
Citation: Lei, D.; Dai, T. A Shuffled

Frog-Leaping Algorithm with

Cooperations for Distributed

Assembly Hybrid-Flow Shop

Scheduling with Factory Eligibility.

Symmetry 2023, 15, 786. https://

doi.org/10.3390/sym15040786

Academic Editor: Hsien-Chung Wu

Received: 22 February 2023

Revised: 17 March 2023

Accepted: 21 March 2023

Published: 23 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

symmetryS S

Article

A Shuffled Frog-Leaping Algorithm with Cooperations for
Distributed Assembly Hybrid-Flow Shop Scheduling with
Factory Eligibility
Deming Lei * and Tao Dai

School of Automation, Wuhan University of Technology, Wuhan 430070, China
* Correspondence: deminglei11@163.com or deminglei11@whut.edu.cn

Abstract: The distributed assembly scheduling problem with a hybrid-flow shop for fabrication
is seldom studied, and some real-life constraints such as factory eligibility are seldom handled.
In this study, a distributed assembly hybrid-flow shop-scheduling problem (DAHFSP) with factory
eligibility is investigated, which has some symmetries on machines. A shuffled frog-leaping algorithm
with cooperations (CSFLA) is applied to minimize makespan. A problem-related feature is used.
Memeplexes are evaluated, and group 1, with the two best memeplexes, and group 2, with the two
worst memeplexes, are formed. A new cooperation between memeplexes and an adaptive search
strategy are implemented in groups 1 and 2, respectively. An adaptive cooperation between groups 1
and 2 is also given. Population shuffling is executed every T generations. A number of computational
experiments are conducted. Computational results demonstrate that new strategies are effective and
CSFLA is a very competitive algorithm for DAHFSP with factory eligibility.

Keywords: distributed assembly scheduling; hybrid-flow shop scheduling; factory eligibility;
shuffled frog-leaping algorithm; cooperation

1. Introduction

The distributed hybrid-flow shop-scheduling problem (DHFSP) is the extended ver-
sion of the hybrid-flow shop-scheduling problem (HFSP) in multiple factories, each of
which has a hybrid-flow shop. In the past decade, DHFSP has attracted much attention
and a number of results have been obtained [1–7].

DHFSP, with various processing constraints, has been extensively investigated, mainly
by using heuristics and meta-heuristics, which include cooperative memetic algorithms [7],
constructive heuristics [4], memetic algorithms [8], three fast heuristics and an adaptive
genetic algorithm [9], hyper-heuristics [10], the iterative greedy (IG) algorithm [11], and
the shuffled frog-leaping algorithm (SFLA) with Q-learning [12]. Energy efficiency, no wait,
factory eligibility, third-party logistics, blocking, and assembly are dealt with.

Apart from the above constraints, DHFSP with multiprocessor tasks is solved by IG [13],
dynamical SFLA [14], and evolutionary algorithms [15]. Some meta-heuristics are also applied
to solve DHFSP with SDST, these algorithms are improved artificial bee colony (ABC) [16],
discrete ABC [6], SFLA with memeplex quality [17], SFLA with memeplex grouping [18], and a
diversified teaching–learning-based optimization [19].

In the past decades, distributed assembly scheduling problems (DASP), being com-
posed of a fabrication stage with parallel machines or permutation flow shop, transportation
stage, and assembly stage, have been extensively considered [20–25]; however, transporta-
tion is often neglected and DAHFSP, which is DASP with a hybrid-flow shop at the
fabrication stage, is seldom studied.

As stated above, many works have been carried out on DHFSP with various real-life
constraints such as no wait, blocking, SDST, and assembly in the past five years. DASP with
constraints such as setup time and maintenance is also frequently studied; however, some
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constraints, including factory eligibility, are seldom handled. Factory eligibility means
that not all factories are eligible for each job. It is a typical constraint in multiple factories,
which are obtained by mergers and acquisitions or given different production requirements.
DHFSP with factory eligibility is also seldom investigated, let alone DAHFSP with factory
eligibility. The considerations on factory eligibility will lead to high application value of
the optimization results, thus, it is necessary to handle DAHFSP with factory eligibility.

SFLA is a meta-heuristic with a fast convergence speed, which models the behavior
of frogs when searching for the location that has the most food [26]. It has been diffusely
exploited to deal with different scheduling problems [14,17,18,27–36]; moreover, it can be
found that SFLA has been successfully developed to solve DHFSP with SDST and multi-
processor tasks and DAHFSP. The promising advantages and search abilities are proved;
moreover, in recent years, some new optimization mechanisms, such as reinforcement
learning and dynamical adjustment, have been adopted in SFLA and the performance
is notably improved with the usage of new mechanisms. However, the works on SFLA
with new mechanisms are very limited, and some mechanisms such as cooperation are
seldom adopted in SFLA; thus, on the basis of the above analyses, it is concluded that SFLA
with a new optimization mechanism may be a potential method to solve DAHFSP with
factory eligibility.

In this study, DAHFSP with factory eligibility is considered and a new shuffled
frog-leaping algorithm with cooperations (CSFLA) is presented to minimize makespan.
A problem-related feature is used. Memeplexes are evaluated, and group 1 (with the two
best memeplexes) and group 2 (with the two worst memeplexes) are formed. Two new
cooperations between memeplexes and two adaptive search strategies are implemented.
An adaptive cooperation between groups 1 and 2 is also given. Population shuffling is
executed every T generations. A number of computational experiments are conducted.
Computational results demonstrate that new strategies are effective and CSFLA is a very
competitive algorithm for the considered DAHFSP.

The problem is depicted in Section 2. CSFLA for DAHFSP with factory eligibility
is described in Section 3. Computational experiments on five algorithms are explored in
Section 4. The conclusions and future topics are provided in the final section.

2. Problem Description

DAHFSP with factory eligibility is described as follows. There are n products, the com-
ponent set of product i is Ψi according to bill of material. There are F heterogeneous
factories, the factory f has a hybrid-flow shop, in which exists S component processing
stages and ml identical parallel machines at stage l as well as a machine TM f for trans-
portation and a machine AM f for assembling. M f lk denotes the k-th processing machine at
stage l in factory f .

All components of a product are first processed at the processing stage. When all
components are processed, they are transported by TM f to AM f and the product is made.
For a product i, all its components are handled as jobs in HFSP, and each component is
fabricated in the same flow: stage 1, stage 2, . . ., stage S.

comij denotes the jth component of product i and the processing time of comij is pjil f at
stage l in factory f . tri f and asi f are the time for transportation and assembling of product i
in factory f .

At least one product i has a set Θi ⊂ {1, 2, . . . , F}. Product i can only be fabricated,
transported, and assembled in a factory belonging to Θi.

The constraints of DAHFSP have been introduced by Cai et al. [12].
The newly analyzed DAHFSP with factory eligibility is composed of factory assign-

ment, HFSP for all components of each product, and product scheduling. Strong coupled
relations are among these sub-problems.

For each product, the number of its components is limited. HFSP for all its components
is a small-scale problem with makespan minimization and can be easily solved by heuris-
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tics.This is a characteristic, so only factory assignment and scheduling for all products are
required to be optimized.

The goal of the problem is to minimize makespan under the condition that all con-
straints are met. The optimization formulation is as follows:

min Cmax = max{Ci|i = 1, 2, . . . , n} (1)

Subject to
F

∑
f=1

Xji f = 1, ∀j, i, f ∈ Θi (2)

Xji f = Xj′ i f , ∀i, f ∈ Θi (3)

ml

∑
k=1

Yji f lk = Xji f , ∀j, i, l, f ∈ Θi (4)

stji1 f ≥ 0, ∀j, i, f ∈ Θi (5)

stji(l+1) f ≥ etjil f , ∀j, i, l, f ∈ Θi (6)

etjil f = stjil f + pjil f , ∀j, i, l, f ∈ Θi (7)

tsti f ≥ max{etjiS f }, ∀j, i, f ∈ Θi (8)

teti f = tsti f + tri f , ∀i, f ∈ Θi (9)

asti f ≥ teti f , ∀i, f ∈ Θi (10)

Ci = asti f + asi f , ∀i, f ∈ Θi (11)

Zjj′ i f l + Zj′ ji f l ≤ 1, ∀j, j
′
, i, l, f ∈ Θi (12)

Zjj′ i f l + Zj′ ji f l ≥ Yji f lk + Yj′ i f lk − 1, ∀ f ∈ Θi, l, i, j
′
> j, k ∈ {1, 2, . . . , ml} (13)

stjil f ≥ etjil f −U × (3−Yji f lk −Yj′ i f lk − Zjj′ i f l), ∀j 6= j
′
, i, l, k ∈ {1, 2, . . . , ml}, f ∈ Θi (14)

Bii′ f + Bi′ i f ≤ 1, ∀i, i
′
, f ∈ Θi (15)

Bii′ f + Bi′ i f ≥ Ai f + Ai′ f − 1, ∀i, i
′
, f ∈ Θi (16)

tsti′ f ≥ teti f −U × (3− Ai f − Ai′ f − Bii′ f ), ∀i, i
′
, f ∈ Θi (17)

Dii′ f + Di′ i f ≤ 1, ∀i, i
′
, f ∈ Θi (18)

Dii′ f + Di′ i f ≥ Ei f + Ei′ f − 1, ∀i, i
′
, f ∈ Θi (19)

asti′ f ≥ aeti f −U × (3− Ei f − Ei′ f − Dii′ f ), ∀i, i
′
, f ∈ Θi (20)
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Xji f ∈ {0, 1}, ∀j, i, f ∈ Θi (21)

Yji f lk ∈ {0, 1}, ∀j, i, l, k ∈ {1, 2, . . . , ml}, f ∈ Θi (22)

Zjj′ i f l ∈ {0, 1}, ∀j 6= j
′
, i, l, f ∈ Θi (23)

Ai f ∈ {0, 1}, ∀i, f ∈ Θi (24)

Bii′ f ∈ {0, 1}, ∀i 6= i
′
, f ∈ Θi (25)

Ei f ∈ {0, 1}, ∀i, f ∈ Θi (26)

Dii′ f ∈ {0, 1}, ∀i 6= i
′
, f ∈ Θi (27)

where Cmax indicates maximum completion time of all products and Ci is the completion
time of product i in formulation (1); constraint (2)–(7) are some constraints on components;
constraint (8)–(11) are some constraints on products and constraint (12)–(14) show the
constraints on machines for component fabrication; constraint (15)–(17) and (18)–(20),
respectively, indicate the constraints on the transportation machine and assembly machine;
constraints (21)–(27) show the decision variables. Abbreviations provide the notations and
their descriptions.

For the problem with makespan, on each machine M f lk at each stage there exists a
job-related symmetry, that is, two adjacent components are exchanged and the maximum
completion time of all components on M f lk is not changed. The maximum completion
time of the fabrication stage is also not varied; however, makespan may be changed after
transportation and assembly when two adjacent components are exchanged on a M f lk.

Tables 1 and 2 show an illustrative example with five products and 2 factories, each
of which has two stages for component fabrication. Θ1 = Θ2 = Θ5 = {1, 2}, Θ3 = {1},
Θ4 = {2}. Figure 1 describes a schedule of the example.

Table 1. The example information of products.

Product i |Ψi|
tri f asi f

Factory 1: tri1/Factory 2: tri2 Factory 1: asi1/Factory 2: asi2

1 4 25/21 54/58
2 2 34/38 92/100
3 3 49/55 19/29
4 2 88/84 37/39
5 4 95/96 36/41

Table 2. The processing information of components.

Product i 1 2 3 4 5

comij 1 2 3 4 1 2 1 2 3 1 2 1 2 3 4

Factory 1: pji11 43 93 22 19 40 75 70 68 36 41 34 73 45 43 50
pji21 54 83 47 96 34 41 43 100 95 49 25 69 57 78 33

Factory 2: pji12 55 87 24 20 48 72 73 66 42 44 23 74 42 54 48
pji22 46 91 48 92 27 39 49 94 99 42 34 65 42 69 45
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AM2

TM2

M222

M221

M212

M211

AM1

TM1

M122

M121

M112

M111

Figure 1. A schedule of the example.

3. CSFLA for DAHFSP with Factory Eligibility

A kind of cooperation is implemented between the best and the worst memeplex [27].
In this study, three cooperations are performed, two of which are between memeplexes
and one of which is performed between two groups of memeplexes. The detailed steps of
CSFLA are shown below.

3.1. Initialization

As analyzed above, only factory assignment and product scheduling are needed
to be optimized after HFSP, for all components of each product are solved by heuris-
tics.For DAHFSP with factory eligibility, n products and F factories, its solution consists of
a factory assignment string [θ1, θ2, . . . , θn] and a product scheduling string [π1, π2, . . . , πn],
where θi ∈ Θi, πi ∈ {1, 2, . . . , n}.

Algorithm 1 shows the detailed steps of decoding, where if more than one machine has
the same smallest available time in line 8, a machine with the smallest subscript is chosen.

Algorithm 1 Decoding

1: for f = 1 to F do
2: decide all assigned products by factory assignment string and obtain a permutation

of these products in factory f , suppose that the permutation is π1, π2, . . . , πg
3: for l = 1 to g do
4: determine a permutation of all components for product πl by a heuristic
5: suppose the permutation is comπl1, . . . , comπl |Ψπl |

,
6: for h = 1 to |Ψπl | do
7: for j = 1 to S do
8: fabricate component comπl h on a machine M f jk with the smallest available

time
9: end for

10: end for
11: move all components of product πl by TM f to AM f and assemble all components.
12: end for
13: end for

The heuristic for a permutation of all components of product i is described below.
For each component comij, compute ∑S

l=1 pjil f ; sort all components of product i in the
ascending order of ∑S

l=1 pjil f and obtain a permutation.
For the example in Tables 1 and 2, a solution is represented as [1, 2, 1, 2, 2] and [2, 4, 3, 5, 1].

In factory 2, products 2, 4, 5 are assigned and their coresponding permutation is 2, 4, 5. Product 2
is first handled; for product 2, a permutation of its components is 1, 2, for component 1 of
product 2, M211 and M221 are chosen. The final schedule is shown in Figure 1.
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An initial population P with N initial solutions is randomly generated and then di-
vided into s memeplexes M1,M2, . . . ,Ms according to the descriptions in [26].
N = s×Msize, where Msize is the size of the memeplex.

Quality Mei of memeplexMi is evaluated by

Mei = ∑x∈Mi

∣∣∣{y ∈ P
∣∣∣Cy

max > Cx
max

}∣∣∣ (28)

All memeplexes are sorted in the descending order of Mei; suppose that Me1 ≥ Me2 ≥
. . . ≥ Mes. Group 1 is composed ofM1,M2 and group 2 is made up ofMs,Ms−1. A cooper-
ation is applied in each group and cooperation between two groups is implemented.

3.2. Two Cooperations in the Search Process of Group 1

In the search process of group 1, the memeplex search is implemented by a cooperation
between M1,M2 in group 1, then, to implement cooperation between groups 1 and 2,
the number η of the reinforcement search in group 1 is computed and the reinforcement
searches are executed inM1,M2, respectively. Algorithm 2 shows the cooperation-based
search process ofM1,M2 and Algorithm 3 describes the search process of group 1, where
Ω is used to store some best solutions and Ψ is applied to keep historical data, and the
integer V means the volume of Ω and Ψ. The initial Ω consists of the best V solutions of
population P and the initial Ψ is empty. Ω is updated by a new solution that is better than
the worst solution in it, and Ψ has the same update as with Ω if it is accumulated fully by
solutions. NSl denotes neighborhood search, l = 1, 2, 3.

η = 2× µ× (Me1 + Me2)
/
(Me1 + Me2 + Mes−1 + Mes) (29)

Algorithm 2 Cooperation within group 1

1: for t = 1 to 2× µ do
2: decide a set ∆i=

{
x ∈ Mi

∣∣∣Cx
max > ∑y∈Mi

Cy
max

/
Msize

}
, i = 1, 2

3: randomly choose x ∈ M1\∆1 and y ∈ M2\∆2 and choose a better solution from x, y
as optimization object, suppose x is chosen, γ = 0

4: execute global search between x and y and obtain a new z
5: if Cz

max < Cx
max then

6: x is replaced and Ω is updated with z, γ = 1
7: else
8: if Cz

max < Cy
max then

9: y is replaced and Ω is updated with z, γ = 1
10: else
11: z is used to renew memory Ψ
12: end if
13: end if
14: if γ = 0 then
15: perform global search between x, gbest, generate a new z and execute lines 5–13
16: end if
17: if γ = 0 then
18: execute NS1 on x
19: end if
20: end for

λx
i = |Cx

max −∑y∈Mi
Cy

max

/
Msize|

/
∑y∈Mi

Cy
max

/
Msize (30)

Cai and Lei [27] proposed two global search operators for a product scheduling string and
factory assignment string. The global search is depicted as follows. For solutions x, y, randomly
choose one of two operators with the same probability, and produce a new solution by the
chosen operator.
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Eight neighborhood structures are used. N1 is shown below. Randomly decide a factory
f and stochastically select products i, j assigned in factory f ; suppose that πg = j, insert
product i into the position g of scheduling string. N2 is described as follows. Randomly
choose a factory f and a product i in factory f , stochastically decide a factory l, if l ∈ Θi, then
let θi = l; otherwise, randomly choose a factory v, if v ∈ Θi, then let θi = v. N3 is similar to
N1; products i, j are swapped in scheduling string. N4 has similar steps toN2; factories f , l
are randomly decided, products i, j are randomly chosen from factories f , l, respectively, then
i, j are exchanged in the scheduling string. Let θi = v and θj = f if f ∈ Θj, v ∈ Θi; if f ∈ Θj
or v ∈ Θi are not met, randomly choose a product j′ from factory v, if f ∈ Θj′ , v ∈ Θi, then
i, j′ are exchanged in the scheduling string and let θi = v and θj′ = f .

Algorithm 3 Reinforcement search process in group 1
1: execute cooperation-based search process ofM1,M2 in Algorithm 2
2: compute u1 = η ×Me2

/
(Me1 + Me2) and u2 = η − u1

3: for i = 1 to 2 do
4: for v = 1 to ui do
5: decide sets ∆i , randomly choose a x ∈ ∆i , x 6= xw and compute λx

i
6: if λx

i ≤ |∆i |
/

Msize then
7: γ = 0
8: if Ψ is not empty then
9: randomly select a y ∈ Ψ, replace x with y if Cy

max < Cx
max

10: if Cy
max ≥ Cx

max then
11: execute global search between y and gbest, obtain a new z and replace x with z, γ = 1 if

Cz
max < Cx

max
12: end if
13: end if
14: if γ = 0 or Ψ is empty then
15: randomly choose a y ∈ Ω, perform global search between x, y, produce a new z′, if z′ is better than

x, x = z′ , otherwise, perform NS1 on y, x = y
16: end if
17: else
18: perform global search between x, gbest and obtain a new z, if Cz

max < Cx
max , then replace x with z;

otherwise, randomly choose a y ∈ Ω, select one of NS2 and NS3 with the same probability, execute
the chosen one on y and y substitutes for x

19: end if
20: end for
21: end for

Suppose that factory 1 has the biggest completion time and factory 2 has the smallest
completion time. When N1, N3 are performed in factory 1, then N5 and N7 are obtained.
N6 is described as follows. Randomly select a product i in factory 1 and a product j from
factory 2, if 2 ∈ Θi, then let θi = 2; otherwise, randomly decide a product j from factory 1,
if 2 ∈ Θj, then let θj = 2. N8 is shown below. Products i, j are randomly chosen from
factories 1, 2, respectively, i, j are exchanged in the scheduling string, and let θi = 2 and
θj = 1 if 1 ∈ Θj and 2 ∈ Θi.

NS1 for solution x is shown as follows. Randomly choose a v ∈ {1, 2, 3, 4}, sequentially
executeN2×(v−1)+1,N2×(v−1)+2 on x, a new solution z is obtained, if z is better than x, then
z substitutes for x.

NS2 is described below. Define α1 = 2, α2 = 1, α3 = 4, α4 = 3, let g = 1, γ = 0, repeat
the following steps until γ > 0 or g > 4: produce a solution z ∈ Nαg(x), if z is better
than x, then z substitutes for x and γ = 1; otherwise, g = g + 1, where Ng(x) is the set of
neighborhood solutions produced by Ng on x.

NS3 has the same steps as NS2. In NS2, α1 = 6, α2 = 5, α3 = 8, α4 = 7.
In Algorithm 3, for each x ∈ ∆i, Cx

max is greater than the average makespan ofMi, i = 1, 2,
if λx

i = 0.1(0.6), then Cx
max = 1.1 ∑y∈Mi

Cy
max

/
Msize (1.6 ∑y∈Mi

Cy
max

/
Msize ), the condi-

tion of line 6 means that Cx
max slightly exceeds the average makespan and the condition of line

17 denotes that Cx
max exceeds greatly the average makespan. The search operator is decided

adaptively by one of the above conditions; moreover, the cooperation-based search process
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betweenM1,M2 acts on solutions out of ∆1, ∆2 and reinforcement search is performed on
solutions in ∆1, ∆2, as a result, exploration ability of CSFLA is intensified greatly.

3.3. Cooperation-Based Search Process of Group 2

Algorithm 4 describes the cooperation-based search process of group 2, where δ and
num are defined.

δ =
Me1 + Me2 −Mes−1 −Mes

Me1 + Me2
(31)

num = max{|Φ|, 2|Φ| × δ} (32)

Algorithm 4 Cooperation-based search process of group 2

1: let the set TE =Ms−1 ∪Ms;
2: decide Φ =

{
x ∈ TE

∣∣∣Cx
max > ∑y∈TE Cy

max

/
(2×Msize)

}
3: for t = 1 to 2µ− η do
4: decide two best solutions x1, x2 ∈ TE, suppose x1 is chosen, Cx1

max < Cx2
max, a randomly

chose solution x3 ∈ Ω
5: if δ ≤ |Φ|

2×Msize then
6: randomly choose one of x1, x2,let γ = 0
7: if Ψ is not empty then
8: randomly select y ∈ Ψ, if y is better than x1, then x1 = y, γ = 1; otherwise, if y

is better than x2, then x2 = y and γ = 1
9: end if

10: if Ψ is empty or γ = 0 then
11: execute similar steps with lines 4-18 of Algorithm 2
12: end if
13: else
14: perform global search between x3, gbest and obtain a new z
15: if Cz

max < Cx3
max then

16: x1 = x3 and x3 = z
17: else
18: let ζ = 0; if Cz

max < Cx1
max, let x1 = z, ζ = 1; if Cz

max < Cx2
max, let x2 = z, ζ = 1

19: if ζ = 0 then
20: execute a chosen one from NS2 and NS3 with the same probability on x3
21: end if
22: end if
23: end if
24: end for
25: for r = 1 to num do
26: if rand < |Φ|/(2×Msize) then
27: randomly choose x ∈ M1 and replace the worst solution in TE with x
28: else
29: if rand > |Φ|/(2×Msize) then
30: randomly choose x ∈ M2 and replace the worst solution in TE with x
31: else
32: randomly choose x ∈ Ω and replace the worst solution in TE with x
33: end if
34: end if
35: choose one NSi with the same probability from NS1, NS2, NS3 and execute the

chosen NSi on the replaced solution
36: end for

The similar steps with lines 4–18 of Algorithm 2 are shown below. x is optimization
object, which is randomly chosen from x1, x2, y is x3 in all lines except lines 5–9, in which
x, y is changed into x1, x2, respectively.
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In Algorithm 4,Ms andMs−1 are combined into a new memeplex TE and search
process in TE is executed by an adaptive search strategy based on δ. The search times of
group 2 is 2µ− η, the reinforcement search of group 1 is executed η times in Algorithm 3,
andMs,Ms−1 are updated by using solutions fromM1,M2 or Ω. This is an adaptive
cooperation between two groups.

3.4. Algorithm Description

Algorithm 5 describes the detailed steps of CSFLA, where T is the integer.

Algorithm 5 CSFLA

1: randomly produce initial population P, let gen = 1
2: divide population P into s memeplexes
3: while stopping condition is not met do
4: compute Mei for each memeplexMi and construct groups 1 and 2
5: execute cooperation within group 1 and reinforcement search process in group 1
6: perform search process of each memeplexMi, i 6= 1, 2, s− 1, s
7: execute cooperation-based search process of group 2
8: if gen is exactly divided by T then
9: perform memeplex shuffling and divide population P into s memeplexes

10: end if
11: gen = gen + 1
12: end while

The search process ofMi, i 6= 1, 2, s− 1, s is depicted below. xb ∈ Mi is the optimiza-
tion object, a solution y ∈ Ω is randomly decided, a global search is performed between
xb and y, if Cz

max < Cxb
max, then xb = z; otherwise, execute a global search between xb, gbest

and produce a new z′, if Cz′
max < Cxb

max, then xb = z′; otherwise, perform a chosen one of
NS1, NS2, NS3 with the same probability on xb.

When gen is divided exactly by T, all evolved memeplexes are formed into a new
population P.

Unlike the previous SFLA [14,17,18,27,35], CSFLA has some new features. (1) Meme-
plexes are evaluated and two groups are formed by using M1,M2,Ms−1,Ms. (2) A
cooperation between two memeplexes is performed in groups 1 and 2, respectively, and an
adaptive cooperation between groups 1 1 and 2 is implemented, so three cooperations are
used. (3) An adaptive search strategy is applied in groups 1 and 2, respectively, and popu-
lation shuffling is executed every T generations; as a result, memeplexes and groups can
exist in T generations and can be evolved well by using the same solution structure in
each memeplex.

4. Computational Experiments

All experiments are implemented by using Microsoft Visual C++ 2019 and run on 8.0G
RAM 2.4 GHz CPU PC.

4.1. Test Instances and Comparative Algorithms

112 instances are used, each of which is depicted as n × F × S. pjil f ∈ [1, 100],
tri f ∈ [1, 100], asi f ∈ [1, 100], |Ψi| ∈ [2, 5], ml ∈ [2, 5]. All of the above data are integers.

A hybrid variable neighborhood search (HVNS) [37], improved discrete cuckoo opti-
mization algorithm (IDCOA) [38], and improved whale optimization algorithm (IWOA) [39]
are chosen as comparative algorithms.

HVNS is used to solve the distributed assembly flow shop-scheduling problem. HVNS
can be applied to address DAHFSP after heuristics for HFSP for all components of each
product in Section 3.1 is used. IWOA is to solve distributed assembly flow shop scheduling
with transportation. It can be used to solve our DAHFSP after the heuristic for HFSP of
Section 3.1 is adopted.
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IDCOA with only product permutation is handled to deal with the three-stage as-
sembly flow shop-scheduling problem. To solve DAHFSP, heuristics for HFSP for all
components of each product is added, factory assignment andN5 are adopted, and a global
search of CSFLA substitutes for the immigration operator of IDCOA is carried out.

SFLA is used to test the effect of the new strategies in CSFLA. The search process
within each memeplex has similar steps with the search process ofM3 SFLA, however, y is
the second best solution inMi and the random way of Section 3 substitutes for the random
selection from NS1, NS2, NS3, no cooperations are used and T is 1.

4.2. Parameter Settings

CSFLA has following parameters: N, s, µ, T, V, and a stopping condition. It can be
found that CSFLA can converge well when time reaches 0.1× n× S seconds CPU; moreover,
when 0.1× n× S seconds CPU time is applied, all comparative algorithms also converge
well, so this time is chosen as stopping condition.

The taguchi method [40] is used to decide the settings for other parameters by using
the instance 60× 4× 4. Table 3 shows the levels of each parameter. The orthogonal array
L16(45) is tested. CSFLA with each combination runs 10 times independently, for instance
60× 4× 4.

Table 3. Parameters and their levels.

Parameters
Factor Level

1 2 3 4

N 60 90 120 150
s 5 6 10 15
µ 30 40 50 60
T 2 3 4 5
V 3 4 5 6

Figure 2 shows the results of MIN and S/N ratio, which is defined as−10× log10(MIN2).
It can be found from Figure 2 that CSFLA with following combination N = 60, s = 10, µ = 50,
T = 5, V = 4 can obtain better results than CSFLA with other combinations, so the above
parameter settings are chosen.

Figure 2. Main effect plot for mean MIN and S/N ratio.

SFLA has N = 60, s = 10, µ = 50, and the above stopping condition.
The parameter settings of the three comparative algorithms are directly selected from

the references, except for the stopping condition, because of the effectiveness of these
settings of each comparative algorithm.

4.3. Results and Discussions

CSLFA, SFLA, and three comparative algorithms are compared. Each algorithm ran-
domly runs 10 times for each instance. MIN (MAX) denotes the best (worst) solution’s
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Cmax found in the 10 runtimes and AVG denotes the average Cmax of solutions in 10 run-
times. Tables 4–6 describe the corresponding results of five algorithms. Figures 3 and 4
show convergence curves and box plots of all algorithms. The relative percentage deviation
(RPD) between the best-performing algorithm and the other four algorithms is used in
Figure 4 and Table 7 gives the results of the paired-sample Wilcoxon test.

Table 4. Computational results of instances of five algorithms on MIN.

Instance CSFLA SFLA IDCOA HVNS IWOA Instance CSFLA SFLA IDCOA HVNS IWOA

20 × 2 × 2 664.0 722.0 689.0 699.0 702.0 60 × 4 × 2 1033.0 1148.0 1055.0 1078.0 1098.0
20 × 2 × 4 1071.0 1161.0 1099.0 1105.0 1103.0 60 × 4 × 4 1651.0 1798.0 1687.0 1719.0 1757.0
20 × 2 × 6 1351.0 1418.0 1372.0 1377.0 1399.0 60 × 4 × 6 1229.0 1381.0 1264.0 1319.0 1338.0
20 × 2 × 8 1499.0 1639.0 1537.0 1563.0 1574.0 60 × 4 × 8 1705.0 1840.0 1730.0 1760.0 1764.0
20 × 3 × 2 711.0 769.0 730.0 741.0 765.0 60 × 5 × 2 1172.0 1274.0 1186.0 1284.0 1260.0
20 × 3 × 4 903.0 994.0 932.0 922.0 953.0 60 × 5 × 4 1271.0 1399.0 1292.0 1313.0 1344.0
20 × 3 × 6 846.0 904.0 860.0 881.0 907.0 60 × 5 × 6 1483.0 1650.0 1537.0 1579.0 1628.0
20 × 3 × 8 1158.0 1245.0 1179.0 1174.0 1223.0 60 × 5 × 8 1609.0 1745.0 1619.0 1766.0 1706.0
20 × 4 × 2 405.0 455.0 414.0 426.0 434.0 80 × 2 × 2 3846.0 3915.0 3850.0 3895.0 3872.0
20 × 4 × 4 579.0 670.0 603.0 616.0 649.0 80 × 2 × 4 2624.0 2764.0 2627.0 2674.0 2719.0
20 × 4 × 6 816.0 872.0 841.0 849.0 844.0 80 × 2 × 6 3715.0 3910.0 3741.0 3767.0 3855.0
20 × 4 × 8 916.0 1001.0 917.0 946.0 969.0 80 × 2 × 8 4184.0 4421.0 4230.0 4247.0 4372.0
20 × 5 × 2 455.0 526.0 476.0 499.0 520.0 80 × 3 × 2 1446.0 1572.0 1480.0 1476.0 1537.0
20 × 5 × 4 608.0 694.0 617.0 668.0 659.0 80 × 3 × 4 1548.0 1675.0 1556.0 1611.0 1641.0
20 × 5 × 6 808.0 898.0 814.0 849.0 876.0 80 × 3 × 6 2603.0 2715.0 2610.0 2666.0 2690.0
20 × 5 × 8 874.0 955.0 882.0 918.0 908.0 80 × 3 × 8 2753.0 2933.0 2782.0 2800.0 2818.0
40 × 2 × 2 1356.0 1423.0 1362.0 1370.0 1407.0 80 × 4 × 2 1885.0 1944.0 1895.0 1962.0 1939.0
40 × 2 × 4 1887.0 1982.0 1902.0 1913.0 1950.0 80 × 4 × 4 1994.0 2155.0 2035.0 2093.0 2083.0
40 × 2 × 6 1629.0 1775.0 1655.0 1655.0 1737.0 80 × 4 × 6 2203.0 2437.0 2261.0 2324.0 2295.0
40 × 2 × 8 2285.0 2395.0 2323.0 2323.0 2380.0 80 × 4 × 8 2230.0 2388.0 2253.0 2372.0 2361.0
40 × 3 × 2 930.0 1031.0 951.0 944.0 961.0 80 × 5 × 2 978.0 1120.0 1010.0 1028.0 1067.0
40 × 3 × 4 1427.0 1562.0 1456.0 1473.0 1502.0 80 × 5 × 4 1703.0 1864.0 1739.0 1782.0 1799.0
40 × 3 × 6 1568.0 1695.0 1583.0 1592.0 1626.0 80 × 5 × 6 1747.0 1946.0 1808.0 1886.0 1881.0
40 × 3 × 8 1564.0 1691.0 1571.0 1600.0 1623.0 80 × 5 × 8 1826.0 2011.0 1850.0 1942.0 1930.0
40 × 4 × 2 885.0 979.0 919.0 926.0 939.0 100 × 2 × 2 3080.0 3135.0 3086.0 3117.0 3136.0
40 × 4 × 4 1137.0 1219.0 1142.0 1188.0 1202.0 100 × 2 × 4 4874.0 4970.0 4866.0 4929.0 4936.0
40 × 4 × 6 1184.0 1282.0 1218.0 1239.0 1258.0 100 × 2 × 6 4711.0 4870.0 4755.0 4819.0 4822.0
40 × 4 × 8 1336.0 1497.0 1384.0 1428.0 1420.0 100 × 2 × 8 4866.0 5075.0 4891.0 4913.0 4986.0
40 × 5 × 2 635.0 724.0 673.0 690.0 706.0 100 × 3 × 2 2074.0 2226.0 2103.0 2105.0 2148.0
40 × 5 × 4 934.0 1084.0 966.0 973.0 1026.0 100 × 3 × 4 3189.0 3375.0 3216.0 3288.0 3287.0
40 × 5 × 6 1122.0 1283.0 1160.0 1162.0 1218.0 100 × 3 × 6 3035.0 3173.0 3070.0 3126.0 3101.0
40 × 5 × 8 1299.0 1462.0 1327.0 1332.0 1387.0 100 × 3 × 8 3591.0 3809.0 3664.0 3710.0 3752.0
60 × 2 × 2 1646.0 1749.0 1657.0 1676.0 1702.0 100 × 4 × 2 1613.0 1733.0 1650.0 1698.0 1670.0
60 × 2 × 4 2808.0 2920.0 2824.0 2863.0 2890.0 100 × 4 × 4 2568.0 2724.0 2580.0 2613.0 2647.0
60 × 2 × 6 3027.0 3195.0 3037.0 3065.0 3170.0 100 × 4 × 6 2676.0 2870.0 2709.0 2773.0 2772.0
60 × 2 × 8 2863.0 3001.0 2891.0 2927.0 2941.0 100 × 4 × 8 2526.0 2733.0 2572.0 2686.0 2693.0
60 × 3 × 2 2015.0 2096.0 2023.0 2047.0 2054.0 100 × 5 × 2 1869.0 2027.0 1880.0 1965.0 1889.0
60 × 3 × 4 2099.0 2278.0 2126.0 2148.0 2215.0 100 × 5 × 4 1374.0 1466.0 1399.0 1449.0 1419.0
60 × 3 × 6 2211.0 2339.0 2222.0 2273.0 2294.0 100 × 5 × 6 1684.0 1851.0 1738.0 1862.0 1765.0
60 × 3 × 8 2331.0 2457.0 2344.0 2378.0 2403.0 100 × 5 × 8 2205.0 2434.0 2252.0 2365.0 2312.0

120 × 2 × 2 3422.0 3479.0 3463.0 3433.0 3476.0 140 × 2 × 2 4265.0 4358.0 4364.0 4271.0 4321.0
120 × 2 × 4 5671.0 5720.0 5701.0 5683.0 5694.0 140 × 2 × 4 6415.0 6504.0 6590.0 6425.0 6507.0
120 × 2 × 6 5951.0 6040.0 6043.0 5954.0 6031.0 140 × 2 × 6 6614.0 6706.0 6677.0 6625.0 6665.0
120 × 2 × 8 5704.0 5787.0 5775.0 5712.0 5788.0 140 × 2 × 8 6533.0 6610.0 6600.0 6535.0 6622.0
120 × 3 × 2 2229.0 2253.0 2263.0 2202.0 2238.0 140 × 3 × 2 2563.0 2619.0 2609.0 2557.0 2600.0
120 × 3 × 4 2411.0 2496.0 2489.0 2444.0 2483.0 140 × 3 × 4 2698.0 2757.0 2773.0 2673.0 2758.0
120 × 3 × 6 3846.0 3997.0 3941.0 3802.0 3911.0 140 × 3 × 6 4638.0 4664.0 4690.0 4655.0 4673.0
120 × 3 × 8 4265.0 4428.0 4382.0 4272.0 4381.0 140 × 3 × 8 3438.0 3530.0 3569.0 3451.0 3526.0
120 × 4 × 2 1741.0 1785.0 1747.0 1771.0 1767.0 140 × 4 × 2 2002.0 2016.0 2035.0 1964.0 1988.0
120 × 4 × 4 2145.0 2238.0 2195.0 2146.0 2203.0 140 × 4 × 4 2425.0 2482.0 2433.0 2486.0 2481.0
120 × 4 × 6 2258.0 2378.0 2376.0 2272.0 2383.0 140 × 4 × 6 3517.0 3562.0 3619.0 3573.0 3588.0
120 × 4 × 8 3146.0 3209.0 3184.0 3150.0 3151.0 140 × 4 × 8 3839.0 3937.0 3912.0 3842.0 3915.0
120 × 5 × 2 2317.0 2358.0 2363.0 2329.0 2350.0 140 × 5 × 2 1904.0 1941.0 1915.0 1959.0 1925.0
120 × 5 × 4 2558.0 2606.0 2581.0 2616.0 2633.0 140 × 5 × 4 2875.0 2949.0 2954.0 2882.0 2952.0
120 × 5 × 6 2601.0 2608.0 2651.0 2585.0 2648.0 140 × 5 × 6 3142.0 3297.0 3198.0 3315.0 3211.0
120 × 5 × 8 2655.0 2690.0 2724.0 2747.0 2729.0 140 × 5 × 8 3245.0 3405.0 3359.0 3199.0 3317.0
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Table 5. Computational results of instances of five algorithms on MAX.

Instance CSFLA SFLA IDCOA HVNS IWOA Instance CSFLA SFLA IDCOA HVNS IWOA

20 × 2 × 2 691.0 790.0 726.0 760.0 824.0 60 × 4 × 2 1064.0 1218.0 1085.0 1238.0 1181.0
20 × 2 × 4 1099.0 1205.0 1124.0 1150.0 1225.0 60 × 4 × 4 1692.0 1923.0 1723.0 2223.0 1834.0
20 × 2 × 6 1374.0 1470.0 1414.0 1430.0 1458.0 60 × 4 × 6 1285.0 1452.0 1311.0 1495.0 1462.0
20 × 2 × 8 1554.0 1754.0 1600.0 1642.0 1735.0 60 × 4 × 8 1754.0 1924.0 1773.0 2236.0 1920.0
20 × 3 × 2 728.0 857.0 758.0 853.0 815.0 60 × 5 × 2 1239.0 1448.0 1241.0 1551.0 1304.0
20 × 3 × 4 938.0 1072.0 978.0 1116.0 1113.0 60 × 5 × 4 1289.0 1514.0 1328.0 1789.0 1451.0
20 × 3 × 6 895.0 1000.0 906.0 1054.0 1047.0 60 × 5 × 6 1532.0 1809.0 1568.0 2073.0 1725.0
20 × 3 × 8 1192.0 1354.0 1236.0 1285.0 1350.0 60 × 5 × 8 1663.0 1886.0 1698.0 1997.0 1807.0
20 × 4 × 2 425.0 493.0 438.0 476.0 465.0 80 × 2 × 2 3869.0 3986.0 3892.0 3960.0 4006.0
20 × 4 × 4 611.0 714.0 640.0 665.0 758.0 80 × 2 × 4 2655.0 2844.0 2691.0 2770.0 2818.0
20 × 4 × 6 844.0 1004.0 872.0 1020.0 1002.0 80 × 2 × 6 3765.0 3987.0 3791.0 3944.0 3953.0
20 × 4 × 8 954.0 1082.0 959.0 1103.0 1051.0 80 × 2 × 8 4262.0 4574.0 4295.0 4496.0 4508.0
20 × 5 × 2 487.0 611.0 523.0 672.0 571.0 80 × 3 × 2 1482.0 1674.0 1520.0 1784.0 1613.0
20 × 5 × 4 633.0 750.0 650.0 889.0 734.0 80 × 3 × 4 1581.0 1774.0 1610.0 1740.0 1727.0
20 × 5 × 6 838.0 988.0 890.0 1037.0 991.0 80 × 3 × 6 2648.0 2836.0 2664.0 2846.0 2740.0
20 × 5 × 8 909.0 1031.0 935.0 1090.0 1052.0 80 × 3 × 8 2817.0 3031.0 2843.0 2894.0 2947.0
40 × 2 × 2 1372.0 1483.0 1391.0 1471.0 1533.0 80 × 4 × 2 1909.0 2102.0 1942.0 2425.0 2124.0
40 × 2 × 4 1922.0 2061.0 1930.0 2013.0 2046.0 80 × 4 × 4 2029.0 2272.0 2061.0 2518.0 2197.0
40 × 2 × 6 1696.0 1860.0 1695.0 1737.0 1803.0 80 × 4 × 6 2273.0 2517.0 2303.0 2511.0 2457.0
40 × 2 × 8 2350.0 2497.0 2358.0 2421.0 2460.0 80 × 4 × 8 2279.0 2528.0 2322.0 2589.0 2469.0
40 × 3 × 2 962.0 1086.0 986.0 1019.0 1047.0 80 × 5 × 2 1035.0 1172.0 1043.0 1315.0 1136.0
40 × 3 × 4 1463.0 1684.0 1505.0 1581.0 1636.0 80 × 5 × 4 1747.0 1986.0 1777.0 2303.0 1876.0
40 × 3 × 6 1608.0 1777.0 1641.0 1728.0 1729.0 80 × 5 × 6 1818.0 2096.0 1856.0 2472.0 2017.0
40 × 3 × 8 1610.0 1775.0 1621.0 1939.0 1756.0 80 × 5 × 8 1860.0 2121.0 1904.0 2279.0 2002.0
40 × 4 × 2 917.0 1083.0 949.0 1072.0 1040.0 100 × 2 × 2 3107.0 3253.0 3132.0 3245.0 3202.0
40 × 4 × 4 1160.0 1290.0 1193.0 1289.0 1296.0 100 × 2 × 4 4912.0 5041.0 4944.0 5020.0 5003.0
40 × 4 × 6 1222.0 1392.0 1244.0 1434.0 1348.0 100 × 2 × 6 4782.0 5038.0 4819.0 4929.0 4932.0
40 × 4 × 8 1374.0 1590.0 1422.0 1701.0 1524.0 100 × 2 × 8 4919.0 5214.0 4954.0 5043.0 5107.0
40 × 5 × 2 677.0 798.0 705.0 869.0 757.0 100 × 3 × 2 2101.0 2320.0 2140.0 2251.0 2239.0
40 × 5 × 4 970.0 1179.0 1002.0 1214.0 1126.0 100 × 3 × 4 3237.0 3510.0 3296.0 3460.0 3415.0
40 × 5 × 6 1160.0 1344.0 1214.0 1419.0 1322.0 100 × 3 × 6 3098.0 3302.0 3114.0 3332.0 3244.0
40 × 5 × 8 1349.0 1537.0 1375.0 1642.0 1581.0 100 × 3 × 8 3683.0 3933.0 3726.0 4198.0 3925.0
60 × 2 × 2 1699.0 1803.0 1721.0 1843.0 1756.0 100 × 4 × 2 1649.0 1798.0 1696.0 1974.0 1748.0
60 × 2 × 4 2873.0 3076.0 2880.0 3032.0 2988.0 100 × 4 × 4 2609.0 2894.0 2650.0 2886.0 2753.0
60 × 2 × 6 3072.0 3372.0 3107.0 3221.0 3250.0 100 × 4 × 6 2738.0 3017.0 2778.0 3105.0 2948.0
60 × 2 × 8 2922.0 3079.0 2949.0 3029.0 3028.0 100 × 4 × 8 2605.0 2892.0 2655.0 2863.0 2803.0
60 × 3 × 2 2039.0 2206.0 2042.0 2244.0 2161.0 100 × 5 × 2 1903.0 2101.0 1921.0 2357.0 2044.0
60 × 3 × 4 2145.0 2378.0 2186.0 2328.0 2293.0 100 × 5 × 4 1414.0 1582.0 1448.0 1718.0 1583.0
60 × 3 × 6 2255.0 2455.0 2273.0 2832.0 2429.0 100 × 5 × 6 1732.0 1952.0 1779.0 2191.0 1889.0
60 × 3 × 8 2366.0 2545.0 2412.0 2463.0 2490.0 100 × 5 × 8 2264.0 2528.0 2313.0 2782.0 2415.0

120 × 2 × 2 3536.0 3549.0 3551.0 3524.0 3519.0 140 × 2 × 2 4400.0 4449.0 4488.0 4414.0 4424.0
120 × 2 × 4 5766.0 5770.0 5788.0 5776.0 5773.0 140 × 2 × 4 6539.0 6550.0 6552.0 6541.0 6551.0
120 × 2 × 6 6069.0 6083.0 6107.0 6033.0 6085.0 140 × 2 × 6 6771.0 6832.0 6800.0 6697.0 6864.0
120 × 2 × 8 5861.0 5883.0 5864.0 5869.0 5880.0 140 × 2 × 8 6671.0 6747.0 6714.0 6699.0 6710.0
120 × 3 × 2 2359.0 2367.0 2365.0 2393.0 2370.0 140 × 3 × 2 2632.0 2684.0 2698.0 2637.0 2681.0
120 × 3 × 4 2570.0 2602.0 2605.0 2632.0 2564.0 140 × 3 × 4 2795.0 2927.0 2864.0 2796.0 2852.0
120 × 3 × 6 4061.0 4091.0 4089.0 4344.0 4069.0 140 × 3 × 6 4805.0 4820.0 4786.0 5284.0 4813.0
120 × 3 × 8 4455.0 4506.0 4496.0 4628.0 4515.0 140 × 3 × 8 3565.0 3694.0 3654.0 3582.0 3640.0
120 × 4 × 2 1865.0 1907.0 1914.0 2013.0 1862.0 140 × 4 × 2 2072.0 2079.0 2086.0 2531.0 2096.0
120 × 4 × 4 2235.0 2331.0 2285.0 2533.0 2237.0 140 × 4 × 4 2605.0 2656.0 2619.0 2754.0 2557.0
120 × 4 × 6 2420.0 2472.0 2492.0 2507.0 2479.0 140 × 4 × 6 3705.0 3707.0 3779.0 4378.0 3715.0
120 × 4 × 8 3322.0 3295.0 3304.0 3547.0 3307.0 140 × 4 × 8 4003.0 4008.0 4069.0 4196.0 4066.0
120 × 5 × 2 2472.0 2501.0 2525.0 3110.0 2474.0 140 × 5 × 2 2022.0 2066.0 2055.0 2272.0 2027.0
120 × 5 × 4 2757.0 2834.0 2766.0 3245.0 2743.0 140 × 5 × 4 3052.0 3057.0 3110.0 3448.0 3102.0
120 × 5 × 6 2719.0 2841.0 2809.0 3184.0 2729.0 140 × 5 × 6 3368.0 3423.0 3431.0 3736.0 3378.0
120 × 5 × 8 2806.0 2825.0 2859.0 3232.0 2844.0 140 × 5 × 8 3502.0 3508.0 3514.0 3949.0 3532.0
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Table 6. Computational results of instances of five algorithms on AVG.

Instance CSFLA SFLA IDCOA HVNS IWOA Instance CSFLA SFLA IDCOA HVNS IWOA

20 × 2 × 2 677.6 758.8 702.3 725.2 738.4 60 × 4 × 2 1051.7 1182.7 1073.3 1150.5 1135.8
20 × 2 × 4 1086.9 1192.0 1113.0 1126.1 1157.8 60 × 4 × 4 1674.2 1859.6 1705.0 1840.2 1794.1
20 × 2 × 6 1361.6 1448.6 1393.0 1396.6 1430.2 60 × 4 × 6 1265.0 1420.1 1295.2 1391.8 1370.5
20 × 2 × 8 1535.6 1702.1 1564.4 1594.0 1655.6 60 × 4 × 8 1725.5 1890.4 1752.8 1919.3 1830.2
20 × 3 × 2 718.9 817.6 741.6 791.2 786.8 60 × 5 × 2 1193.9 1351.5 1222.1 1423.6 1281.7
20 × 3 × 4 919.2 1039.2 954.4 979.2 1015.8 60 × 5 × 4 1283.0 1480.7 1307.1 1496.2 1396.0
20 × 3 × 6 867.2 961.8 884.1 939.5 953.2 60 × 5 × 6 1513.2 1718.9 1553.3 1780.4 1651.9
20 × 3 × 8 1173.7 1310.1 1200.2 1219.9 1283.5 60 × 5 × 8 1634.9 1834.1 1674.7 1858.5 1766.4
20 × 4 × 2 413.0 472.7 430.3 442.7 452.2 80 × 2 × 2 3858.1 3936.8 3868.0 3920.1 3904.2
20 × 4 × 4 594.4 687.9 615.1 641.8 684.3 80 × 2 × 4 2640.7 2806.6 2661.9 2720.8 2762.9
20 × 4 × 6 830.9 942.0 857.4 895.2 921.3 80 × 2 × 6 3746.5 3959.1 3764.6 3845.6 3894.4
20 × 4 × 8 933.8 1038.5 944.2 1005.9 1009.9 80 × 2 × 8 4218.4 4510.8 4267.7 4343.0 4418.1
20 × 5 × 2 470.4 571.9 496.3 571.4 541.0 80 × 3 × 2 1464.1 1606.9 1496.4 1619.0 1572.1
20 × 5 × 4 621.1 713.6 631.6 748.4 682.6 80 × 3 × 4 1566.7 1712.7 1595.7 1662.2 1672.0
20 × 5 × 6 825.1 948.4 843.9 928.2 916.2 80 × 3 × 6 2624.5 2776.4 2640.5 2746.8 2715.6
20 × 5 × 8 889.0 997.8 906.6 981.9 965.2 80 × 3 × 8 2780.4 2986.7 2816.1 2862.8 2900.0
40 × 2 × 2 1363.2 1446.2 1380.1 1409.9 1437.8 80 × 4 × 2 1901.0 2014.4 1915.4 2132.3 2001.0
40 × 2 × 4 1903.0 2017.3 1919.7 1949.8 1985.5 80 × 4 × 4 2013.7 2212.1 2049.9 2260.0 3132.7
40 × 2 × 6 1658.3 1813.4 1674.6 1705.0 1775.6 80 × 4 × 6 2242.2 2476.3 2284.6 2412.5 2354.8
40 × 2 × 8 2308.1 2442.8 2336.2 2359.5 2413.3 80 × 4 × 8 2254.8 2462.0 2290.3 2480.8 2405.9
40 × 3 × 2 938.4 1060.2 967.2 986.8 1014.7 80 × 5 × 2 999.7 1142.8 1030.2 1177.4 1098.4
40 × 3 × 4 1446.1 1605.9 1477.9 1516.4 1554.3 80 × 5 × 4 1724.0 1927.6 1755.0 1955.9 1835.9
40 × 3 × 6 1588.9 1736.5 1605.7 1650.1 1683.9 80 × 5 × 6 1787.3 2015.1 1826.3 2110.1 1929.8
40 × 3 × 8 1579.6 1725.6 1598.5 1702.2 1683.2 80 × 5 × 8 1845.6 2055.2 1883.2 2084.2 1952.3
40 × 4 × 2 903.4 1026.1 930.5 983.1 986.3 100 × 2 × 2 3094.1 3212.9 3105.0 3163.8 3166.5
40 × 4 × 4 1149.4 1268.6 1171.3 1240.6 1236.2 100 × 2 × 4 4898.9 5010.3 4904.5 4978.6 4968.6
40 × 4 × 6 1199.8 1353.3 1232.6 1326.0 1303.3 100 × 2 × 6 4749.8 4960.7 4784.4 4869.0 4885.1
40 × 4 × 8 1357.0 1531.6 1399.9 1535.4 1470.2 100 × 2 × 8 4895.7 5138.5 4938.7 4971.6 5037.0
40 × 5 × 2 661.1 765.6 688.3 771.1 735.3 100 × 3 × 2 2088.2 2254.8 2118.2 2175.5 2194.6
40 × 5 × 4 957.1 1119.3 989.8 1108.9 1063.1 100 × 3 × 4 3212.3 3441.0 3254.6 3356.5 3347.7
40 × 5 × 6 1148.0 1315.6 1180.3 1259.1 1263.1 100 × 3 × 6 3072.9 3239.3 3092.9 3186.2 3178.1
40 × 5 × 8 1322.7 1494.5 1346.1 1455.9 1458.5 100 × 3 × 8 3648.3 3889.2 3697.0 3843.5 3833.0
60 × 2 × 2 1673.9 1784.6 1691.3 1739.3 1730.9 100 × 4 × 2 1636.4 1769.4 1663.1 1789.0 1724.0
60 × 2 × 4 2829.7 3009.9 2860.1 2934.4 2947.4 100 × 4 × 4 2585.6 2789.4 2619.0 2743.0 2694.6
60 × 2 × 6 3048.1 3272.0 3074.1 3127.7 3214.0 100 × 4 × 6 2707.3 2954.7 2745.1 2893.4 2864.1
60 × 2 × 8 2894.7 3037.8 2911.2 2965.2 2983.3 100 × 4 × 8 2570.6 2796.7 2607.4 2754.7 2730.0
60 × 3 × 2 2024.4 2139.1 2033.2 2118.5 2098.8 100 × 5 × 2 1882.9 2063.9 1901.8 2113.7 1969.3
60 × 3 × 4 2127.4 2321.2 2159.4 2237.9 2258.6 100 × 5 × 4 1399.4 1543.3 1427.8 1586.0 1492.3
60 × 3 × 6 2232.9 2389.7 2247.4 2384.2 2352.9 100 × 5 × 6 1702.3 1901.0 1751.8 1945.8 1825.3
60 × 3 × 8 2351.6 2501.4 2384.5 2430.6 2451.5 100 × 5 × 8 2242.1 2483.8 2287.9 2504.7 2370.5

120 × 2 × 2 3465.1 3526.3 3513.7 3465.3 3501.8 140 × 2 × 2 4347.9 4406.0 4403.7 4341.4 4379.8
120 × 2 × 4 5718.8 5746.6 5749.7 5730.2 5740.3 140 × 2 × 4 6481.8 6527.7 6527.0 6484.7 6536.4
120 × 2 × 6 6004.3 6058.6 6067.9 5996.2 6054.9 140 × 2 × 6 6659.5 6791.3 6742.4 6670.5 6763.9
120 × 2 × 8 5774.9 5823.3 5817.8 5778.2 5822.5 140 × 2 × 8 6591.9 6677.5 6665.9 6597.7 6665.3
120 × 3 × 2 2254.5 2319.6 2320.8 2251.9 2304.8 140 × 3 × 2 2579.2 2654.2 2651.9 2587.7 2641.8
120 × 3 × 4 2497.0 2533.4 2526.2 2537.4 2534.8 140 × 3 × 4 2738.7 2831.5 2805.4 2746.7 2805.9
120 × 3 × 6 3967.7 4044.4 4006.5 4036.4 3972.4 140 × 3 × 6 4734.6 4752.2 4751.4 4807.3 4745.0
120 × 3 × 8 4378.2 4473.7 4453.6 4435.5 4459.2 140 × 3 × 8 3501.2 3605.0 3613.3 3512.4 3585.5
120 × 4 × 2 1799.1 1852.3 1837.5 1877.7 1818.5 140 × 4 × 2 2037.9 2058.0 2060.4 2202.6 2034.0
120 × 4 × 4 2203.7 2273.2 2243.1 2327.0 2220.8 140 × 4 × 4 2512.0 2532.8 2530.0 2593.1 2511.6
120 × 4 × 6 2388.6 2428.9 2453.9 2424.8 2425.8 140 × 4 × 6 3609.3 3648.7 3684.9 3857.9 3658.4
120 × 4 × 8 3233.4 3243.3 3235.2 3327.4 3236.9 140 × 4 × 8 3933.7 3966.3 4004.6 3946.3 3994.4
120 × 5 × 2 2397.5 2443.3 2424.1 2673.7 2415.5 140 × 5 × 2 1969.6 1999.7 1981.8 2038.5 1977.3
120 × 5 × 4 2635.4 2693.5 2702.9 2928.0 2689.8 140 × 5 × 4 2957.1 3015.5 3056.7 3107.6 3023.7
120 × 5 × 6 2678.0 2706.5 2725.4 2864.0 2693.7 140 × 5 × 6 3289.5 3340.7 3349.8 3477.8 3304.2
120 × 5 × 8 2739.1 2771.3 2777.6 2919.0 2782.5 140 × 5 × 8 3378.6 3467.8 3429.6 3466.8 3420.0
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Figure 3. Convergence curves of five algorithms.

Figure 4. Box plots of five algorithms.

Table 7. Results of Wilcoxon test.

Wilcoxon-Test MIN MAX AVG

Wilcoxon test (CSFLA, SFLA) 0.000 0.000 0.000
Wilcoxon test (CSFLA, IDCOA) 0.000 0.000 0.000
Wilcoxon test (CSFLA, HVNS) 0.000 0.000 0.000
Wilcoxon test (CSFLA, IWOA) 0.000 0.000 0.000
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As shown in Table 4, CSFLA obtains smaller MIN than SFLA on all instances and
MIN of CSFLA is lower than that of SFLA by at least 50 of 101 instances. CSFLA converges
better than SFLA. It can be found from Table 5 that MAX of CSFLA is better than that
of SFLA in 111 of 112 instances and SFLA is worse MAX than CSFLA in at least 50 of
91 instances. CSFLA possesses better stability than SFLA. Table 6 show that CSFLA obtains
smaller AVG than SFLA on all instances and AVG of CSFLA is better than SFLA in at least
50 f 96 instances. CSFLA has a better average performance than SFLA. The significant
performance differences between CSFLA and SFLA also can be seen from Table 7 and
Figures 3 and 4. The new strategies such as the three cooperations really have a positive
impact on the performance of CSFLA, so the new strategies are effective.

Table 4 show that CSFLA performs better than IDCOA, HVNS, and IWOA on MIN.
CSFLA produces smaller MIN than with three comparative algorithms on 104 of 112 in-
stances; moreover, MIN of CSFLA is less than that of IDCOA by at least 50 in 26 instances,
HVNS by at least 50 in 45 instances, and IWOA by at least 50 in 88 instances. CSFLA con-
verges better than the three comparative algorithms. The results in Table 7, Figures 3 and 4
also reveal the convergence advantage of CSFLA.

As stated in Table 5, CSFLA produces smaller MAX than three comparative algorithms
in 102 instances. CSFLA obtains smaller MAX than IDCOA by at least 50 in 20 instances;
MAX of CSFLA is less than that of HVNS by at least 50 in 95 instances and IWOA produces
a larger MAX by at least 50 in 86 instances. CSFLA performs better than its comparative
algorithms on stability performance. Figure 4 and Table 7 also depict the obvious stability
performance difference between CSFLA and its comparative algorithms.

It also can be found from Table 6 that CSFLA outperforms its three comparative
algorithms on AVG. CSFLA generates better AVG than its comparative algorithms in
107 instances. The advantages of CSFLA on average performance can also can be drawn
from Table 7 and Figure 4.

CSFLA possesses three cooperations, two of which are used between two memeplexes
of groups 1 and 2, and one of which is performed between group 1 and group 2. The adap-
tive search strategy is also used in search process of each group. These cooperations can
make full use of the good solutions in memeplexes of group 1 and avoid the computing
resource waste in group 2; as a result, exploration is intensified effectively and high diver-
sity can be kept. The periodical population shuffling can result in good solution structure
of memeplexes in T generations. The exploitation ability is also enhanced, so the new
strategies of CSFLA can make a good balance between exploration and exploitation, and
CSFLA produces promising results on DAHFSP with factory eligibility, which enriches the
optimization algorithm mechanism to solve the analyzed production scheduling problem.

5. Conclusions and Future Topics

DAHFSP with transportation and factory eligibility is seldom considered. In this
study, a new algorithm named CSFLA and based on three cooperations is presented to
solve DAHFSP with factory eligibility. The problem-related feature is used. Memeplexes
are evaluated, group 1 (with the two best memeplexes) and group 2 (with the two worst
memeplexes) are formed. A new cooperation between memeplexes and an adaptive search
strategy are implemented in each group. An adaptive cooperation between groups 1 and 2 is
also given. Population shuffling is executed every T generations. Extensive computational
experiments are conducted on 112 instances. Computational results demonstrate that
new strategies are effective and CSFLA is a very competitive algorithm for the considered
DAHFSP with makespan minimization. However, in real-life manufacturing exists complex
processing environments and constraints, which may cause limitations for this research.

Production scheduling problems exist in the real-life manufacturing processes such
as the casting process and engine assembly plant, and these problems have some special
features. For example, batch processing machines exist in the last stage of HFSP in the
steelmaking continuous-casting process. We will focus on production scheduling problems
in the casting process or other real-world manufacturing issues, and try to solve them
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by applying the characteristics of the problems and the new optimization mechanisms
of meta-heuristics.
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Abbreviations

SDST sequence-dependent setup time
gbest the best solution of population
stjil f the start time of the fabfication of comij at stage l in factory f
etjil f the end time of the fabfication of comij at stage l in factory f
tsti f the start time of transportation of producth i in factory f
teti f the end time of transportation of producth i in factory f
asti f the start time of assembly of product i in factory f
aeti f the end time of assembly of product i in factory f
U a large positive number
Xji f decision variable, if comij is allocated in factory f , Xji f = 1;

otherwise Xji f = 0
Yji f lk decision variable, if comij is allocated in M f lk, Yji f lk = 1;

otherwise Yji f lk = 0
Zjj′ i f l decision variable, if comij is processed before comij′ at stage l in factory f ,

Zjj′ i f l = 1; otherwise Zjj′ i f l = 0
Ai f decision variable, if product i is transported by TM f , Ai f = 1; otherwise Ai f = 0
Bii′ f decision variable, if product i is transported before product i

′
in factory f , Bii′ f = 1;

otherwise Bii′ f = 0

Dii′ f decision variable, if product i is assembled before product i
′

in factory f , Dii′ f = 1;
otherwise Dii′ f = 0

Ei f decision variable, if product i is assembled by AM f , Ei f = 1; otherwise Ei f = 0
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