 3D Using an Inertial Sensor in Healthy Adults" Symmetry 15, no. 5: 1125. https://doi.org/10.3390/sym15051125
APA StyleSkvortsov, D., & Painev, N. (2023). Postural Stability Romberg’s Test in 3D Using an Inertial Sensor in Healthy Adults. Symmetry, 15(5), 1125. https://doi.org/10.3390/sym15051125