A Shuffled Frog-Leaping Algorithm with Cooperations for Distributed Assembly Hybrid-Flow Shop Scheduling with Factory Eligibility
Abstract
1. Introduction
2. Problem Description
3. CSFLA for DAHFSP with Factory Eligibility
3.1. Initialization
| Algorithm 1 Decoding |
|
3.2. Two Cooperations in the Search Process of Group 1
| Algorithm 2 Cooperation within group 1 |
|
| Algorithm 3 Reinforcement search process in group 1 |
|
3.3. Cooperation-Based Search Process of Group 2
| Algorithm 4 Cooperation-based search process of group 2 |
|
3.4. Algorithm Description
| Algorithm 5 CSFLA |
|
4. Computational Experiments
4.1. Test Instances and Comparative Algorithms
4.2. Parameter Settings
4.3. Results and Discussions
5. Conclusions and Future Topics
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
| SDST | sequence-dependent setup time |
| the best solution of population | |
| the start time of the fabfication of at stage l in factory f | |
| the end time of the fabfication of at stage l in factory f | |
| the start time of transportation of producth i in factory f | |
| the end time of transportation of producth i in factory f | |
| the start time of assembly of product i in factory f | |
| the end time of assembly of product i in factory f | |
| U | a large positive number |
| decision variable, if is allocated in factory f, = 1; | |
| otherwise = 0 | |
| decision variable, if is allocated in , = 1; | |
| otherwise = 0 | |
| decision variable, if is processed before at stage l in factory f, | |
| = 1; otherwise = 0 | |
| decision variable, if product i is transported by , = 1; otherwise = 0 | |
| decision variable, if product i is transported before product in factory f, = 1; | |
| otherwise = 0 | |
| decision variable, if product i is assembled before product in factory f, = 1; | |
| otherwise = 0 | |
| decision variable, if product i is assembled by , = 1; otherwise = 0 |
References
- Hao, J.H.; Li, J.Q.; Du, Y.; Song, M.X.; Duan, P.; Zhang, Y.Y. Solving distributed hybrid flowshop scheduling problems by a hybrid brain storm optimization algorithm. IEEE Access 2019, 7, 68879–68894. [Google Scholar] [CrossRef]
- Zheng, J.; Wang, L.; Wang, J.J. A cooperative coevolution algorithm for multi-objective fuzzy distributed hybrid flow shop. Knowl. Based Syst. 2020, 194, 105536. [Google Scholar] [CrossRef]
- Shao, W.S.; Shao, Z.S.; Pi, D.C. Modeling and multi-neighborhood iterated greedy algorithm for distributed hybrid flow shop scheduling problem. Knowl. Based Syst. 2020, 194, 105527. [Google Scholar] [CrossRef]
- Shao, W.S.; Shao, Z.S.; Pi, D.C. Effective constructive heuristics for distributed no-wait flexible flow shop scheduling problem. Comput. Oper. Res. 2021, 136, 105482. [Google Scholar] [CrossRef]
- Shao, W.S.; Shao, Z.S.; Pi, D.C. Multi-objective evolutionary algorithm based on multiple neighborhoods local search for multi-objective distributed hybrid flow shop scheduling problem. Expert Syst. Appl. 2021, 183, 115453. [Google Scholar] [CrossRef]
- Li, Y.L.; Li, X.Y.; Gao, L.; Zhang, B.; Pan, Q.K.; Tasgetiren, F.; Meng, L.L. A discrete artificial bee colony algorithm for distributed hybrid flowshop scheduling problem with sequence-dependent setup times. Int. J. Prod. Res. 2021, 59, 3880–3899. [Google Scholar] [CrossRef]
- Wang, J.J.; Wang, L. A cooperative memetic algorithm with learning-based agent for energy-aware distributed hybrid flow-shop scheduling. IEEE Trans. Evol. Comput. 2022, 26, 461–475. [Google Scholar] [CrossRef]
- Geng, K.F.; Ye, C.M. A memetic algorithm for energy-efficient distributed re-entrant hybrid flow shop scheduling problem. J. Intell. Fuzzy Syst. 2021, 41, 3951–3971. [Google Scholar] [CrossRef]
- Qin, H.; Li, T.; Teng, Y.; Wang, K. Integrated production and distribution scheduling in distributed hybrid flow shops. Memet. Comput. 2021, 13, 185–202. [Google Scholar] [CrossRef]
- Shao, Z.S.; Shao, W.S.; Pi, D.C. A learning-Based Selection Hyper-Heuristic for Distributed Heterogeneous Hybrid Blocking Flow-shop Scheduling. IEEE Trans. Emerg. Top. Comput. Intell. 2022. Available online: https://ieeexplore.ieee.org/abstract/document/9782097 (accessed on 22 February 2023). [CrossRef]
- Qin, H.X.; Han, Y.Y. A collaborative iterative greedy algorithm for the scheduling of distributed heterogeneous hybrid flow shop with blocking constraints. Expert Syst. Appl. 2022, 201, 117256. [Google Scholar] [CrossRef]
- Cai, J.C.; Lei, D.M.; Wang, J.; Wang, L. A novel shuffled frog-leaping algorithm with reinforcement learning for distributed assembly hybrid flow shop scheduling. Int. J. Prod. Res. 2022. Available online: https://www.tandfonline.com/doi/abs/10.1080/00207543.2022.2031331 (accessed on 22 February 2023). [CrossRef]
- Ying, K.C.; Lin, S.W. Minimizing makespan for the distributed hybrid flowshop scheduling problem with multiprocessor tasks. Expert Syst. Appl. 2018, 92, 132–141. [Google Scholar] [CrossRef]
- Cai, J.C.; Zhou, R.; Lei, D.M. Dynamic shuffled frog-leaping algorithm for distributed hybrid flow shop scheduling with multiprocessor tasks. Eng. Appl. Artif. Intell. 2020, 90, 103540. [Google Scholar] [CrossRef]
- Jiang, E.D.; Wang, L.; Wang, J.J. Decomposition-based multi-objective optimization for energy-aware distributed hybrid flow shop scheduling with multiprocessor tasks. Tsinghua Sci. Technol. 2021, 26, 646–663. [Google Scholar] [CrossRef]
- Li, Y.L.; Li, X.Y.; Gao, L.; Meng, L.L. An improved artificial bee colony algorithm for distributed heterogeneous hybrid flow-shop scheduling problem with sequence-dependent setup times. Comput. Ind. Eng. 2020, 147, 106638. [Google Scholar] [CrossRef]
- Cai, J.C.; Lei, D.M.; Li, M. A shuffled frog-leaping algorithm with memeplex quality for bi-objective distributed scheduling in hybrid flow shop. Int. J. Prod. Res. 2021, 59, 5404–5421. [Google Scholar] [CrossRef]
- Lei, D.M.; Wang, T. Solving distributed two-stage hybrid flow-shop scheduling using a shuffled frog-leaping algorithm with memeplex grouping. Eng. Optimiz. 2020, 52, 1461–1474. [Google Scholar] [CrossRef]
- Lei, D.M.; Xi, B.J. Diversified teaching-learning-based optimization for fuzzy two-stage hybrid flow shop scheduling with setup time. J. Intell. Fuzzy Syst. 2021, 41, 4159–4173. [Google Scholar] [CrossRef]
- Hatami, S.; Ruiz, R.; Carlos, A.R. The distributed assembly permutation flowshop scheduling problem. Int. J. Prod. Res. 2013, 51, 5292–5308. [Google Scholar] [CrossRef]
- Xiong, F.L.; Xing, K.Y.; Wang, F.; Lei, H.; Han, L.B. Minimizing the total completion time in a distributed two stage assembly system with setup times. Comput. Oper. Res. 2014, 47, 92–105. [Google Scholar] [CrossRef]
- Zhang, G.H.; Xing, K.Y. Memetic social spider optimization algorithm for scheduling two-stage assembly flowshop in a distributed environment. Comput. Ind. Eng. 2018, 125, 423–433. [Google Scholar] [CrossRef]
- Zhang, Z.Q.; Qian, B.; Hu, R.; Jin, H.P.; Wang, L. A matrix-cube-based estimation of distribution algorithm for the distributed assembly permutation flow-shop scheduling problem. Swarm Evol. Comput. 2021, 60, 100785. [Google Scholar] [CrossRef]
- Wang, J.; Lei, D.M.; Cai, J.C. An adaptive artificial bee colony with reinforcement learning for distributed three-stage assembly scheduling with maintenance. Appl. Soft. Comput. 2022, 117, 108371. [Google Scholar] [CrossRef]
- Huang, J.L.; Gu, X.S. Distributed assembly permutation flow-shop scheduling problem with sequence-dependent set-up times using a novel biogeography-based optimization algorithm. Eng. Optimiz. 2022, 54, 593–613. [Google Scholar] [CrossRef]
- Eusuff, M.; Lansey, K.; Pasha, F. Shuffled frog-leaping algorithm: A memetic meta-heuristic for discrete optimization. Eng. Optimiz. 2006, 38, 129–154. [Google Scholar] [CrossRef]
- Cai, J.C.; Lei, D.M. A cooperated shuffled frog-leaping algorithm for distributed energy-efficient hybrid flow shop scheduling with fuzzy processing time. Complex Intell. Syst. 2021, 7, 2235–2253. [Google Scholar] [CrossRef]
- Rahimi-Vahed, A.; Mirzaei, A.H. Solving a bi-criteria permutation flow-shop problem using shuffled frog-leaping algorithm. Soft Comput. 2008, 12, 435–452. [Google Scholar] [CrossRef]
- Pan, Q.K.; Wang, L.; Gao, L.; Li, J.Q. An effective shuffled frog-leaping algorithm for lot-streaming flow shop scheduling problem. Int. J. Adv. Manuf. Technol. 2011, 52, 699–713. [Google Scholar] [CrossRef]
- Xu, Y.; Wang, L.; Wang, S.Y.; Liu, M. An effective shuffled frog-leaping algorithm for solving the hybrid flow-shop scheduling problem with identical parallel machines. Eng. Optimiz. 2013, 45, 1409–1430. [Google Scholar] [CrossRef]
- Wang, L.; Li, D.D. Fuzzy distributed hybrid flow shop scheduling problem with heterogeneous factory and unrelated parallel machine: A shuffled frog leaping algorithm with collaboration of multiple search strategies. IEEE Access. 2020, 8, 191191–191203. [Google Scholar] [CrossRef]
- Li, X.; Luo, J.P.; Chen, M.R.; Wang, N. An improved shuffled frog-leaping algorithm with extremal optimisation for continuous optimisation. Inf. Sci. 2012, 192, 143–151. [Google Scholar] [CrossRef]
- Zhang, X.X.; Ji, Z.C.; Wang, Y. An improved SFLA for flexible job shop scheduling problem considering energy consumption. Mod. Phys. Lett. B 2018, 32, 1840112. [Google Scholar] [CrossRef]
- Zhang, H.; Liu, S.; Moraca, S.; Ojstersek, R. An effective use of hybrid metaheuristics algorithm for job shop scheduling problem. Int. J. Simul. Model. 2018, 16, 644–657. [Google Scholar] [CrossRef]
- Kong, M.; Liu, X.B.; Pei, J.; Pardalos, P.M.; Mladenovic, N. Parallel-batching scheduling with nonlinear processing times on a single and unrelated parallel machines. J. Glob. Optim. 2020, 78, 693–715. [Google Scholar] [CrossRef]
- Xu, Y.; Wang, L.; Liu, M.; Wang, S.Y. An effective shuffled frog-leaping algorithm for hybrid flow-shop scheduling with multiprocessor tasks. Int. J. Adv. Manuf. Technol. 2013, 68, 1529–1537. [Google Scholar] [CrossRef]
- Zhang, G.H.; Xing, K.Y.; Cao, F. Scheduling distributed flowshops with flexible assembly and set-up time to minimise makespan. Int. J. Prod. Res. 2018, 56, 3226–3244. [Google Scholar] [CrossRef]
- Komaki, G.M.; Teymourian, E.; Kayvanfar, V.; Booyavi, Z. Improved discrete cuckoo optimization algorithm for the three-stage assembly flowshop scheduling problem. Comput. Ind. Eng. 2017, 105, 158–173. [Google Scholar] [CrossRef]
- Li, Q.H.; Li, J.Q.; Zhang, Q.K.; Duan, P.; Meng, T. An improved whale optimisation algorithm for distributed assembly flow shop with crane transportation. Int. J. Autom. Control. 2021, 15, 710–743. [Google Scholar] [CrossRef]
- Montgomery, D.C. Design and Analysis of Experiments; Wiley: Hoboken, NJ, USA, 2008. [Google Scholar]




| Product i | |||
|---|---|---|---|
| Factory 1: /Factory 2: | Factory 1: /Factory 2: | ||
| 1 | 4 | 25/21 | 54/58 |
| 2 | 2 | 34/38 | 92/100 |
| 3 | 3 | 49/55 | 19/29 |
| 4 | 2 | 88/84 | 37/39 |
| 5 | 4 | 95/96 | 36/41 |
| Product i | 1 | 2 | 3 | 4 | 5 | |||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 | 2 | 3 | 4 | 1 | 2 | 1 | 2 | 3 | 1 | 2 | 1 | 2 | 3 | 4 | ||
| Factory 1: | 43 | 93 | 22 | 19 | 40 | 75 | 70 | 68 | 36 | 41 | 34 | 73 | 45 | 43 | 50 | |
| 54 | 83 | 47 | 96 | 34 | 41 | 43 | 100 | 95 | 49 | 25 | 69 | 57 | 78 | 33 | ||
| Factory 2: | 55 | 87 | 24 | 20 | 48 | 72 | 73 | 66 | 42 | 44 | 23 | 74 | 42 | 54 | 48 | |
| 46 | 91 | 48 | 92 | 27 | 39 | 49 | 94 | 99 | 42 | 34 | 65 | 42 | 69 | 45 | ||
| Parameters | Factor Level | |||
|---|---|---|---|---|
| 1 | 2 | 3 | 4 | |
| N | 60 | 90 | 120 | 150 |
| s | 5 | 6 | 10 | 15 |
| 30 | 40 | 50 | 60 | |
| T | 2 | 3 | 4 | 5 |
| V | 3 | 4 | 5 | 6 |
| Instance | CSFLA | SFLA | IDCOA | HVNS | IWOA | Instance | CSFLA | SFLA | IDCOA | HVNS | IWOA |
|---|---|---|---|---|---|---|---|---|---|---|---|
| 20 × 2 × 2 | 664.0 | 722.0 | 689.0 | 699.0 | 702.0 | 60 × 4 × 2 | 1033.0 | 1148.0 | 1055.0 | 1078.0 | 1098.0 |
| 20 × 2 × 4 | 1071.0 | 1161.0 | 1099.0 | 1105.0 | 1103.0 | 60 × 4 × 4 | 1651.0 | 1798.0 | 1687.0 | 1719.0 | 1757.0 |
| 20 × 2 × 6 | 1351.0 | 1418.0 | 1372.0 | 1377.0 | 1399.0 | 60 × 4 × 6 | 1229.0 | 1381.0 | 1264.0 | 1319.0 | 1338.0 |
| 20 × 2 × 8 | 1499.0 | 1639.0 | 1537.0 | 1563.0 | 1574.0 | 60 × 4 × 8 | 1705.0 | 1840.0 | 1730.0 | 1760.0 | 1764.0 |
| 20 × 3 × 2 | 711.0 | 769.0 | 730.0 | 741.0 | 765.0 | 60 × 5 × 2 | 1172.0 | 1274.0 | 1186.0 | 1284.0 | 1260.0 |
| 20 × 3 × 4 | 903.0 | 994.0 | 932.0 | 922.0 | 953.0 | 60 × 5 × 4 | 1271.0 | 1399.0 | 1292.0 | 1313.0 | 1344.0 |
| 20 × 3 × 6 | 846.0 | 904.0 | 860.0 | 881.0 | 907.0 | 60 × 5 × 6 | 1483.0 | 1650.0 | 1537.0 | 1579.0 | 1628.0 |
| 20 × 3 × 8 | 1158.0 | 1245.0 | 1179.0 | 1174.0 | 1223.0 | 60 × 5 × 8 | 1609.0 | 1745.0 | 1619.0 | 1766.0 | 1706.0 |
| 20 × 4 × 2 | 405.0 | 455.0 | 414.0 | 426.0 | 434.0 | 80 × 2 × 2 | 3846.0 | 3915.0 | 3850.0 | 3895.0 | 3872.0 |
| 20 × 4 × 4 | 579.0 | 670.0 | 603.0 | 616.0 | 649.0 | 80 × 2 × 4 | 2624.0 | 2764.0 | 2627.0 | 2674.0 | 2719.0 |
| 20 × 4 × 6 | 816.0 | 872.0 | 841.0 | 849.0 | 844.0 | 80 × 2 × 6 | 3715.0 | 3910.0 | 3741.0 | 3767.0 | 3855.0 |
| 20 × 4 × 8 | 916.0 | 1001.0 | 917.0 | 946.0 | 969.0 | 80 × 2 × 8 | 4184.0 | 4421.0 | 4230.0 | 4247.0 | 4372.0 |
| 20 × 5 × 2 | 455.0 | 526.0 | 476.0 | 499.0 | 520.0 | 80 × 3 × 2 | 1446.0 | 1572.0 | 1480.0 | 1476.0 | 1537.0 |
| 20 × 5 × 4 | 608.0 | 694.0 | 617.0 | 668.0 | 659.0 | 80 × 3 × 4 | 1548.0 | 1675.0 | 1556.0 | 1611.0 | 1641.0 |
| 20 × 5 × 6 | 808.0 | 898.0 | 814.0 | 849.0 | 876.0 | 80 × 3 × 6 | 2603.0 | 2715.0 | 2610.0 | 2666.0 | 2690.0 |
| 20 × 5 × 8 | 874.0 | 955.0 | 882.0 | 918.0 | 908.0 | 80 × 3 × 8 | 2753.0 | 2933.0 | 2782.0 | 2800.0 | 2818.0 |
| 40 × 2 × 2 | 1356.0 | 1423.0 | 1362.0 | 1370.0 | 1407.0 | 80 × 4 × 2 | 1885.0 | 1944.0 | 1895.0 | 1962.0 | 1939.0 |
| 40 × 2 × 4 | 1887.0 | 1982.0 | 1902.0 | 1913.0 | 1950.0 | 80 × 4 × 4 | 1994.0 | 2155.0 | 2035.0 | 2093.0 | 2083.0 |
| 40 × 2 × 6 | 1629.0 | 1775.0 | 1655.0 | 1655.0 | 1737.0 | 80 × 4 × 6 | 2203.0 | 2437.0 | 2261.0 | 2324.0 | 2295.0 |
| 40 × 2 × 8 | 2285.0 | 2395.0 | 2323.0 | 2323.0 | 2380.0 | 80 × 4 × 8 | 2230.0 | 2388.0 | 2253.0 | 2372.0 | 2361.0 |
| 40 × 3 × 2 | 930.0 | 1031.0 | 951.0 | 944.0 | 961.0 | 80 × 5 × 2 | 978.0 | 1120.0 | 1010.0 | 1028.0 | 1067.0 |
| 40 × 3 × 4 | 1427.0 | 1562.0 | 1456.0 | 1473.0 | 1502.0 | 80 × 5 × 4 | 1703.0 | 1864.0 | 1739.0 | 1782.0 | 1799.0 |
| 40 × 3 × 6 | 1568.0 | 1695.0 | 1583.0 | 1592.0 | 1626.0 | 80 × 5 × 6 | 1747.0 | 1946.0 | 1808.0 | 1886.0 | 1881.0 |
| 40 × 3 × 8 | 1564.0 | 1691.0 | 1571.0 | 1600.0 | 1623.0 | 80 × 5 × 8 | 1826.0 | 2011.0 | 1850.0 | 1942.0 | 1930.0 |
| 40 × 4 × 2 | 885.0 | 979.0 | 919.0 | 926.0 | 939.0 | 100 × 2 × 2 | 3080.0 | 3135.0 | 3086.0 | 3117.0 | 3136.0 |
| 40 × 4 × 4 | 1137.0 | 1219.0 | 1142.0 | 1188.0 | 1202.0 | 100 × 2 × 4 | 4874.0 | 4970.0 | 4866.0 | 4929.0 | 4936.0 |
| 40 × 4 × 6 | 1184.0 | 1282.0 | 1218.0 | 1239.0 | 1258.0 | 100 × 2 × 6 | 4711.0 | 4870.0 | 4755.0 | 4819.0 | 4822.0 |
| 40 × 4 × 8 | 1336.0 | 1497.0 | 1384.0 | 1428.0 | 1420.0 | 100 × 2 × 8 | 4866.0 | 5075.0 | 4891.0 | 4913.0 | 4986.0 |
| 40 × 5 × 2 | 635.0 | 724.0 | 673.0 | 690.0 | 706.0 | 100 × 3 × 2 | 2074.0 | 2226.0 | 2103.0 | 2105.0 | 2148.0 |
| 40 × 5 × 4 | 934.0 | 1084.0 | 966.0 | 973.0 | 1026.0 | 100 × 3 × 4 | 3189.0 | 3375.0 | 3216.0 | 3288.0 | 3287.0 |
| 40 × 5 × 6 | 1122.0 | 1283.0 | 1160.0 | 1162.0 | 1218.0 | 100 × 3 × 6 | 3035.0 | 3173.0 | 3070.0 | 3126.0 | 3101.0 |
| 40 × 5 × 8 | 1299.0 | 1462.0 | 1327.0 | 1332.0 | 1387.0 | 100 × 3 × 8 | 3591.0 | 3809.0 | 3664.0 | 3710.0 | 3752.0 |
| 60 × 2 × 2 | 1646.0 | 1749.0 | 1657.0 | 1676.0 | 1702.0 | 100 × 4 × 2 | 1613.0 | 1733.0 | 1650.0 | 1698.0 | 1670.0 |
| 60 × 2 × 4 | 2808.0 | 2920.0 | 2824.0 | 2863.0 | 2890.0 | 100 × 4 × 4 | 2568.0 | 2724.0 | 2580.0 | 2613.0 | 2647.0 |
| 60 × 2 × 6 | 3027.0 | 3195.0 | 3037.0 | 3065.0 | 3170.0 | 100 × 4 × 6 | 2676.0 | 2870.0 | 2709.0 | 2773.0 | 2772.0 |
| 60 × 2 × 8 | 2863.0 | 3001.0 | 2891.0 | 2927.0 | 2941.0 | 100 × 4 × 8 | 2526.0 | 2733.0 | 2572.0 | 2686.0 | 2693.0 |
| 60 × 3 × 2 | 2015.0 | 2096.0 | 2023.0 | 2047.0 | 2054.0 | 100 × 5 × 2 | 1869.0 | 2027.0 | 1880.0 | 1965.0 | 1889.0 |
| 60 × 3 × 4 | 2099.0 | 2278.0 | 2126.0 | 2148.0 | 2215.0 | 100 × 5 × 4 | 1374.0 | 1466.0 | 1399.0 | 1449.0 | 1419.0 |
| 60 × 3 × 6 | 2211.0 | 2339.0 | 2222.0 | 2273.0 | 2294.0 | 100 × 5 × 6 | 1684.0 | 1851.0 | 1738.0 | 1862.0 | 1765.0 |
| 60 × 3 × 8 | 2331.0 | 2457.0 | 2344.0 | 2378.0 | 2403.0 | 100 × 5 × 8 | 2205.0 | 2434.0 | 2252.0 | 2365.0 | 2312.0 |
| 120 × 2 × 2 | 3422.0 | 3479.0 | 3463.0 | 3433.0 | 3476.0 | 140 × 2 × 2 | 4265.0 | 4358.0 | 4364.0 | 4271.0 | 4321.0 |
| 120 × 2 × 4 | 5671.0 | 5720.0 | 5701.0 | 5683.0 | 5694.0 | 140 × 2 × 4 | 6415.0 | 6504.0 | 6590.0 | 6425.0 | 6507.0 |
| 120 × 2 × 6 | 5951.0 | 6040.0 | 6043.0 | 5954.0 | 6031.0 | 140 × 2 × 6 | 6614.0 | 6706.0 | 6677.0 | 6625.0 | 6665.0 |
| 120 × 2 × 8 | 5704.0 | 5787.0 | 5775.0 | 5712.0 | 5788.0 | 140 × 2 × 8 | 6533.0 | 6610.0 | 6600.0 | 6535.0 | 6622.0 |
| 120 × 3 × 2 | 2229.0 | 2253.0 | 2263.0 | 2202.0 | 2238.0 | 140 × 3 × 2 | 2563.0 | 2619.0 | 2609.0 | 2557.0 | 2600.0 |
| 120 × 3 × 4 | 2411.0 | 2496.0 | 2489.0 | 2444.0 | 2483.0 | 140 × 3 × 4 | 2698.0 | 2757.0 | 2773.0 | 2673.0 | 2758.0 |
| 120 × 3 × 6 | 3846.0 | 3997.0 | 3941.0 | 3802.0 | 3911.0 | 140 × 3 × 6 | 4638.0 | 4664.0 | 4690.0 | 4655.0 | 4673.0 |
| 120 × 3 × 8 | 4265.0 | 4428.0 | 4382.0 | 4272.0 | 4381.0 | 140 × 3 × 8 | 3438.0 | 3530.0 | 3569.0 | 3451.0 | 3526.0 |
| 120 × 4 × 2 | 1741.0 | 1785.0 | 1747.0 | 1771.0 | 1767.0 | 140 × 4 × 2 | 2002.0 | 2016.0 | 2035.0 | 1964.0 | 1988.0 |
| 120 × 4 × 4 | 2145.0 | 2238.0 | 2195.0 | 2146.0 | 2203.0 | 140 × 4 × 4 | 2425.0 | 2482.0 | 2433.0 | 2486.0 | 2481.0 |
| 120 × 4 × 6 | 2258.0 | 2378.0 | 2376.0 | 2272.0 | 2383.0 | 140 × 4 × 6 | 3517.0 | 3562.0 | 3619.0 | 3573.0 | 3588.0 |
| 120 × 4 × 8 | 3146.0 | 3209.0 | 3184.0 | 3150.0 | 3151.0 | 140 × 4 × 8 | 3839.0 | 3937.0 | 3912.0 | 3842.0 | 3915.0 |
| 120 × 5 × 2 | 2317.0 | 2358.0 | 2363.0 | 2329.0 | 2350.0 | 140 × 5 × 2 | 1904.0 | 1941.0 | 1915.0 | 1959.0 | 1925.0 |
| 120 × 5 × 4 | 2558.0 | 2606.0 | 2581.0 | 2616.0 | 2633.0 | 140 × 5 × 4 | 2875.0 | 2949.0 | 2954.0 | 2882.0 | 2952.0 |
| 120 × 5 × 6 | 2601.0 | 2608.0 | 2651.0 | 2585.0 | 2648.0 | 140 × 5 × 6 | 3142.0 | 3297.0 | 3198.0 | 3315.0 | 3211.0 |
| 120 × 5 × 8 | 2655.0 | 2690.0 | 2724.0 | 2747.0 | 2729.0 | 140 × 5 × 8 | 3245.0 | 3405.0 | 3359.0 | 3199.0 | 3317.0 |
| Instance | CSFLA | SFLA | IDCOA | HVNS | IWOA | Instance | CSFLA | SFLA | IDCOA | HVNS | IWOA |
|---|---|---|---|---|---|---|---|---|---|---|---|
| 20 × 2 × 2 | 691.0 | 790.0 | 726.0 | 760.0 | 824.0 | 60 × 4 × 2 | 1064.0 | 1218.0 | 1085.0 | 1238.0 | 1181.0 |
| 20 × 2 × 4 | 1099.0 | 1205.0 | 1124.0 | 1150.0 | 1225.0 | 60 × 4 × 4 | 1692.0 | 1923.0 | 1723.0 | 2223.0 | 1834.0 |
| 20 × 2 × 6 | 1374.0 | 1470.0 | 1414.0 | 1430.0 | 1458.0 | 60 × 4 × 6 | 1285.0 | 1452.0 | 1311.0 | 1495.0 | 1462.0 |
| 20 × 2 × 8 | 1554.0 | 1754.0 | 1600.0 | 1642.0 | 1735.0 | 60 × 4 × 8 | 1754.0 | 1924.0 | 1773.0 | 2236.0 | 1920.0 |
| 20 × 3 × 2 | 728.0 | 857.0 | 758.0 | 853.0 | 815.0 | 60 × 5 × 2 | 1239.0 | 1448.0 | 1241.0 | 1551.0 | 1304.0 |
| 20 × 3 × 4 | 938.0 | 1072.0 | 978.0 | 1116.0 | 1113.0 | 60 × 5 × 4 | 1289.0 | 1514.0 | 1328.0 | 1789.0 | 1451.0 |
| 20 × 3 × 6 | 895.0 | 1000.0 | 906.0 | 1054.0 | 1047.0 | 60 × 5 × 6 | 1532.0 | 1809.0 | 1568.0 | 2073.0 | 1725.0 |
| 20 × 3 × 8 | 1192.0 | 1354.0 | 1236.0 | 1285.0 | 1350.0 | 60 × 5 × 8 | 1663.0 | 1886.0 | 1698.0 | 1997.0 | 1807.0 |
| 20 × 4 × 2 | 425.0 | 493.0 | 438.0 | 476.0 | 465.0 | 80 × 2 × 2 | 3869.0 | 3986.0 | 3892.0 | 3960.0 | 4006.0 |
| 20 × 4 × 4 | 611.0 | 714.0 | 640.0 | 665.0 | 758.0 | 80 × 2 × 4 | 2655.0 | 2844.0 | 2691.0 | 2770.0 | 2818.0 |
| 20 × 4 × 6 | 844.0 | 1004.0 | 872.0 | 1020.0 | 1002.0 | 80 × 2 × 6 | 3765.0 | 3987.0 | 3791.0 | 3944.0 | 3953.0 |
| 20 × 4 × 8 | 954.0 | 1082.0 | 959.0 | 1103.0 | 1051.0 | 80 × 2 × 8 | 4262.0 | 4574.0 | 4295.0 | 4496.0 | 4508.0 |
| 20 × 5 × 2 | 487.0 | 611.0 | 523.0 | 672.0 | 571.0 | 80 × 3 × 2 | 1482.0 | 1674.0 | 1520.0 | 1784.0 | 1613.0 |
| 20 × 5 × 4 | 633.0 | 750.0 | 650.0 | 889.0 | 734.0 | 80 × 3 × 4 | 1581.0 | 1774.0 | 1610.0 | 1740.0 | 1727.0 |
| 20 × 5 × 6 | 838.0 | 988.0 | 890.0 | 1037.0 | 991.0 | 80 × 3 × 6 | 2648.0 | 2836.0 | 2664.0 | 2846.0 | 2740.0 |
| 20 × 5 × 8 | 909.0 | 1031.0 | 935.0 | 1090.0 | 1052.0 | 80 × 3 × 8 | 2817.0 | 3031.0 | 2843.0 | 2894.0 | 2947.0 |
| 40 × 2 × 2 | 1372.0 | 1483.0 | 1391.0 | 1471.0 | 1533.0 | 80 × 4 × 2 | 1909.0 | 2102.0 | 1942.0 | 2425.0 | 2124.0 |
| 40 × 2 × 4 | 1922.0 | 2061.0 | 1930.0 | 2013.0 | 2046.0 | 80 × 4 × 4 | 2029.0 | 2272.0 | 2061.0 | 2518.0 | 2197.0 |
| 40 × 2 × 6 | 1696.0 | 1860.0 | 1695.0 | 1737.0 | 1803.0 | 80 × 4 × 6 | 2273.0 | 2517.0 | 2303.0 | 2511.0 | 2457.0 |
| 40 × 2 × 8 | 2350.0 | 2497.0 | 2358.0 | 2421.0 | 2460.0 | 80 × 4 × 8 | 2279.0 | 2528.0 | 2322.0 | 2589.0 | 2469.0 |
| 40 × 3 × 2 | 962.0 | 1086.0 | 986.0 | 1019.0 | 1047.0 | 80 × 5 × 2 | 1035.0 | 1172.0 | 1043.0 | 1315.0 | 1136.0 |
| 40 × 3 × 4 | 1463.0 | 1684.0 | 1505.0 | 1581.0 | 1636.0 | 80 × 5 × 4 | 1747.0 | 1986.0 | 1777.0 | 2303.0 | 1876.0 |
| 40 × 3 × 6 | 1608.0 | 1777.0 | 1641.0 | 1728.0 | 1729.0 | 80 × 5 × 6 | 1818.0 | 2096.0 | 1856.0 | 2472.0 | 2017.0 |
| 40 × 3 × 8 | 1610.0 | 1775.0 | 1621.0 | 1939.0 | 1756.0 | 80 × 5 × 8 | 1860.0 | 2121.0 | 1904.0 | 2279.0 | 2002.0 |
| 40 × 4 × 2 | 917.0 | 1083.0 | 949.0 | 1072.0 | 1040.0 | 100 × 2 × 2 | 3107.0 | 3253.0 | 3132.0 | 3245.0 | 3202.0 |
| 40 × 4 × 4 | 1160.0 | 1290.0 | 1193.0 | 1289.0 | 1296.0 | 100 × 2 × 4 | 4912.0 | 5041.0 | 4944.0 | 5020.0 | 5003.0 |
| 40 × 4 × 6 | 1222.0 | 1392.0 | 1244.0 | 1434.0 | 1348.0 | 100 × 2 × 6 | 4782.0 | 5038.0 | 4819.0 | 4929.0 | 4932.0 |
| 40 × 4 × 8 | 1374.0 | 1590.0 | 1422.0 | 1701.0 | 1524.0 | 100 × 2 × 8 | 4919.0 | 5214.0 | 4954.0 | 5043.0 | 5107.0 |
| 40 × 5 × 2 | 677.0 | 798.0 | 705.0 | 869.0 | 757.0 | 100 × 3 × 2 | 2101.0 | 2320.0 | 2140.0 | 2251.0 | 2239.0 |
| 40 × 5 × 4 | 970.0 | 1179.0 | 1002.0 | 1214.0 | 1126.0 | 100 × 3 × 4 | 3237.0 | 3510.0 | 3296.0 | 3460.0 | 3415.0 |
| 40 × 5 × 6 | 1160.0 | 1344.0 | 1214.0 | 1419.0 | 1322.0 | 100 × 3 × 6 | 3098.0 | 3302.0 | 3114.0 | 3332.0 | 3244.0 |
| 40 × 5 × 8 | 1349.0 | 1537.0 | 1375.0 | 1642.0 | 1581.0 | 100 × 3 × 8 | 3683.0 | 3933.0 | 3726.0 | 4198.0 | 3925.0 |
| 60 × 2 × 2 | 1699.0 | 1803.0 | 1721.0 | 1843.0 | 1756.0 | 100 × 4 × 2 | 1649.0 | 1798.0 | 1696.0 | 1974.0 | 1748.0 |
| 60 × 2 × 4 | 2873.0 | 3076.0 | 2880.0 | 3032.0 | 2988.0 | 100 × 4 × 4 | 2609.0 | 2894.0 | 2650.0 | 2886.0 | 2753.0 |
| 60 × 2 × 6 | 3072.0 | 3372.0 | 3107.0 | 3221.0 | 3250.0 | 100 × 4 × 6 | 2738.0 | 3017.0 | 2778.0 | 3105.0 | 2948.0 |
| 60 × 2 × 8 | 2922.0 | 3079.0 | 2949.0 | 3029.0 | 3028.0 | 100 × 4 × 8 | 2605.0 | 2892.0 | 2655.0 | 2863.0 | 2803.0 |
| 60 × 3 × 2 | 2039.0 | 2206.0 | 2042.0 | 2244.0 | 2161.0 | 100 × 5 × 2 | 1903.0 | 2101.0 | 1921.0 | 2357.0 | 2044.0 |
| 60 × 3 × 4 | 2145.0 | 2378.0 | 2186.0 | 2328.0 | 2293.0 | 100 × 5 × 4 | 1414.0 | 1582.0 | 1448.0 | 1718.0 | 1583.0 |
| 60 × 3 × 6 | 2255.0 | 2455.0 | 2273.0 | 2832.0 | 2429.0 | 100 × 5 × 6 | 1732.0 | 1952.0 | 1779.0 | 2191.0 | 1889.0 |
| 60 × 3 × 8 | 2366.0 | 2545.0 | 2412.0 | 2463.0 | 2490.0 | 100 × 5 × 8 | 2264.0 | 2528.0 | 2313.0 | 2782.0 | 2415.0 |
| 120 × 2 × 2 | 3536.0 | 3549.0 | 3551.0 | 3524.0 | 3519.0 | 140 × 2 × 2 | 4400.0 | 4449.0 | 4488.0 | 4414.0 | 4424.0 |
| 120 × 2 × 4 | 5766.0 | 5770.0 | 5788.0 | 5776.0 | 5773.0 | 140 × 2 × 4 | 6539.0 | 6550.0 | 6552.0 | 6541.0 | 6551.0 |
| 120 × 2 × 6 | 6069.0 | 6083.0 | 6107.0 | 6033.0 | 6085.0 | 140 × 2 × 6 | 6771.0 | 6832.0 | 6800.0 | 6697.0 | 6864.0 |
| 120 × 2 × 8 | 5861.0 | 5883.0 | 5864.0 | 5869.0 | 5880.0 | 140 × 2 × 8 | 6671.0 | 6747.0 | 6714.0 | 6699.0 | 6710.0 |
| 120 × 3 × 2 | 2359.0 | 2367.0 | 2365.0 | 2393.0 | 2370.0 | 140 × 3 × 2 | 2632.0 | 2684.0 | 2698.0 | 2637.0 | 2681.0 |
| 120 × 3 × 4 | 2570.0 | 2602.0 | 2605.0 | 2632.0 | 2564.0 | 140 × 3 × 4 | 2795.0 | 2927.0 | 2864.0 | 2796.0 | 2852.0 |
| 120 × 3 × 6 | 4061.0 | 4091.0 | 4089.0 | 4344.0 | 4069.0 | 140 × 3 × 6 | 4805.0 | 4820.0 | 4786.0 | 5284.0 | 4813.0 |
| 120 × 3 × 8 | 4455.0 | 4506.0 | 4496.0 | 4628.0 | 4515.0 | 140 × 3 × 8 | 3565.0 | 3694.0 | 3654.0 | 3582.0 | 3640.0 |
| 120 × 4 × 2 | 1865.0 | 1907.0 | 1914.0 | 2013.0 | 1862.0 | 140 × 4 × 2 | 2072.0 | 2079.0 | 2086.0 | 2531.0 | 2096.0 |
| 120 × 4 × 4 | 2235.0 | 2331.0 | 2285.0 | 2533.0 | 2237.0 | 140 × 4 × 4 | 2605.0 | 2656.0 | 2619.0 | 2754.0 | 2557.0 |
| 120 × 4 × 6 | 2420.0 | 2472.0 | 2492.0 | 2507.0 | 2479.0 | 140 × 4 × 6 | 3705.0 | 3707.0 | 3779.0 | 4378.0 | 3715.0 |
| 120 × 4 × 8 | 3322.0 | 3295.0 | 3304.0 | 3547.0 | 3307.0 | 140 × 4 × 8 | 4003.0 | 4008.0 | 4069.0 | 4196.0 | 4066.0 |
| 120 × 5 × 2 | 2472.0 | 2501.0 | 2525.0 | 3110.0 | 2474.0 | 140 × 5 × 2 | 2022.0 | 2066.0 | 2055.0 | 2272.0 | 2027.0 |
| 120 × 5 × 4 | 2757.0 | 2834.0 | 2766.0 | 3245.0 | 2743.0 | 140 × 5 × 4 | 3052.0 | 3057.0 | 3110.0 | 3448.0 | 3102.0 |
| 120 × 5 × 6 | 2719.0 | 2841.0 | 2809.0 | 3184.0 | 2729.0 | 140 × 5 × 6 | 3368.0 | 3423.0 | 3431.0 | 3736.0 | 3378.0 |
| 120 × 5 × 8 | 2806.0 | 2825.0 | 2859.0 | 3232.0 | 2844.0 | 140 × 5 × 8 | 3502.0 | 3508.0 | 3514.0 | 3949.0 | 3532.0 |
| Instance | CSFLA | SFLA | IDCOA | HVNS | IWOA | Instance | CSFLA | SFLA | IDCOA | HVNS | IWOA |
|---|---|---|---|---|---|---|---|---|---|---|---|
| 20 × 2 × 2 | 677.6 | 758.8 | 702.3 | 725.2 | 738.4 | 60 × 4 × 2 | 1051.7 | 1182.7 | 1073.3 | 1150.5 | 1135.8 |
| 20 × 2 × 4 | 1086.9 | 1192.0 | 1113.0 | 1126.1 | 1157.8 | 60 × 4 × 4 | 1674.2 | 1859.6 | 1705.0 | 1840.2 | 1794.1 |
| 20 × 2 × 6 | 1361.6 | 1448.6 | 1393.0 | 1396.6 | 1430.2 | 60 × 4 × 6 | 1265.0 | 1420.1 | 1295.2 | 1391.8 | 1370.5 |
| 20 × 2 × 8 | 1535.6 | 1702.1 | 1564.4 | 1594.0 | 1655.6 | 60 × 4 × 8 | 1725.5 | 1890.4 | 1752.8 | 1919.3 | 1830.2 |
| 20 × 3 × 2 | 718.9 | 817.6 | 741.6 | 791.2 | 786.8 | 60 × 5 × 2 | 1193.9 | 1351.5 | 1222.1 | 1423.6 | 1281.7 |
| 20 × 3 × 4 | 919.2 | 1039.2 | 954.4 | 979.2 | 1015.8 | 60 × 5 × 4 | 1283.0 | 1480.7 | 1307.1 | 1496.2 | 1396.0 |
| 20 × 3 × 6 | 867.2 | 961.8 | 884.1 | 939.5 | 953.2 | 60 × 5 × 6 | 1513.2 | 1718.9 | 1553.3 | 1780.4 | 1651.9 |
| 20 × 3 × 8 | 1173.7 | 1310.1 | 1200.2 | 1219.9 | 1283.5 | 60 × 5 × 8 | 1634.9 | 1834.1 | 1674.7 | 1858.5 | 1766.4 |
| 20 × 4 × 2 | 413.0 | 472.7 | 430.3 | 442.7 | 452.2 | 80 × 2 × 2 | 3858.1 | 3936.8 | 3868.0 | 3920.1 | 3904.2 |
| 20 × 4 × 4 | 594.4 | 687.9 | 615.1 | 641.8 | 684.3 | 80 × 2 × 4 | 2640.7 | 2806.6 | 2661.9 | 2720.8 | 2762.9 |
| 20 × 4 × 6 | 830.9 | 942.0 | 857.4 | 895.2 | 921.3 | 80 × 2 × 6 | 3746.5 | 3959.1 | 3764.6 | 3845.6 | 3894.4 |
| 20 × 4 × 8 | 933.8 | 1038.5 | 944.2 | 1005.9 | 1009.9 | 80 × 2 × 8 | 4218.4 | 4510.8 | 4267.7 | 4343.0 | 4418.1 |
| 20 × 5 × 2 | 470.4 | 571.9 | 496.3 | 571.4 | 541.0 | 80 × 3 × 2 | 1464.1 | 1606.9 | 1496.4 | 1619.0 | 1572.1 |
| 20 × 5 × 4 | 621.1 | 713.6 | 631.6 | 748.4 | 682.6 | 80 × 3 × 4 | 1566.7 | 1712.7 | 1595.7 | 1662.2 | 1672.0 |
| 20 × 5 × 6 | 825.1 | 948.4 | 843.9 | 928.2 | 916.2 | 80 × 3 × 6 | 2624.5 | 2776.4 | 2640.5 | 2746.8 | 2715.6 |
| 20 × 5 × 8 | 889.0 | 997.8 | 906.6 | 981.9 | 965.2 | 80 × 3 × 8 | 2780.4 | 2986.7 | 2816.1 | 2862.8 | 2900.0 |
| 40 × 2 × 2 | 1363.2 | 1446.2 | 1380.1 | 1409.9 | 1437.8 | 80 × 4 × 2 | 1901.0 | 2014.4 | 1915.4 | 2132.3 | 2001.0 |
| 40 × 2 × 4 | 1903.0 | 2017.3 | 1919.7 | 1949.8 | 1985.5 | 80 × 4 × 4 | 2013.7 | 2212.1 | 2049.9 | 2260.0 | 3132.7 |
| 40 × 2 × 6 | 1658.3 | 1813.4 | 1674.6 | 1705.0 | 1775.6 | 80 × 4 × 6 | 2242.2 | 2476.3 | 2284.6 | 2412.5 | 2354.8 |
| 40 × 2 × 8 | 2308.1 | 2442.8 | 2336.2 | 2359.5 | 2413.3 | 80 × 4 × 8 | 2254.8 | 2462.0 | 2290.3 | 2480.8 | 2405.9 |
| 40 × 3 × 2 | 938.4 | 1060.2 | 967.2 | 986.8 | 1014.7 | 80 × 5 × 2 | 999.7 | 1142.8 | 1030.2 | 1177.4 | 1098.4 |
| 40 × 3 × 4 | 1446.1 | 1605.9 | 1477.9 | 1516.4 | 1554.3 | 80 × 5 × 4 | 1724.0 | 1927.6 | 1755.0 | 1955.9 | 1835.9 |
| 40 × 3 × 6 | 1588.9 | 1736.5 | 1605.7 | 1650.1 | 1683.9 | 80 × 5 × 6 | 1787.3 | 2015.1 | 1826.3 | 2110.1 | 1929.8 |
| 40 × 3 × 8 | 1579.6 | 1725.6 | 1598.5 | 1702.2 | 1683.2 | 80 × 5 × 8 | 1845.6 | 2055.2 | 1883.2 | 2084.2 | 1952.3 |
| 40 × 4 × 2 | 903.4 | 1026.1 | 930.5 | 983.1 | 986.3 | 100 × 2 × 2 | 3094.1 | 3212.9 | 3105.0 | 3163.8 | 3166.5 |
| 40 × 4 × 4 | 1149.4 | 1268.6 | 1171.3 | 1240.6 | 1236.2 | 100 × 2 × 4 | 4898.9 | 5010.3 | 4904.5 | 4978.6 | 4968.6 |
| 40 × 4 × 6 | 1199.8 | 1353.3 | 1232.6 | 1326.0 | 1303.3 | 100 × 2 × 6 | 4749.8 | 4960.7 | 4784.4 | 4869.0 | 4885.1 |
| 40 × 4 × 8 | 1357.0 | 1531.6 | 1399.9 | 1535.4 | 1470.2 | 100 × 2 × 8 | 4895.7 | 5138.5 | 4938.7 | 4971.6 | 5037.0 |
| 40 × 5 × 2 | 661.1 | 765.6 | 688.3 | 771.1 | 735.3 | 100 × 3 × 2 | 2088.2 | 2254.8 | 2118.2 | 2175.5 | 2194.6 |
| 40 × 5 × 4 | 957.1 | 1119.3 | 989.8 | 1108.9 | 1063.1 | 100 × 3 × 4 | 3212.3 | 3441.0 | 3254.6 | 3356.5 | 3347.7 |
| 40 × 5 × 6 | 1148.0 | 1315.6 | 1180.3 | 1259.1 | 1263.1 | 100 × 3 × 6 | 3072.9 | 3239.3 | 3092.9 | 3186.2 | 3178.1 |
| 40 × 5 × 8 | 1322.7 | 1494.5 | 1346.1 | 1455.9 | 1458.5 | 100 × 3 × 8 | 3648.3 | 3889.2 | 3697.0 | 3843.5 | 3833.0 |
| 60 × 2 × 2 | 1673.9 | 1784.6 | 1691.3 | 1739.3 | 1730.9 | 100 × 4 × 2 | 1636.4 | 1769.4 | 1663.1 | 1789.0 | 1724.0 |
| 60 × 2 × 4 | 2829.7 | 3009.9 | 2860.1 | 2934.4 | 2947.4 | 100 × 4 × 4 | 2585.6 | 2789.4 | 2619.0 | 2743.0 | 2694.6 |
| 60 × 2 × 6 | 3048.1 | 3272.0 | 3074.1 | 3127.7 | 3214.0 | 100 × 4 × 6 | 2707.3 | 2954.7 | 2745.1 | 2893.4 | 2864.1 |
| 60 × 2 × 8 | 2894.7 | 3037.8 | 2911.2 | 2965.2 | 2983.3 | 100 × 4 × 8 | 2570.6 | 2796.7 | 2607.4 | 2754.7 | 2730.0 |
| 60 × 3 × 2 | 2024.4 | 2139.1 | 2033.2 | 2118.5 | 2098.8 | 100 × 5 × 2 | 1882.9 | 2063.9 | 1901.8 | 2113.7 | 1969.3 |
| 60 × 3 × 4 | 2127.4 | 2321.2 | 2159.4 | 2237.9 | 2258.6 | 100 × 5 × 4 | 1399.4 | 1543.3 | 1427.8 | 1586.0 | 1492.3 |
| 60 × 3 × 6 | 2232.9 | 2389.7 | 2247.4 | 2384.2 | 2352.9 | 100 × 5 × 6 | 1702.3 | 1901.0 | 1751.8 | 1945.8 | 1825.3 |
| 60 × 3 × 8 | 2351.6 | 2501.4 | 2384.5 | 2430.6 | 2451.5 | 100 × 5 × 8 | 2242.1 | 2483.8 | 2287.9 | 2504.7 | 2370.5 |
| 120 × 2 × 2 | 3465.1 | 3526.3 | 3513.7 | 3465.3 | 3501.8 | 140 × 2 × 2 | 4347.9 | 4406.0 | 4403.7 | 4341.4 | 4379.8 |
| 120 × 2 × 4 | 5718.8 | 5746.6 | 5749.7 | 5730.2 | 5740.3 | 140 × 2 × 4 | 6481.8 | 6527.7 | 6527.0 | 6484.7 | 6536.4 |
| 120 × 2 × 6 | 6004.3 | 6058.6 | 6067.9 | 5996.2 | 6054.9 | 140 × 2 × 6 | 6659.5 | 6791.3 | 6742.4 | 6670.5 | 6763.9 |
| 120 × 2 × 8 | 5774.9 | 5823.3 | 5817.8 | 5778.2 | 5822.5 | 140 × 2 × 8 | 6591.9 | 6677.5 | 6665.9 | 6597.7 | 6665.3 |
| 120 × 3 × 2 | 2254.5 | 2319.6 | 2320.8 | 2251.9 | 2304.8 | 140 × 3 × 2 | 2579.2 | 2654.2 | 2651.9 | 2587.7 | 2641.8 |
| 120 × 3 × 4 | 2497.0 | 2533.4 | 2526.2 | 2537.4 | 2534.8 | 140 × 3 × 4 | 2738.7 | 2831.5 | 2805.4 | 2746.7 | 2805.9 |
| 120 × 3 × 6 | 3967.7 | 4044.4 | 4006.5 | 4036.4 | 3972.4 | 140 × 3 × 6 | 4734.6 | 4752.2 | 4751.4 | 4807.3 | 4745.0 |
| 120 × 3 × 8 | 4378.2 | 4473.7 | 4453.6 | 4435.5 | 4459.2 | 140 × 3 × 8 | 3501.2 | 3605.0 | 3613.3 | 3512.4 | 3585.5 |
| 120 × 4 × 2 | 1799.1 | 1852.3 | 1837.5 | 1877.7 | 1818.5 | 140 × 4 × 2 | 2037.9 | 2058.0 | 2060.4 | 2202.6 | 2034.0 |
| 120 × 4 × 4 | 2203.7 | 2273.2 | 2243.1 | 2327.0 | 2220.8 | 140 × 4 × 4 | 2512.0 | 2532.8 | 2530.0 | 2593.1 | 2511.6 |
| 120 × 4 × 6 | 2388.6 | 2428.9 | 2453.9 | 2424.8 | 2425.8 | 140 × 4 × 6 | 3609.3 | 3648.7 | 3684.9 | 3857.9 | 3658.4 |
| 120 × 4 × 8 | 3233.4 | 3243.3 | 3235.2 | 3327.4 | 3236.9 | 140 × 4 × 8 | 3933.7 | 3966.3 | 4004.6 | 3946.3 | 3994.4 |
| 120 × 5 × 2 | 2397.5 | 2443.3 | 2424.1 | 2673.7 | 2415.5 | 140 × 5 × 2 | 1969.6 | 1999.7 | 1981.8 | 2038.5 | 1977.3 |
| 120 × 5 × 4 | 2635.4 | 2693.5 | 2702.9 | 2928.0 | 2689.8 | 140 × 5 × 4 | 2957.1 | 3015.5 | 3056.7 | 3107.6 | 3023.7 |
| 120 × 5 × 6 | 2678.0 | 2706.5 | 2725.4 | 2864.0 | 2693.7 | 140 × 5 × 6 | 3289.5 | 3340.7 | 3349.8 | 3477.8 | 3304.2 |
| 120 × 5 × 8 | 2739.1 | 2771.3 | 2777.6 | 2919.0 | 2782.5 | 140 × 5 × 8 | 3378.6 | 3467.8 | 3429.6 | 3466.8 | 3420.0 |
| Wilcoxon-Test | MIN | MAX | AVG |
|---|---|---|---|
| Wilcoxon test (CSFLA, SFLA) | 0.000 | 0.000 | 0.000 |
| Wilcoxon test (CSFLA, IDCOA) | 0.000 | 0.000 | 0.000 |
| Wilcoxon test (CSFLA, HVNS) | 0.000 | 0.000 | 0.000 |
| Wilcoxon test (CSFLA, IWOA) | 0.000 | 0.000 | 0.000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lei, D.; Dai, T. A Shuffled Frog-Leaping Algorithm with Cooperations for Distributed Assembly Hybrid-Flow Shop Scheduling with Factory Eligibility. Symmetry 2023, 15, 786. https://doi.org/10.3390/sym15040786
Lei D, Dai T. A Shuffled Frog-Leaping Algorithm with Cooperations for Distributed Assembly Hybrid-Flow Shop Scheduling with Factory Eligibility. Symmetry. 2023; 15(4):786. https://doi.org/10.3390/sym15040786
Chicago/Turabian StyleLei, Deming, and Tao Dai. 2023. "A Shuffled Frog-Leaping Algorithm with Cooperations for Distributed Assembly Hybrid-Flow Shop Scheduling with Factory Eligibility" Symmetry 15, no. 4: 786. https://doi.org/10.3390/sym15040786
APA StyleLei, D., & Dai, T. (2023). A Shuffled Frog-Leaping Algorithm with Cooperations for Distributed Assembly Hybrid-Flow Shop Scheduling with Factory Eligibility. Symmetry, 15(4), 786. https://doi.org/10.3390/sym15040786
