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1. Introduction and Preliminaries

Mathematicians, especially analysts, keep working to improve on their own results
that are ultimately beneficial for not only research and development in mathematical
results but equally helpful for physical scientists or engineers using it. The people related to
research in GFT have been exploring new dimensions of their field that study the problems
related to geometrical structures of various symmetric domains. Working in a similar
direction with the same zeal, Stankiewicz [1,2] was one of the two mathematicians who
discussed the idea of the functions that are called strongly starlike, the second being was
Brannan and Kirwan [3], but both of them were unaware of the discovery of the other. The
former then discovered the external characterization, which was geometrical in nature,
for these newly invented functions, see [2]. While on the other end, Brannan and Kirwan
discussed the geometrical property, but that was a sufficient condition for any function
to be the part of this class of functions. Ma and Minda [4] explored another direction
and, unlike Stankiewicz, proved the results for internal characterization, but they based
their results in k-starlike domains. Then there was no end to new ideas coming to this
area of research. One can see [5], Chapter IV, [6,7]. After that, we see Mocanu [8] coming
up with “some starlike conditions for analytic functions” in his article titled so. It was
followed by another research work by him [9] in which he explored two conditions for
this property of functions, but they were simpler than the ones stated before by him. The
following year, Nunokawa [10] gave a remarkable result involving the order of the type
of functions under discussion. The results of Brannan and Kirwan were generalized by
Obradović [11], who stated more conditions, which can be regarded as sufficient conditions
that a function needs to satisfy to be a strongly starlike function. As a matter of fact and
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a part of natural improvement that has to come under research with the passage of time,
Tuneski [12] improved the results stated earlier and made these sufficiency conditions
similar in his paper, which was published in 2001. Lecko [6] in 2005 aimed at discovering
the results related to this group of functions more geometrically and then switch between
the analytical nature and that of the geometrical one in an interesting manner. He built
a relation between the geometry of our class with spiral likeness of the same order. He
did it in a simpler mean by discussing these beautiful geometrical properties for planar
domain which was enhanced by the analytical forms of these results in their related
classes. His paper is worth reading. In the same year, Sugawa [7] proved the necessary
and sufficient conditions for a simply connected domain to be SS but for a specific order.
After proving this remarkable result, he also constructed the connection between already
discovered properties of these functions with each other and some other related interesting
results. Kwon et al. [13] mainly discussed the characterization of Carathéodory function,
including the sufficiency conditions and its related results, but they also applied their
results successfully to study those analytic functions whose geometry involves starlikeness
and other shapes too. They inspired many to work in a similar direction. Sim [14] was
one of those who was inspired enough to explore new dimensions. In his article, referred
to earlier, he compared his new results related to sufficiency conditions of Carathéodory
function with already known results in the literature. These results also include those
related to the geometrical side of the analytic functions associated with his proven results.
We see a number of articles by Nunokawa [15–17] in the following years who explored
various dimensions of research addressing the geometrical and analytical properties of
strongly starlike functions. For the latest work on strongly starlike functions, see [18,19].
The exploration on strongly starlike functions that started in the early 1960s and had been a
matter of interest for many mathematicians over that period of time motivated us to explore
new dimensions of strongly starlike functions, which are explained in detail below after the
basic concepts and definitions. In particular, we aim to focus on the geometrical properties
such as radius results related to a class of strongly starlike functions associated with the
function ϕ(ζ) = (1 + ζ)λ, 0 < λ < 1 and to build its connection with the renowned classes
C,S∗

η
, S∗M,,−US∗,,−UC and S∗

L
of analytic functions, which is the main motivation of this

work. For more relevant work, one can see [20–24].
Let Ω denote the class of analytic functions κwhose series form is given as

κ(ζ) = ζ+
∞

∑
n=2

anζ
n, ζ ∈ D := {ζ ∈ C : |ζ| < 1}. (1)

We say κ ∈ Ω is subordinate to g ∈ Ω (written symbolically as κ ≺ g or κ(ζ) ≺ g(ζ))
if there exists a Schwarz function ϑ such that κ(ζ) = g(ϑ(ζ)) for all ζ ∈ D.

Shanmugam [25] started the study of the general classes of convex and starlike func-
tions by using the convolution techniques to examine inclusion-related problems. Ma and
Minda [26] further developed this theory and established some coefficient-related results.
For this purpose, they considered analytic functions ϕ(ζ) with Reϕ(ζ) > 0, ϕ(0) = 1 and
ϕ′(0) > 0 in D such that ϕ(ζ) maps D onto regions that are starlike with respect to 1. They
introduced the following classes of functions:

S∗(ϕ) =
{
κ ∈ Ω :

ζκ′(ζ)

κ(ζ)
≺ ϕ(ζ)

}
and

C(ϕ) =
{
κ ∈ Ω :

(ζκ′(ζ))′

κ′(ζ)
≺ ϕ(ζ)

}
.

Specializing the choices of ϕ in the class, S∗(ϕ) reduces to subclasses of starlike
univalent functions that are introduced in the literature. For example, S∗(

√
1 + ζ) := S∗

L
is the

class of functions κ(ζ) that map D onto the region bounded by lemniscate of Bernoulli [27],
which is symmetric around the real axis. Forϕ(ζ) = (1 + sζ)2, 0 < s ≤ 1√

2
, the class S∗(ϕ)
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reduces to STL(s), which consists of starlike functions associated with symmetric Limaçon
domain. This Limaçon is also symmetric around the real axis, see [28]. Closely related to
this class, Sokół [29] introduced the class S∗

L
(c), defined as

S∗
L
(c) =

{
κ ∈ Ω :

∣∣∣∣∣
(
ζκ′(ζ)

κ(ζ)

)2

− 1

∣∣∣∣∣ < c , c ∈ (0, 1], ζ ∈ D
}

.

Similarly , for ϕ(ζ) = ((1 + ζ)/(1− ζ))η , 0 < η ≤ 1, we have the class S∗
η

of strongly
starlike functions [2,3]. This class is equivalently defined as

S∗
η
=

{
κ ∈ Ω :

∣∣∣∣∣ arg
(
ζκ′(ζ)

κ(ζ)

)∣∣∣∣∣ < ηπ

2
, ζ ∈ D

}
.

Additionally, with ϕ(ζ) := p,(ζ), where p,(ζ) is defined in [30,31], we have the
classes ,-UC and ,-US∗ of ,-uniformly convex and corresponding ,-starlike functions,
respectively, which are defined as

,−UC =

{
κ ∈ Ω : Re

(
(ζκ′(ζ))′

κ′(ζ)

)
> ,

∣∣∣∣∣ (ζκ′(ζ))′κ′(ζ)
− 1

∣∣∣∣∣ , , ≥ 0, ζ ∈ D
}

,

,−US∗ =

{
κ ∈ Ω : Re

(
ζκ′(ζ)

κ(ζ)

)
> ,

∣∣∣∣∣ζκ′(ζ)κ(ζ)
− 1

∣∣∣∣∣ , , ≥ 0, ζ ∈ D
}

.

In particular for ,= 0, these classes reduce to the well-known classes C and S∗ of
convex and starlike functions, respectively. Forϕ(ζ) = (1+ ζ)/(1− δζ) with δ = 1− 1/M,
M > 1/2, Janowski [32] introduced the class S∗M, which is equivalently defined as

S∗M =

{
κ ∈ Ω :

∣∣∣∣∣ζκ′(ζ)κ(ζ)
−M

∣∣∣∣∣ < M , ζ ∈ D
}

.

Recently, Liu et al. [33] introduced and studied the class S∗
L
(λ) for which ϕ(ζ) =

(1 + ζ)λ, 0 < λ < 1 whose geometric characterization was studied by Masih et al. [34]. For
more information regarding other choices of ϕ, one may see [35–39]. For a detailed list of
such functions ϕ that give symmetric geometrical structures, we refer to [40,41] and the
references therein.

The concept of radius results or problems is one of the most fascinating geometric
properties of the subclasses of the Shanmugam or Ma and Minda classes. Let Q be a set of
functions and P be a property that Qmay or may not have in Dr := {ζ ∈ C : |ζ| < r, 0 <
r < 1}. Denoted by RP (Q) is the radius for the property P in the set Q, and is the largest
R such that every function in Q has the property P in each Dr for every r < R. In this
direction, Sokół [42] obtained a sharp radius relationship between the classes C,S∗

η
, S∗M,

,-US∗ and S∗
L

. Further, Cang and Liu [43] established the radius of inclusion for a certain
geometric expression associated with the class S∗

L
. Recently, Saliu et al. [38] also obtained

the radius relationship of the ratio of analytic functions related with limacon functions. On
this note, Bano and Raza [44] obtained several radius results for the subclasses of starlike
functions associated with the limacon class.

Motivated principally by the works of Sokół [42], Cang and Liu [43] and Masih
et al. [34], we obtained the sharp radius of inclusions for the classes C,S∗

η
, S∗M, ,-US∗, ,-UC

and S∗
L

associated with the class S∗
L
(λ). Additionally, some sharp radius results are derived

for certain geometric expressions related with S∗
L
(λ).
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2. Main Results

Theorem 1. Let κ ∈ S∗
L
(λ). Then,

(a) κ ∈ S∗M in the disc

|ζ| < rλ(M) :=


(2M)

1
λ − 1, 1

2 < M < 2λ−1

1, M ≥ 2λ−1 ,

(2)

(b) κ ∈ S∗
η

in the disc

|ζ| < sin
(ηπ

2λ

)
,

(c) κ ∈ γ−US∗ in the disc

|ζ| < rλ(γ) := 1−
(

γ

1 + γ

) 1
λ

,

(d) κ ∈ γ−UC in the disc |ζ| < rλ(γ), where rλ(γ) is the smallest positive root of the equation

(1− x)λ − λx
1− x

− γ

1 + γ
= 0,

(e) κ ∈ S∗
L
(c) in the disc

|ζ| < rλ(c) := (1 + c)
1

2λ − 1.

All these radii cannot be improved since the function

κ0(ζ) =ζ exp

( ∫ ζ

0

(1 + t)λ − 1
t

dt

)

=ζ+ λζ2 +

(
3λ2 − λ

4

)
ζ3 +

(
17λ3 − 15λ2 + 4λ

36

)
ζ4 + · · · (3)

plays the role of an extremal function.

Proof. Consider
ζκ′(ζ)

κ(ζ)
=
(

1 + ϑ(reiθ)
)λ

, 0 ≤ θ ≤ 2π, (4)

where ϑ is analytic in D with ϑ(0) = 0 and |ϑ(ζ)| < 1. Then,

(a) for κ to be in S∗M, we must have∣∣∣∣∣(1 + ϑ(reiθ)
)λ
−M

∣∣∣∣∣ < M. (5)

An obvious geometric observation shows that (1 + r)λ < 2M is sufficient for (5).
Thus, we obtain (2). For the sharpness, consider the function κ0(ζ) in (3). Then, at
ζ = rλ(M), ∣∣∣∣∣ζκ′0(ζ)κ0(ζ)

−M

∣∣∣∣∣ =
∣∣∣∣∣(1 + ζ)λ −M

∣∣∣∣∣ = M. (6)

(b) κ ∈ S∗
η

if ∣∣∣∣∣ arg
(

1 + ϑ(reiθ)
)λ∣∣∣∣∣ < ηπ

2
. (7)
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Recall that | arg(1 + ζ)| ≤ arcsin r, see [45]. Thus, the condition arcsin r < ηπ/2λ or
r < sin(ηπ/2λ) is sufficient for (7). For the sharpness, let η < λ and consider

ζ = sin
ηπ

2λ

[
cos
(ηπ

2λ
+

π

2

)
+ i sin

(ηπ

2λ
+

π

2

)]
with |ζ| = sin ηπ

2λ for κ0(ζ) such that∣∣∣∣∣ arg
(
ζκ′0(ζ)

κ0(ζ)

)∣∣∣∣∣ =
∣∣∣∣∣ arg

(
1 + ζ)

)λ∣∣∣∣∣
=

∣∣∣∣∣ arg
[
cos2 ηπ

2λ
+ i sin

ηπ

2λ
cos

ηπ

2λ

]λ∣∣∣∣∣
=

∣∣∣∣∣ arg
(

cos
ηπ

2λ

)λ
ei ηπ

2

∣∣∣∣∣
=

ηπ

2
.

(c) κ ∈ γ−US∗ if

Re
(

1 + ϑ(reiθ)
)λ

> γ

∣∣∣∣∣(1 + ϑ(reiθ)
)λ
− 1

∣∣∣∣∣
≥ γ− γRe

(
1 + ϑ(reiθ)

)λ
,

that is

Re
(

1 + ϑ(reiθ)
)λ

>
γ

γ+ 1
. (8)

Since Re
(

1 + ϑ(reiθ)
)λ
≥ (1− r)λ, we see that condition (8) will be satisfied if

(1− r)λ >
γ

γ+ 1
.

Hence, r < 1− (γ/(γ+ 1))
1
λ . To establish the sharpness, we consider κ0 at ζ = −rλ(γ),

and have

Re
(
ζκ′0(ζ)

κ0(ζ)

)
= Re

[
1−

(
1−

(
γ

γ+ 1

) 1
λ

)]λ
=

γ

γ+ 1

and

γ

∣∣∣∣1− ζκ′0(ζ)κ0(ζ)

∣∣∣∣ = γ

∣∣∣∣∣∣1−
[

1−
(

1−
(

γ

γ+ 1

) 1
λ

)]λ∣∣∣∣∣∣ = γ

γ+ 1
.

Thus,

Re
(
ζκ′0(ζ)

κ0(ζ)

)
= γ

∣∣∣∣ζκ′0(ζ)κ0(ζ)
− 1
∣∣∣∣.

(d) From (4), a computation gives

(ζκ′(ζ))′

κ′(ζ)
= (1 + ϑ(ζ))λ +

λζϑ′(ζ)

1 + ϑ(ζ)
.
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Therefore, κ ∈ γ−UC if

Re
(
(1 + ϑ(ζ))λ +

λζϑ′(ζ)

1 + ϑ(ζ)

)
> γ

∣∣∣∣∣(1 + ϑ(ζ))λ +
λζϑ′(ζ)

1 + ϑ(ζ)
− 1

∣∣∣∣∣
≥ γ− γRe

(
(1 + ϑ(ζ))λ +

λζϑ′(ζ)

1 + ϑ(ζ)

)
,

that is

Re
(
(1 + ϑ(ζ))λ +

λζϑ′(ζ)

1 + ϑ(ζ)

)
>

γ

γ+ 1
. (9)

By the Schwarz Pick lemma [46] (Vol. I, p. 84), we have

∣∣ϑ′(ζ)∣∣ ≤ 1− |ϑ(ζ)|2
1− |ζ|2 , (10)

we have

Re
(
(1 + ϑ(ζ))λ +

λζϑ′(ζ)

1 + ϑ(ζ)

)
≥ Re(1 + ϑ(ζ))λ − λ|ζ||ϑ

′(ζ)|
1− |ϑ(ζ)|

≥ (1− r)λ − λr(1− |ϑ(ζ)|2)
(1− |ϑ(ζ)|)(1− |ζ|2)

≥ (1− r)λ − λr(1 + |ζ|)
1− |ζ|2 ,

that is

Re
(
(1 + ϑ(ζ))λ +

λζϑ′(ζ)

1 + ϑ(ζ)

)
> (1− r)λ − λr

1− r
.

Thus, we see that condition (9) will be satisfied if

(1− r)λ − λr
1− r

>
γ

γ+ 1
.

So, the function

g(r) := (1− r)λ − λr
1− r

− γ

γ+ 1

is decreasing in (0, 1) and g(0) = 1/(γ+ 1). Hence, κ ∈ γ−UC in the disc |ζ| < rλ(γ).
Consider the function κ0(ζ) at ζ = −rλ(γ), we have

Re
(ζκ′0(ζ))

′

κ′0(ζ)
= (1 + ζ)λ +

λζ

1 + ζ
=

γ

γ+ 1
= γ

∣∣∣∣∣1− (ζκ′0(ζ))
′

κ′0(ζ)

∣∣∣∣∣,
where

γ

∣∣∣∣∣1− (ζκ′0(ζ))
′

κ′0(ζ)

∣∣∣∣∣ = γ

∣∣∣∣1−((1− rλ(γ))λ −
λrλ(γ)

1− rλ(γ)

)∣∣∣∣ = γ

∣∣∣∣1− γ

γ+ 1

∣∣∣∣ = γ

γ+ 1
.

This shows that the radius is sharp.
(e) κ ∈ S∗

L
(c) if ∣∣∣∣∣(1 + ϑ(reiθ)

)2λ
− 1

∣∣∣∣∣ < c,

which implies ∣∣∣∣∣(1 + ϑ(reiθ)
)λ∣∣∣∣∣ < √1 + c, (11)
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It is easy to see that the inequality

(1 + r)λ <
√

1 + c

is sufficient for (11). Thus, we have the required result. To establish the sharpness, we
consider κ0 at ζ = rλ(c) such that∣∣∣∣∣

(
ζκ′0(ζ)

κ0(ζ)

)2λ

− 1

∣∣∣∣∣ =
∣∣∣∣∣(1 + rλ(c)

)2λ
− 1

∣∣∣∣∣ = c.

Remark 1. When we choose λ = 1/2 in Theorem 1, results (a)− (c) reduce to the one obtained
by Sokół [42]. For γ = 0, (d) becomes the radius of convexity for the class S∗

L
(λ). Furthermore,

for λ = 1/2, (d) gives the radius of convexity for the class S∗
L

of the lemniscate of Bernoulli [27].
Additionally, for λ = 1/2, (e) illustrates the radius of inclusion between the classes S∗

L
and S∗

L
(c).

Theorem 2. Let p be analytic in D with p(0) = 1. Let 0 ≤ α ≤ 1, 0 ≤ β ≤ 1 such that
αλ+ (1− α) + (1− β) > 2

√
(1− α)(1− β), 0 < λ < 1. If p(ζ) ≺ (1 + ζ)λ, then

Re

(
(1− α)p

1
λ (ζ) + α

(
1 +

ζp′(ζ)
p(ζ)

))
> β (12)

in the disc |ζ| < rλ(α, β), where

rλ(α, β) =
2(1− β)

αλ+ (1− α) + (1− β) +
√
(αλ+ (1− α) + (1− β))2 − 4(1− α)(1− β)

. (13)

This result cannot be improved.

Proof. Let p(ζ) = (1 + ζϑ(ζ))λ, where ζϑ(ζ) is a Schwarz function with |ϑ(ζ)| < 1 for all
ζ ∈ D. Then, p

1
λ = 1 + ζϑ(ζ) := u + iv. We have that ζϑ(ζ) = u− 1 + iv, and so

1− r ≤ u ≤ 1 + r, r = |ζ|. (14)

A computation gives

ζp′(ζ)
p(ζ)

=
λζ(ϑ(ζ))

1 + ζϑ(ζ)
+
λζ2ϑ′(ζ)

1 + ζϑ(ζ)
.

Therefore,

Re

(
(1− α)p

1
λ (ζ) + α

(
1 +

ζp′(ζ)
p(ζ)

))
= Re

[
(1− α)(1 + ζϑ(ζ)) + α

(
1 +

λζϑ(ζ)

1 + ζϑ(ζ)
+
λζ2ϑ′(ζ)

1 + ζϑ(ζ)

)]

≥ (1− α)u + α(1 + λ)− αλRe
(

1
u + iv

)
− αλr2|ϑ′(ζ)|
|u + iv|

≥ (1− α)u + α(1 + λ)− αλu
u2 + v2 −

αλr2(1− |ϑ(ζ)|2)
(1− r2)(u2 + v2)

1
2

= (1− α)u + α(1 + λ)− αλu
u2 + v2 +

αλ
(
v2 + (u− 1)2 − r2)

(1− r2)(u2 + v2)
1
2

:= G(u, v),
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where we have used (10). Thus,

∂G
∂v

=
2αλuv

(u2 + v2)2 +
2αλv

(1− r2)(u2 + v2)
1
2
−

αλ
(
v2 + (u− 1)2 − r2)v
(1− r2)(u2 + v2)

3
2

and clearly ∂G
∂v = 0 at v = 0. So, at v = 0, we have

∂2G
∂v2 =

2αλ

u3 +
2αλ

(1− r2)u
−

αλ
(

u− (1 + r)
)(

u− (1− r)
)

(1− r2)u3 > 0 ,

where we have used (14). This shows that G(u, v) experiences its minimum value at v = 0.
Thus,

G(u, v) ≥ G(u, 0) = (1− α)u + α(1 + λ)− αλ

u
+

αλ
(
(u− 1)2 − r2)
(1− r2)u

=

[
(1− r2)(1− α) + λα

]
u−

[
(1 + λ)r2 − (1− λ)

]
α

1− r2

:= H(u)

and
dH
du

= 1− α +
αλ

1− r2 > 0,

which indicates that H(u) is increasing on the close interval [1− r, 1 + r]. Thus,

H(u) ≥ H(1− r) =
(1− α)(1− r)2 + α(1 + λ)(1− r)− αλ

1− r
.

We need to show that

(1− α)(1− r)2 + α(1 + λ)(1− r)− αλ

1− r
− β > 0,

that is
(1− α)r2 − ((λ− 1)α + 2− β)r + 1− β

1− r
> 0,

which is possible if

(1− α)r2 − ((λ− 1)α + 2− β)r + 1− β > 0. (15)

Let T(r) be the left side of (15), then T(0)T(1) < 0. By the intermediate value theorem,
there exists r = rλ(α, β) such that

(1− α)r2 − ((λ− 1)α + 2− β)r + 1− β = 0,

which gives the required result. For the sharpness, we let p(ζ) = (1 + ζ)λ and at
ζ = −rλ(α, β),

(1− α)p
1
λ (ζ) + α

(
1 +

ζp′(ζ)
p(ζ)

)
= (1− α)(1− rλ(α, β)) + α

(
1− λrλ(α, β)

1− rλ(α, β)

)
= β.

Setting p(ζ) = ζκ′(ζ)/κ(ζ) for κ ∈ Ω, we have the following result.
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Corollary 1. Let κ ∈ S∗
L

. Then,

Re

[
(1− α)

(
ζκ′(ζ)

κ(ζ)

) 1
λ

+ α

(
1 +

(ζκ′(ζ))′

κ′(ζ)
− ζκ

′(ζ)

κ(ζ)

)]
> β

in the disc given in Theorem 2.

Remark 2. For α = 1, β = 0 in Corollary 1, we obtain the radius of convexity for the class κ ∈ S∗
L

given as

rλ =
1

λ+ 1
,

and with λ = 1/2, r = 2/3 ≈ 0.66667 is the radius of convexity for the class of lemniscate
of Bernoulli introduced by Sokół [27]. However, this result is slightly greater than the one
Sokół obtained.

Theorem 3. Let p be analytic in D with p(0) = 1. Let α > 0, 0 < β ≤ 1 and 0 < λ < 1. If
p(ζ) ≺ (1 + ζ)λ, then

Re
(

p
1
λ (ζ) + αζp′(ζ)

)
> β (16)

in the disc |ζ| < rλ(α, β), where rλ(α, β) is the smallest positive root of the equation

(1− x)2 − αλx(1− x)λ − (1− x)β = 0. (17)

This result is the best possible.

Proof. Following the initial procedure of Theorem 2, we arrive at

Re
(

p
1
λ (ζ) + αζp′(ζ)

)
= Re

[
1 + ζϑ(ζ) + αλζ

(
ζϑ′(ζ) + ϑ(ζ)

)
(1 + ζϑ(ζ))λ−1

]
= Re

[
1 + ζϑ(ζ) + αλ(1 + ζϑ(ζ))λ + αλ

(
ζ2ϑ′(ζ)− 1

)
(1 + ζϑ(ζ))λ−1

]
≥ u + αλuλ − αλ

∣∣∣ζ2ϑ′(ζ)− 1
∣∣∣ |1 + ζϑ(ζ)|λ−1

≥ u + αλuλ − αλ

(
r2 −

(
(u− 1)2 + v2)

1− r2 + 1

)(
u2 + v2

) λ−1
2

≥ u + αλuλ + αλ

(
(u− 1)2 + v2 − 1

1− r2

)(
u2 + v2

) λ−1
2

:= G(u, v),

where we have used (10). Then,

∂G
∂v

= αλv

(
(λ− 1)

(
(u− 1)2 + v2 − 1

1− r2

)(
u2 + v2

) λ−3
2

+
2
(
u2 + v2) λ−1

2

1− r2

)
= 0

for v = 0. Thus,

∂2G(u, 0)
∂v2 = αλ

(
(λ− 1)uλ−2(u− 2) + 2uλ−1

1− r2

)
> 0.

This shows that G(u, v) assumes its minimum value at v = 0. Therefore,

G(u, v) ≥ G(u, 0) = u + αλuλ

(
1 +

u− 2
1− r2

)
:= H(u),
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and

dH
du

= 1 + αλ2uλ−1
(

u− (1 + r2)

1− r2

)
+

αλuλ

1− r2

≥ 1 + αλ2uλ

(
u− (1 + r)
u(1− r2)

)
+

αλuλ

1− r2

≥ 1− 2rαλ2(1− r)λ−1

(1 + r)2 +
αλ(1− r)λ−1

(1 + r)

= 1 +
αλ(1− r)λ−1

1 + r

(
1− 2rλ

1 + r

)
> 1 +

αλ(1− r)λ−1

1 + r
(1− λ) > 0.

This shows that H(u) is an increasing function of u in [1− r, 1 + r], and so

H(u) ≥ H(1− r) =
(1− r)2 − αλr(1− r)λ

1− r
.

To prove our result, it is enough to show that

(1− r)2 − αλr(1− r)λ

1− r
> β,

that is
(1− r)2 − αλr(1− r)λ − (1− r)β > 0, (18)

Let T(r) be left side of (18) and consider ε > 0 with ε < β. Then (0, 1− ε] ⊂ (0, 1).
Therefore, T(0) = 1 − β ≥ 0 and T(1 − ε) = ε(ε − β) − αλ(1 − ε)ελ < 0 such that
T(0)T(1− ε) ≤ 0. Thus, there exists r ∈ (0, 1− ε] such that

(1− r)2 − αλr(1− r)λ − (1− r)β = 0,

and hence, we have the desired result. For the sharpness, consider the function p(ζ) = (1 + ζ)λ.
Then, at ζ = −rλ(α, β), we have

p
1
λ (ζ) + αζp′(ζ) = 1 + ζ+ αλz(1 + ζ)λ−1

∣∣∣
ζ=−rλ(α,β)

= β.

When we set p(ζ) = κ′, α = 1, β = 1 and λ = 1/2 in Theorem 3, we arrive at the
following result.

Corollary 2. Let κ′(ζ) ≺ (1 + ζ)λ. Then

Re
((
κ′(ζ)

) 1
2 − 1 + ζκ′′(ζ)

)
> 0

in the disc |ζ| < 3/4.

3. Conclusions

We have considered the function ϕ defined by ϕ(ζ) = (1 + ζ)λ, 0 < λ < 1, which
maps the open unit disk to a symmetric domain and by using this function, we have studied
the class of strongly starlike functions. Hence, certain sharp radius results for a family of
starlike functions were found.
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