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Abstract: The distributed assembly scheduling problem with a hybrid-flow shop for fabrication
is seldom studied, and some real-life constraints such as factory eligibility are seldom handled.
In this study, a distributed assembly hybrid-flow shop-scheduling problem (DAHFSP) with factory
eligibility is investigated, which has some symmetries on machines. A shuffled frog-leaping algorithm
with cooperations (CSFLA) is applied to minimize makespan. A problem-related feature is used.
Memeplexes are evaluated, and group 1, with the two best memeplexes, and group 2, with the two
worst memeplexes, are formed. A new cooperation between memeplexes and an adaptive search
strategy are implemented in groups 1 and 2, respectively. An adaptive cooperation between groups 1
and 2 is also given. Population shuffling is executed every T generations. A number of computational
experiments are conducted. Computational results demonstrate that new strategies are effective and
CSFLA is a very competitive algorithm for DAHFSP with factory eligibility.

Keywords: distributed assembly scheduling; hybrid-flow shop scheduling; factory eligibility;
shuffled frog-leaping algorithm; cooperation

1. Introduction

The distributed hybrid-flow shop-scheduling problem (DHFSP) is the extended ver-
sion of the hybrid-flow shop-scheduling problem (HFSP) in multiple factories, each of
which has a hybrid-flow shop. In the past decade, DHFSP has attracted much attention
and a number of results have been obtained [1-7].

DHEFSP, with various processing constraints, has been extensively investigated, mainly
by using heuristics and meta-heuristics, which include cooperative memetic algorithms [7],
constructive heuristics [4], memetic algorithms [8], three fast heuristics and an adaptive
genetic algorithm [9], hyper-heuristics [10], the iterative greedy (IG) algorithm [11], and
the shuffled frog-leaping algorithm (SFLA) with Q-learning [12]. Energy efficiency, no wait,
factory eligibility, third-party logistics, blocking, and assembly are dealt with.

Apart from the above constraints, DHFSP with multiprocessor tasks is solved by IG [13],
dynamical SFLA [14], and evolutionary algorithms [15]. Some meta-heuristics are also applied
to solve DHFSP with SDST, these algorithms are improved artificial bee colony (ABC) [16],
discrete ABC [6], SFLA with memeplex quality [17], SFLA with memeplex grouping [18], and a
diversified teaching—learning-based optimization [19].

In the past decades, distributed assembly scheduling problems (DASP), being com-
posed of a fabrication stage with parallel machines or permutation flow shop, transportation
stage, and assembly stage, have been extensively considered [20-25]; however, transporta-
tion is often neglected and DAHFSP, which is DASP with a hybrid-flow shop at the
fabrication stage, is seldom studied.

As stated above, many works have been carried out on DHFSP with various real-life
constraints such as no wait, blocking, SDST, and assembly in the past five years. DASP with
constraints such as setup time and maintenance is also frequently studied; however, some
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constraints, including factory eligibility, are seldom handled. Factory eligibility means
that not all factories are eligible for each job. It is a typical constraint in multiple factories,
which are obtained by mergers and acquisitions or given different production requirements.
DHESP with factory eligibility is also seldom investigated, let alone DAHFSP with factory
eligibility. The considerations on factory eligibility will lead to high application value of
the optimization results, thus, it is necessary to handle DAHFSP with factory eligibility.

SFLA is a meta-heuristic with a fast convergence speed, which models the behavior
of frogs when searching for the location that has the most food [26]. It has been diffusely
exploited to deal with different scheduling problems [14,17,18,27-36]; moreover, it can be
found that SFLA has been successfully developed to solve DHFSP with SDST and multi-
processor tasks and DAHFSP. The promising advantages and search abilities are proved;
moreover, in recent years, some new optimization mechanisms, such as reinforcement
learning and dynamical adjustment, have been adopted in SFLA and the performance
is notably improved with the usage of new mechanisms. However, the works on SFLA
with new mechanisms are very limited, and some mechanisms such as cooperation are
seldom adopted in SFLA; thus, on the basis of the above analyses, it is concluded that SFLA
with a new optimization mechanism may be a potential method to solve DAHFSP with
factory eligibility.

In this study, DAHFSP with factory eligibility is considered and a new shuffled
frog-leaping algorithm with cooperations (CSFLA) is presented to minimize makespan.
A problem-related feature is used. Memeplexes are evaluated, and group 1 (with the two
best memeplexes) and group 2 (with the two worst memeplexes) are formed. Two new
cooperations between memeplexes and two adaptive search strategies are implemented.
An adaptive cooperation between groups 1 and 2 is also given. Population shuffling is
executed every T generations. A number of computational experiments are conducted.
Computational results demonstrate that new strategies are effective and CSFLA is a very
competitive algorithm for the considered DAHFSP.

The problem is depicted in Section 2. CSFLA for DAHFSP with factory eligibility
is described in Section 3. Computational experiments on five algorithms are explored in
Section 4. The conclusions and future topics are provided in the final section.

2. Problem Description

DAHFSP with factory eligibility is described as follows. There are n products, the com-
ponent set of product i is ¥; according to bill of material. There are F heterogeneous
factories, the factory f has a hybrid-flow shop, in which exists S component processing
stages and m; identical parallel machines at stage / as well as a machine T M for trans-
portation and a machine AM for assembling. M denotes the k-th processing machine at
stage [ in factory f.

All components of a product are first processed at the processing stage. When all
components are processed, they are transported by TM to AMy and the product is made.
For a product i, all its components are handled as jobs in HFSP, and each component is
fabricated in the same flow: stage 1, stage 2, .. ., stage S.

com;; denotes the jth component of product i and the processing time of com;; is pj; ¢ at
stage | in factory f. tr;r and as;y are the time for transportation and assembling of product i
in factory f.

At least one product i has aset ®; C {1,2,...,F}. Product i can only be fabricated,
transported, and assembled in a factory belonging to ©;.

The constraints of DAHFSP have been introduced by Cai et al. [12].

The newly analyzed DAHFSP with factory eligibility is composed of factory assign-
ment, HFSP for all components of each product, and product scheduling. Strong coupled
relations are among these sub-problems.

For each product, the number of its components is limited. HFSP for all its components
is a small-scale problem with makespan minimization and can be easily solved by heuris-
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tics.This is a characteristic, so only factory assignment and scheduling for all products are
required to be optimized.

The goal of the problem is to minimize makespan under the condition that all con-
straints are met. The optimization formulation is as follows:

min Cpaxy = max{C;li =1,2,...,n} 1)
Subject to

fil Xiif = 1,Vj,i, f € ©; @)
Xjif = Xy, Vi, f € ©; 3)

my
k:Zl Yiisie = Xjig, Vi, i, 1, f € O (4)
sting > 0,Y),i, f € ©; (5)
stigen)ys > etjip Vil f € ©; (6)
etjiiy = stjig + pjif, Vi i, L f € O; @)
tst;p > max{etjise},Vj, i, f € ©; (8)
teti = tstiy +trif, Vi, f € ©; )
astiy > tetif, Vi, f € ©; (10)
Ci = astjf +as;f, Vi, f € O; (11)
Ziin+ Zpsin <1V LF €O (12)
Ziip+ Zojn 2 Yipw + Yy — LVf € 0,1,i,j >jke{1,2,...,m} (13)
stiig > etjup — U X 3= Yip = Yy — Zivi), Vi # i, Lk € {1,2,...,m}, f € ©; (14)
By + By < 1Vi, i, feo (15)
By s+ By = Aip + Ay~ LVii, f €O (16)
tsty > tetip — U x (3= Ayp — Ay — By ), Vi, i, feo (17)
Dys+Dyyy <LVii, f €O, (18)
Dyss+ Dy = Eig+ Egp — LVii ,f €0 (19)
asty > aetip — U x (3= Eif —Eg =Dy ), Vi,i, f €O, (20)
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Xjir € {0,1},Vj i, f € ©; (21)

Y € {0,1},V),i, Lk € {1,2,...,m;}, f € ©; (22)
Ziia €011V #7,iLf €6 (23)

Air € {0,1},Vi, f € ©; (24)

By €{01},Vi#i, fe® (25)

Eif €{0,1},Vi f € ©; (26)

Dy s €{0,1},Vi # i, feo; (27)

where Cy;4y indicates maximum completion time of all products and C; is the completion
time of product i in formulation (1); constraint (2)—(7) are some constraints on components;
constraint (8)—(11) are some constraints on products and constraint (12)—(14) show the
constraints on machines for component fabrication; constraint (15)-(17) and (18)—(20),
respectively, indicate the constraints on the transportation machine and assembly machine;
constraints (21)—(27) show the decision variables. Abbreviations provide the notations and
their descriptions.

For the problem with makespan, on each machine Mgy at each stage there exists a
job-related symmetry, that is, two adjacent components are exchanged and the maximum
completion time of all components on My is not changed. The maximum completion
time of the fabrication stage is also not varied; however, makespan may be changed after
transportation and assembly when two adjacent components are exchanged on a M.

Tables 1 and 2 show an illustrative example with five products and 2 factories, each
of which has two stages for component fabrication. ®; = @, = @5 = {1,2}, ©3 = {1},
©4 = {2}. Figure 1 describes a schedule of the example.

Table 1. The example information of products.

trif as;f
Product i |'¥; |
Factory 1: trj1/Factory 2: trip Factory 1: as;1/Factory 2: as;,
1 4 25/21 54/58
2 2 34/38 92/100
3 3 49/55 19/29
4 2 88/84 37/39
5 4 95/96 36/41

Table 2. The processing information of components.

Product i 1 2 3 4 5
com;;j 1 2 3 4 1 2 1 2 3 1 2 1 2 3 4
Factory 1: pjinl 43 93 22 19 40 75 70 68 36 41 34 73 45 43 50

pj;1 54 8 47 9% 34 41 43 100 9 49 25 69 57 78 33

pjia 55 87 24 20 48 72 73 66 42 4 23 74 42 54 48
pjia 46 91 48 92 27 39 49 % 9 42 34 65 42 69 45

Factory 2:
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Figure 1. A schedule of the example.
3. CSFLA for DAHFSP with Factory Eligibility

A kind of cooperation is implemented between the best and the worst memeplex [27].
In this study, three cooperations are performed, two of which are between memeplexes
and one of which is performed between two groups of memeplexes. The detailed steps of
CSFLA are shown below.

3.1. Initialization

As analyzed above, only factory assignment and product scheduling are needed
to be optimized after HFSP, for all components of each product are solved by heuris-
tics.For DAHFSP with factory eligibility, n products and F factories, its solution consists of
a factory assignment string [01, 65, ..., 6,] and a product scheduling string [y, 71, . . ., 7],
where 6, € ©;, r; € {1,2,...,n}.

Algorithm 1 shows the detailed steps of decoding, where if more than one machine has
the same smallest available time in line 8, a machine with the smallest subscript is chosen.

Algorithm 1 Decoding

1: for f =1to F do
2:  decide all assigned products by factory assignment string and obtain a permutation
of these products in factory f, suppose that the permutation is 711, 72, . . ., 7tg

3 forl=1togdo
4 determine a permutation of all components for product 71; by a heuristic
5: suppose the permutation is com 1, . . ., COM |y, |/
6: forh =1to [¥| do
7: forj=1toSdo
8: fabricate component com,; on a machine Myj with the smallest available
time
9: end for
10: end for
11: move all components of product 77; by TM¢ to AMy and assemble all components.
12 end for
13: end for

The heuristic for a permutation of all components of product i is described below.
For each component com;j, compute 2;5:1 pjirg; sort all components of product i in the
ascending order of 215:1 pjiif and obtain a permutation.

For the example in Tables 1 and 2, a solution is represented as [1,2,1,2,2] and [2,4,3,5,1].
In factory 2, products 2, 4, 5 are assigned and their coresponding permutation is 2, 4, 5. Product 2
is first handled; for product 2, a permutation of its components is 1, 2, for component 1 of
product 2, M1 and Mpp; are chosen. The final schedule is shown in Figure 1.
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An initial population P with N initial solutions is randomly generated and then di-
vided into s memeplexes Mj, My,..., M, according to the descriptions in [26].
N = 5 X Msize, where Msize is the size of the memeplex.

Quality Me; of memeplex M; is evaluated by

Me; = ¥ e | {1 € P|Chax > Clax || 8)

All memeplexes are sorted in the descending order of Me;; suppose that Me; > Me, >
... > Mes. Group 1 is composed of M7, M; and group 2 is made up of M, M;_1. A cooper-
ation is applied in each group and cooperation between two groups is implemented.

3.2. Two Cooperations in the Search Process of Group 1

In the search process of group 1, the memeplex search is implemented by a cooperation
between Mj, M; in group 1, then, to implement cooperation between groups 1 and 2,
the number # of the reinforcement search in group 1 is computed and the reinforcement
searches are executed in M1, My, respectively. Algorithm 2 shows the cooperation-based
search process of M7, M and Algorithm 3 describes the search process of group 1, where
() is used to store some best solutions and ¥ is applied to keep historical data, and the
integer V means the volume of () and Y. The initial () consists of the best V solutions of
population P and the initial ¥ is empty. () is updated by a new solution that is better than
the worst solution in it, and ¥ has the same update as with () if it is accumulated fully by
solutions. NS; denotes neighborhood search, [ = 1,2, 3.

7 =2xpux (Me; + Mey)/(Mey + Mep + Mes_1 + Mes) (29)

Algorithm 2 Cooperation within group 1

1: fort =1t02 x pudo
2:  decide a set A,-:{x € M| Chiax > Lyem; C%ux/Msize}, i=1,2

3. randomly choose x € M1\A; and y € M>\A; and choose a better solution from x, y
as optimization object, suppose x is chosen, v = 0

4:  execute global search between x and y and obtain a new z
5. if Cy < Gy then
6: x is replaced and () is updated with z, ¥y =1
7. else
8: if C2,,, < Cinax then
9: y is replaced and Q) is updated with z, ¥ =1
10: else
11: z is used to renew memory ¥
12: end if
13:  endif
14:  if y = 0 then
15: perform global search between x, gbest, generate a new z and execute lines 5-13
16:  end if
17:  if v = 0 then
18: execute NS1 on x
19:  endif
20: end for

AF = |Cle — Zye./\/l,- C%mx/Msizd/ZyeMi C%mx/Msize (30)

Cai and Lei [27] proposed two global search operators for a product scheduling string and
factory assignment string. The global search is depicted as follows. For solutions x, i, randomly
choose one of two operators with the same probability, and produce a new solution by the
chosen operator.
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Eight neighborhood structures are used. N7 is shown below. Randomly decide a factory
f and stochastically select products i, j assigned in factory f; suppose that 77¢ = j, insert
product i into the position g of scheduling string. N, is described as follows. Randomly
choose a factory f and a product i in factory f, stochastically decide a factory I, if | € ©;, then
let 6; = I; otherwise, randomly choose a factory v, if v € ©;, then let §; = v. N3 is similar to
Ni; products i, j are swapped in scheduling string. N has similar steps to N; factories f,
are randomly decided, products i, j are randomly chosen from factories f, I, respectively, then
i, j are exchanged in the scheduling string. Let 6, = vand 6, = fif f € ®;, v € O;;if f € O;
or v € @; are not met, randomly choose a product j’ from factory v, if f € @, v € ©;, then
i,j are exchanged in the scheduling string and let §; = v and 6 = f.

Algorithm 3 Reinforcement search process in group 1

1: execute cooperation-based search process of M7, M> in Algorithm 2
2: compute 1y = 17 X Me, /(Meq + Mey) and up = 17 — 11
3: fori =1to2do

4 forv =1tou; do
5 decide sets A;, randomly choose a x € A, x # X and compute AY
6 if AY <|A;|/Msize then
7: v=0
8: if ¥ is not empty then
9: randomly select a y € ¥, replace x with y if Ciar < Ciis
10: if Cay > C,y then
11: execute global search between y and gbest, obtain a new z and replace x with z, v = 1 if
Cfnax < CTA;IHX
12: end if
13: end if
14: if v = 0 or ¥ is empty then
15: randomly choose a y € ), perform global search between x,y, produce a new 2/, if 2’ is better than
x, x =z’ , otherwise, perform NS ony, x =y
16: end if
17: else
18: perform global search between x, ghest and obtain a new z, if C;,,, < C}j,,, then replace x with z;
otherwise, randomly choose a y € (), select one of NS, and NS3 with the same probability, execute
the chosen one on y and y substitutes for x
19: end if
20:  end for
21: end for

Suppose that factory 1 has the biggest completion time and factory 2 has the smallest
completion time. When N7, N3 are performed in factory 1, then N5 and N7 are obtained.
N is described as follows. Randomly select a product i in factory 1 and a product j from
factory 2, if 2 € ©;, then let 6; = 2; otherwise, randomly decide a product j from factory 1,
if 2 € @;, then let §; = 2. N is shown below. Products i,j are randomly chosen from
factories 1, 2, respectively, i, j are exchanged in the scheduling string, and let §; = 2 and
6]:11f1 €®jand2€®i.

NS for solution x is shown as follows. Randomly choose a v € {1,2,3,4}, sequentially
execute Ny, (v—1)+1/ Ny (0—1)42 On X, a new solution z is obtained, if z is better than x, then
z substitutes for x.

NS; is described below. Define a1 = 2,00 = 1,83 = 4,04 = 3,let g =1, v = 0, repeat
the following steps until ¥ > 0 or ¢ > 4: produce a solution z € Ny, (x), if z is better
than x, then z substitutes for x and v = 1; otherwise, ¢ = ¢+ 1, where N, g(x) is the set of
neighborhood solutions produced by N, on x.

NS3 has the same steps as NSp. In NSy, a1 = 6,00 = 5,03 =8, a4 = 7.

In Algorithm 3, for each x € A;, Cj,,, is greater than the average makespan of M;,i = 1,2,
if AY = 0.1(0.6), then Cpy = 115 e pp, Chiax / Msize (1.6 ¥ye g, Chiax / Msize ), the condi-
tion of line 6 means that Cj,,, slightly exceeds the average makespan and the condition of line
17 denotes that C;;,,, exceeds greatly the average makespan. The search operator is decided
adaptively by one of the above conditions; moreover, the cooperation-based search process
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between M, M acts on solutions out of A1, A, and reinforcement search is performed on
solutions in Ay, Ay, as a result, exploration ability of CSFLA is intensified greatly.

3.3. Cooperation-Based Search Process of Group 2

Algorithm 4 describes the cooperation-based search process of group 2, where § and

num are defined.
_ Mey + Mep, — Mes_q — Mes

6
Meq + Mey

(31)

num = max{|®|,2|P®| x 6} (32)

Algorithm 4 Cooperation-based search process of group 2
1: let the set TE = M_1 U Mg;
2: decide @ = {x € TE|Char > Tyere Chax / (2 x Msize) }
3: fort =1to2u —ndo
4:  decide two best solutions x1, xo € TE, suppose x7 is chosen, Colax < CiZx,a randomly
chose solution x3 € Q)

if6 < 2. then

5 2 X Msize
6: randomly choose one of x1, xp,let y =0
7: if ¥ is not empty then
8: randomly select y € ¥, if y is better than xq, then x; =y, v = 1; otherwise, if y
is better than x;, then xp = yand y =1
9: end if
10: if ¥ isempty or v = 0 then
11: execute similar steps with lines 4-18 of Algorithm 2
12: end if
13:  else
14: perform global search between x3, gbest and obtain a new z
15: if CZ,, < Cyiy then
16: X1 = X3 and X3 =2
17: else
18: let{ = 0;if C3,,, < Cplx, letx) =2z, 0 =1;if C3,, < Chlx, letxo =2z,0 =1
19: if £ = 0 then
20: execute a chosen one from NS, and NS3 with the same probability on x3
21: end if
22: end if
23:  end if
24: end for

25: forr = 1 to num do
26 if rand < |®|/(2 x Msize) then

27: randomly choose x € M) and replace the worst solution in TE with x
28: else

29: if rand > |®|/(2 x Msize) then

30: randomly choose x € M, and replace the worst solution in TE with x
31: else

32: randomly choose x € () and replace the worst solution in TE with x
33: end if

34:  end if

35.  choose one NS; with the same probability from NS;, NS, NS3 and execute the
chosen NS; on the replaced solution
36: end for

The similar steps with lines 4-18 of Algorithm 2 are shown below. x is optimization
object, which is randomly chosen from x1, x, y is x3 in all lines except lines 5-9, in which
x,y is changed into x1, x2, respectively.
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In Algorithm 4, M and M,_; are combined into a new memeplex TE and search
process in TE is executed by an adaptive search strategy based on J. The search times of
group 2 is 2u — 1, the reinforcement search of group 1 is executed # times in Algorithm 3,
and M, M;_; are updated by using solutions from My, Mj or Q. This is an adaptive
cooperation between two groups.

3.4. Algorithm Description
Algorithm 5 describes the detailed steps of CSFLA, where T is the integer.

Algorithm 5 CSFLA

1: randomly produce initial population P, let gen =1
2: divide population P into s memeplexes
3: while stopping condition is not met do
compute Me; for each memeplex M; and construct groups 1 and 2
execute cooperation within group 1 and reinforcement search process in group 1
perform search process of each memeplex M;,i #1,2,5s —1,s
execute cooperation-based search process of group 2
if gen is exactly divided by T then
perform memeplex shuffling and divide population P into s memeplexes
10: endif
11: gen =gen+1
12: end while

The search process of M;,i # 1,2,5 — 1, s is depicted below. x;, € M; is the optimiza-
tion object, a solution y € (2 is randomly decided, a global search is performed between
xp and y, if C%,, < Cilox, then xp = z; otherwise, execute a global search between x;, gbest
and produce a new 2/, if Cﬁ;ax < Cpb., then xp = z; otherwise, perform a chosen one of
NS1, NSy, NSz with the same probability on xy,.

When gen is divided exactly by T, all evolved memeplexes are formed into a new
population P.

Unlike the previous SFLA [14,17,18,27,35], CSFLA has some new features. (1) Meme-
plexes are evaluated and two groups are formed by using M1, My, M;_1, M. (2) A
cooperation between two memeplexes is performed in groups 1 and 2, respectively, and an
adaptive cooperation between groups 1 1 and 2 is implemented, so three cooperations are
used. (3) An adaptive search strategy is applied in groups 1 and 2, respectively, and popu-
lation shuffling is executed every T generations; as a result, memeplexes and groups can
exist in T generations and can be evolved well by using the same solution structure in
each memeplex.

4. Computational Experiments

All experiments are implemented by using Microsoft Visual C++ 2019 and run on 8.0G
RAM 2.4 GHz CPU PC.

4.1. Test Instances and Comparative Algorithms

112 instances are used, each of which is depicted as n x F x S. piif € [1,100],
trig € [1,100], as;¢ € [1,100], [¥;] € [2,5], m; € [2,5]. All of the above data are integers.

A hybrid variable neighborhood search (HVNS) [37], improved discrete cuckoo opti-
mization algorithm (IDCOA) [38], and improved whale optimization algorithm (IWOA) [39]
are chosen as comparative algorithms.

HVNS is used to solve the distributed assembly flow shop-scheduling problem. HVNS
can be applied to address DAHFSP after heuristics for HFSP for all components of each
product in Section 3.1 is used. IWOA is to solve distributed assembly flow shop scheduling
with transportation. It can be used to solve our DAHFSP after the heuristic for HFSP of
Section 3.1 is adopted.
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IDCOA with only product permutation is handled to deal with the three-stage as-
sembly flow shop-scheduling problem. To solve DAHFSP, heuristics for HESP for all
components of each product is added, factory assignment and N5 are adopted, and a global
search of CSFLA substitutes for the immigration operator of IDCOA is carried out.

SFLA is used to test the effect of the new strategies in CSFLA. The search process
within each memeplex has similar steps with the search process of M3 SFLA, however, v is
the second best solution in M; and the random way of Section 3 substitutes for the random
selection from NS1, NSy, NS3, no cooperations are used and T is 1.

4.2. Parameter Settings

CSFLA has following parameters: N, s, i, T, V, and a stopping condition. It can be
found that CSFLA can converge well when time reaches 0.1 x n x S seconds CPU; moreover,

when 0.1 x n x S seconds CPU time is applied, all comparative algorithms also converge
well, so this time is chosen as stopping condition.

The taguchi method [40] is used to decide the settings for other parameters by using
the instance 60 x 4 x 4. Table 3 shows the levels of each parameter. The orthogonal array
L16(4%) is tested. CSFLA with each combination runs 10 times independently, for instance
60 x 4 x 4.

Table 3. Parameters and their levels.

Factor Level
Parameters
1 2 3 i
N 60 90 120 150

S 5 6 10 15
U 30 40 50 60

T 2 3 4 5

1% 3 4 5 6

Figure 2 shows the results of MIN and S/ N ratio, which is defined as —10 x log,,(MIN?).
It can be found from Figure 2 that CSFLA with following combination N = 60, s = 10, 4 = 50,

T = 5, V = 4 can obtain better results than CSFLA with other combinations, so the above
parameter settings are chosen.
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Figure 2. Main effect plot for mean MIN and S/N ratio.
SFLA has N = 60, s = 10, 4 = 50, and the above stopping condition.

The parameter settings of the three comparative algorithms are directly selected from

the references, except for the stopping condition, because of the effectiveness of these
settings of each comparative algorithm.

4.3. Results and Discussions

CSLFA, SFLA, and three comparative algorithms are compared. Each algorithm ran-
domly runs 10 times for each instance. MIN (MAX) denotes the best (worst) solution’s
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Ciax found in the 10 runtimes and AV G denotes the average Cy,x of solutions in 10 run-
times. Tables 4—6 describe the corresponding results of five algorithms. Figures 3 and 4
show convergence curves and box plots of all algorithms. The relative percentage deviation
(RPD) between the best-performing algorithm and the other four algorithms is used in
Figure 4 and Table 7 gives the results of the paired-sample Wilcoxon test.

Table 4. Computational results of instances of five algorithms on MIN.

Instance CSFLA SFLA IDCOA HVNS IWOA Instance CSFLA SFLA IDCOA HVNS IWOA

20 x 2 x 2 664.0 722.0 689.0 699.0 702.0 60 x4 x2 1033.0 1148.0 1055.0 1078.0 1098.0
20x 2 x4 1071.0 1161.0 1099.0 1105.0 1103.0 60 x 4 x 4 1651.0 1798.0 1687.0 1719.0 1757.0
20x2x6 1351.0 1418.0 1372.0 1377.0 1399.0 60 x4 x6 1229.0 1381.0 1264.0 1319.0 1338.0
20x2x8 1499.0 1639.0 1537.0 1563.0 1574.0 60 x4 x8 1705.0 1840.0 1730.0 1760.0 1764.0

20 x 3 x 2 711.0 769.0 730.0 741.0 765.0 60 x5 x2 1172.0 1274.0 1186.0 1284.0 1260.0
20 x 3 x 4 903.0 994.0 932.0 922.0 953.0 60 x5 x4 1271.0 1399.0 1292.0 1313.0 1344.0
20x 3 x6 846.0 904.0 860.0 881.0 907.0 60 x5 x 6 1483.0 1650.0 1537.0 1579.0 1628.0
20 x 3 x8 1158.0 1245.0 1179.0 1174.0 1223.0 60 x5x8 1609.0 1745.0 1619.0 1766.0 1706.0
20 x 4 x 2 405.0 455.0 414.0 426.0 434.0 80 x 2 x2 3846.0 3915.0 3850.0 3895.0 3872.0
20 x4 x4 579.0 670.0 603.0 616.0 649.0 80 x2x4 2624.0 2764.0 2627.0 2674.0 2719.0
20x 4 x6 816.0 872.0 841.0 849.0 844.0 80 x2x6 3715.0 3910.0 3741.0 3767.0 3855.0
20 x4 x8 916.0 1001.0 917.0 946.0 969.0 80 x2x8 4184.0 4421.0 4230.0 4247.0 4372.0
20 x 5 x 2 455.0 526.0 476.0 499.0 520.0 80 x3x2 1446.0 1572.0 1480.0 1476.0 1537.0
20 x5 x4 608.0 694.0 617.0 668.0 659.0 80 x 3 x 4 1548.0 1675.0 1556.0 1611.0 1641.0
20 x 5% 6 808.0 898.0 814.0 849.0 876.0 80x3x6 2603.0 2715.0 2610.0 2666.0 2690.0
20x5x 8 874.0 955.0 882.0 918.0 908.0 80 x 3 x8 2753.0 2933.0 2782.0 2800.0 2818.0

40 x2x2 1356.0 1423.0 1362.0 1370.0 1407.0 80 x4 x2 1885.0 1944.0 1895.0 1962.0 1939.0
40 x 2 x4 1887.0 1982.0 1902.0 1913.0 1950.0 80 x 4 x 4 1994.0 2155.0 2035.0 2093.0 2083.0
40 x2x6 1629.0 1775.0 1655.0 1655.0 1737.0 80 x4 x6 2203.0 2437.0 2261.0 2324.0 2295.0
40 x2x 8 2285.0 2395.0 2323.0 2323.0 2380.0 80 x4 x8 2230.0 2388.0 2253.0 2372.0 2361.0
40 x 3 x 2 930.0 1031.0 951.0 944.0 961.0 80 x5 x2 978.0 1120.0 1010.0 1028.0 1067.0
40 x 3 x 4 1427.0 1562.0 1456.0 1473.0 1502.0 80 x5 x4 1703.0 1864.0 1739.0 1782.0 1799.0
40 x 3 x6 1568.0 1695.0 1583.0 1592.0 1626.0 80 x5 x6 1747.0 1946.0 1808.0 1886.0 1881.0
40 x 3 x 8 1564.0 1691.0 1571.0 1600.0 1623.0 80 x5x8 1826.0 2011.0 1850.0 1942.0 1930.0
40 x 4 x 2 885.0 979.0 919.0 926.0 939.0 100 x 2 x 2 3080.0 3135.0 3086.0 3117.0 3136.0
40 x4 x4 1137.0 1219.0 1142.0 1188.0 1202.0 100 x 2 x 4 4874.0 4970.0 4866.0 4929.0 4936.0
40 x4 x6 1184.0 1282.0 1218.0 1239.0 1258.0 100 x 2 x 6 4711.0 4870.0 4755.0 4819.0 4822.0
40 x4 x 8 1336.0 1497.0 1384.0 1428.0 1420.0 100 x 2 x 8 4866.0 5075.0 4891.0 4913.0 4986.0
40 x 5 x 2 635.0 724.0 673.0 690.0 706.0 100 x 3 x 2 2074.0 2226.0 2103.0 2105.0 2148.0
40 x5 x 4 934.0 1084.0 966.0 973.0 1026.0 100 x 3 x 4 3189.0 3375.0 3216.0 3288.0 3287.0
40 x5x6 1122.0 1283.0 1160.0 1162.0 1218.0 100 x 3 x 6 3035.0 3173.0 3070.0 3126.0 3101.0
40 x5 x 8 1299.0 1462.0 1327.0 1332.0 1387.0 100 x 3 x 8 3591.0 3809.0 3664.0 3710.0 3752.0
60 x2x2 1646.0 1749.0 1657.0 1676.0 1702.0 100 x 4 x 2 1613.0 1733.0 1650.0 1698.0 1670.0
60 x 2 x 4 2808.0 2920.0 2824.0 2863.0 2890.0 100 x 4 x 4 2568.0 2724.0 2580.0 2613.0 2647.0
60 x2x6 3027.0 3195.0 3037.0 3065.0 3170.0 100 x 4 x 6 2676.0 2870.0 2709.0 2773.0 2772.0
60 x 2 x 8 2863.0 3001.0 2891.0 2927.0 2941.0 100 x 4 x 8 2526.0 2733.0 2572.0 2686.0 2693.0
60 x 3 x 2 2015.0 2096.0 2023.0 2047.0 2054.0 100 x 5 x 2 1869.0 2027.0 1880.0 1965.0 1889.0
60 x 3 x 4 2099.0 2278.0 2126.0 2148.0 2215.0 100 x 5 x 4 1374.0 1466.0 1399.0 1449.0 1419.0
60 x 3 x6 2211.0 2339.0 2222.0 2273.0 2294.0 100 x 5 x 6 1684.0 1851.0 1738.0 1862.0 1765.0
60 x 3 x 8 2331.0 2457.0 2344.0 2378.0 2403.0 100 x 5 x 8 2205.0 2434.0 2252.0 2365.0 2312.0
120 x 2 x 2 3422.0 3479.0 3463.0 3433.0 3476.0 140 x 2 x 2 4265.0 4358.0 4364.0 4271.0 4321.0
120 x 2 x 4 5671.0 5720.0 5701.0 5683.0 5694.0 140 x 2 x 4 6415.0 6504.0 6590.0 6425.0 6507.0
120 x 2 x 6 5951.0 6040.0 6043.0 5954.0 6031.0 140 x 2 x 6 6614.0 6706.0 6677.0 6625.0 6665.0
120 x 2 x 8 5704.0 5787.0 5775.0 5712.0 5788.0 140 x 2 x 8 6533.0 6610.0 6600.0 6535.0 6622.0
120 x 3 x 2 2229.0 2253.0 2263.0 2202.0 2238.0 140 x 3 x 2 2563.0 2619.0 2609.0 2557.0 2600.0
120 x 3 x 4 2411.0 2496.0 2489.0 2444.0 2483.0 140 x 3 x 4 2698.0 2757.0 2773.0 2673.0 2758.0
120 x 3 x 6 3846.0 3997.0 3941.0 3802.0 3911.0 140 x 3 x 6 4638.0 4664.0 4690.0 4655.0 4673.0
120 x 3 x 8 4265.0 4428.0 4382.0 4272.0 4381.0 140 x 3 x 8 3438.0 3530.0 3569.0 3451.0 3526.0
120 x 4 x 2 1741.0 1785.0 1747.0 1771.0 1767.0 140 x 4 x 2 2002.0 2016.0 2035.0 1964.0 1988.0
120 x 4 x 4 2145.0 2238.0 2195.0 2146.0 2203.0 140 x 4 x 4 2425.0 2482.0 2433.0 2486.0 2481.0
120 x4 x 6 2258.0 2378.0 2376.0 2272.0 2383.0 140 x4 x 6 3517.0 3562.0 3619.0 3573.0 3588.0
120 x 4 x 8 3146.0 3209.0 3184.0 3150.0 3151.0 140 x 4 x 8 3839.0 3937.0 3912.0 3842.0 3915.0
120 x 5 x 2 2317.0 2358.0 2363.0 2329.0 2350.0 140 x 5 x 2 1904.0 1941.0 1915.0 1959.0 1925.0
120 x 5 x 4 2558.0 2606.0 2581.0 2616.0 2633.0 140 x 5 x 4 2875.0 2949.0 2954.0 2882.0 2952.0
120 x5 x 6 2601.0 2608.0 2651.0 2585.0 2648.0 140 x 5 x 6 3142.0 3297.0 3198.0 3315.0 3211.0
120 x 5 x 8 2655.0 2690.0 2724.0 2747.0 2729.0 140 x 5 x 8 3245.0 3405.0 3359.0 3199.0 3317.0
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Table 5. Computational results of instances of five algorithms on MAX.

Instance CSFLA SFLA IDCOA HVNS IWOA Instance CSFLA SFLA IDCOA HVNS IWOA
20 x 2 x 2 691.0 790.0 726.0 760.0 824.0 60 x 4 x 2 1064.0 1218.0 1085.0 1238.0 1181.0
20 x2 x4 1099.0 1205.0 1124.0 1150.0 1225.0 60 x 4 x 4 1692.0 1923.0 1723.0 2223.0 1834.0
20x2x6 1374.0 1470.0 1414.0 1430.0 1458.0 60 x 4 x6 1285.0 1452.0 1311.0 1495.0 1462.0
20x2x8 1554.0 1754.0 1600.0 1642.0 1735.0 60 x4 x8 1754.0 1924.0 1773.0 2236.0 1920.0
20 x 3 x 2 728.0 857.0 758.0 853.0 815.0 60 x 5 x 2 1239.0 1448.0 1241.0 1551.0 1304.0
20 x 3 x 4 938.0 1072.0 978.0 1116.0 1113.0 60 x5 x 4 1289.0 1514.0 1328.0 1789.0 1451.0
20 x 3 x6 895.0 1000.0 906.0 1054.0 1047.0 60 x5 x6 1532.0 1809.0 1568.0 2073.0 1725.0
20x 3 x 8 1192.0 1354.0 1236.0 1285.0 1350.0 60 x5 x 8 1663.0 1886.0 1698.0 1997.0 1807.0
20 x 4 x2 425.0 493.0 438.0 476.0 465.0 80 x2x2 3869.0 3986.0 3892.0 3960.0 4006.0
20x 4 x 4 611.0 714.0 640.0 665.0 758.0 80 x 2 x 4 2655.0 2844.0 2691.0 2770.0 2818.0
20 x4 x6 844.0 1004.0 872.0 1020.0 1002.0 80x2x6 3765.0 3987.0 3791.0 3944.0 3953.0
20 x 4 x 8 954.0 1082.0 959.0 1103.0 1051.0 80 x2x8 4262.0 4574.0 4295.0 4496.0 4508.0
20 x 5 x 2 487.0 611.0 523.0 672.0 571.0 80 x3x2 1482.0 1674.0 1520.0 1784.0 1613.0
20 x 5 x 4 633.0 750.0 650.0 889.0 734.0 80 x3 x4 1581.0 1774.0 1610.0 1740.0 1727.0
20x 5% 6 838.0 988.0 890.0 1037.0 991.0 80 x3 x6 2648.0 2836.0 2664.0 2846.0 2740.0
20 x5x 8 909.0 1031.0 935.0 1090.0 1052.0 80 x3x8 2817.0 3031.0 2843.0 2894.0 2947.0
40 x 2 x 2 1372.0 1483.0 1391.0 1471.0 1533.0 80 x 4 x 2 1909.0 2102.0 1942.0 2425.0 2124.0
40 x2 x4 1922.0 2061.0 1930.0 2013.0 2046.0 80 x4 x4 2029.0 2272.0 2061.0 2518.0 2197.0
40 x2x6 1696.0 1860.0 1695.0 1737.0 1803.0 80 x4 x6 2273.0 2517.0 2303.0 2511.0 2457.0
40 x2x8 2350.0 2497.0 2358.0 2421.0 2460.0 80 x4 x8 2279.0 2528.0 2322.0 2589.0 2469.0
40 x 3 x 2 962.0 1086.0 986.0 1019.0 1047.0 80 x5x2 1035.0 1172.0 1043.0 1315.0 1136.0
40 x 3 x4 1463.0 1684.0 1505.0 1581.0 1636.0 80 x5 x4 1747.0 1986.0 1777.0 2303.0 1876.0
40 x 3 x6 1608.0 1777.0 1641.0 1728.0 1729.0 80x5x6 1818.0 2096.0 1856.0 2472.0 2017.0
40 x 3 x 8 1610.0 1775.0 1621.0 1939.0 1756.0 80 x5 x8 1860.0 2121.0 1904.0 2279.0 2002.0
40 x 4 x2 917.0 1083.0 949.0 1072.0 1040.0 100 x 2 x 2 3107.0 3253.0 3132.0 3245.0 3202.0
40 x4 x 4 1160.0 1290.0 1193.0 1289.0 1296.0 100 x 2 x 4 4912.0 5041.0 4944.0 5020.0 5003.0
40 x4 x6 1222.0 1392.0 1244.0 1434.0 1348.0 100 x 2 x 6 4782.0 5038.0 4819.0 4929.0 4932.0
40 x4 x 8 1374.0 1590.0 1422.0 1701.0 1524.0 100 x 2 x 8 4919.0 5214.0 4954.0 5043.0 5107.0
40 x 5 x 2 677.0 798.0 705.0 869.0 757.0 100 x 3 x 2 2101.0 2320.0 2140.0 2251.0 2239.0
40 x 5 x 4 970.0 1179.0 1002.0 1214.0 1126.0 100 x 3 x 4 3237.0 3510.0 3296.0 3460.0 3415.0
40 x5 %6 1160.0 1344.0 1214.0 1419.0 1322.0 100 x 3 x 6 3098.0 3302.0 3114.0 3332.0 3244.0
40 x5x 8 1349.0 1537.0 1375.0 1642.0 1581.0 100 x 3 x 8 3683.0 3933.0 3726.0 4198.0 3925.0
60 x 2 x2 1699.0 1803.0 1721.0 1843.0 1756.0 100 x 4 x 2 1649.0 1798.0 1696.0 1974.0 1748.0
60 x2 x4 2873.0 3076.0 2880.0 3032.0 2988.0 100 x 4 x 4 2609.0 2894.0 2650.0 2886.0 2753.0
60 x 2 x6 3072.0 3372.0 3107.0 3221.0 3250.0 100 x 4 x 6 2738.0 3017.0 2778.0 3105.0 2948.0
60 x 2 x 8 2922.0 3079.0 2949.0 3029.0 3028.0 100 x 4 x 8 2605.0 2892.0 2655.0 2863.0 2803.0
60 x3 x2 2039.0 2206.0 2042.0 2244.0 2161.0 100 x 5 x 2 1903.0 2101.0 1921.0 2357.0 2044.0
60 x 3 x 4 2145.0 2378.0 2186.0 2328.0 2293.0 100 x 5 x 4 1414.0 1582.0 1448.0 1718.0 1583.0
60 x3 x6 2255.0 2455.0 2273.0 2832.0 2429.0 100 x 5 x 6 1732.0 1952.0 1779.0 2191.0 1889.0
60 x 3 x8 2366.0 2545.0 2412.0 2463.0 2490.0 100 x 5 x 8 2264.0 2528.0 2313.0 2782.0 2415.0
120 x 2 x 2 3536.0 3549.0 3551.0 3524.0 3519.0 140 x 2 x 2 4400.0 4449.0 4488.0 4414.0 4424.0
120 x 2 x 4 5766.0 5770.0 5788.0 5776.0 5773.0 140 x 2 x 4 6539.0 6550.0 6552.0 6541.0 6551.0
120 x 2 x 6 6069.0 6083.0 6107.0 6033.0 6085.0 140 x 2 x 6 6771.0 6832.0 6800.0 6697.0 6864.0
120 x 2 x 8 5861.0 5883.0 5864.0 5869.0 5880.0 140 x 2 x 8 6671.0 6747.0 6714.0 6699.0 6710.0
120 x 3 x 2 2359.0 2367.0 2365.0 2393.0 2370.0 140 x 3 x 2 2632.0 2684.0 2698.0 2637.0 2681.0
120 x 3 x 4 2570.0 2602.0 2605.0 2632.0 2564.0 140 x 3 x 4 2795.0 2927.0 2864.0 2796.0 2852.0
120 x 3 x 6 4061.0 4091.0 4089.0 4344.0 4069.0 140 x 3 x 6 4805.0 4820.0 4786.0 5284.0 4813.0
120 x 3 x 8 4455.0 4506.0 4496.0 4628.0 4515.0 140 x 3 x 8 3565.0 3694.0 3654.0 3582.0 3640.0
120 x 4 x 2 1865.0 1907.0 1914.0 2013.0 1862.0 140 x 4 x 2 2072.0 2079.0 2086.0 2531.0 2096.0
120 x 4 x 4 2235.0 2331.0 2285.0 2533.0 2237.0 140 x 4 x 4 2605.0 2656.0 2619.0 2754.0 2557.0
120 x 4 x 6 2420.0 2472.0 2492.0 2507.0 2479.0 140 x4 x 6 3705.0 3707.0 3779.0 4378.0 3715.0
120 x 4 x 8 3322.0 3295.0 3304.0 3547.0 3307.0 140 x 4 x 8 4003.0 4008.0 4069.0 4196.0 4066.0
120 x 5 x 2 2472.0 2501.0 2525.0 3110.0 2474.0 140 x 5 x 2 2022.0 2066.0 2055.0 2272.0 2027.0
120 x 5 x 4 2757.0 2834.0 2766.0 3245.0 2743.0 140 x 5 x 4 3052.0 3057.0 3110.0 3448.0 3102.0
120 x5 x 6 2719.0 2841.0 2809.0 3184.0 2729.0 140 x5 x 6 3368.0 3423.0 3431.0 3736.0 3378.0
120 x 5 x 8 2806.0 2825.0 2859.0 3232.0 2844.0 140 x 5 x 8 3502.0 3508.0 3514.0 3949.0 3532.0
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Table 6. Computational results of instances of five algorithms on AVG.

Instance CSFLA SFLA IDCOA HVNS IWOA Instance CSFLA SFLA IDCOA HVNS IWOA
20 x 2 x 2 677.6 758.8 702.3 725.2 738.4 60 x 4 x 2 1051.7 1182.7 1073.3 1150.5 1135.8
20 x2 x4 1086.9 1192.0 1113.0 1126.1 1157.8 60 x 4 x 4 1674.2 1859.6 1705.0 1840.2 1794.1
20x2x6 1361.6 1448.6 1393.0 1396.6 1430.2 60 x 4 x6 1265.0 1420.1 1295.2 1391.8 1370.5
20x2x8 1535.6 1702.1 1564.4 1594.0 1655.6 60 x4 x8 1725.5 1890.4 1752.8 1919.3 1830.2
20 x 3 x 2 718.9 817.6 741.6 791.2 786.8 60 x 5 x 2 1193.9 1351.5 12221 1423.6 1281.7
20 x 3 x 4 919.2 1039.2 954.4 979.2 1015.8 60 x5 x 4 1283.0 1480.7 1307.1 1496.2 1396.0
20 x 3 x6 867.2 961.8 884.1 939.5 953.2 60 x5 x6 1513.2 1718.9 1553.3 1780.4 1651.9
20x 3 x 8 1173.7 1310.1 1200.2 1219.9 1283.5 60 x5 x 8 1634.9 1834.1 1674.7 1858.5 1766.4
20 x 4 x2 413.0 472.7 430.3 442.7 452.2 80 x2x2 3858.1 3936.8 3868.0 3920.1 3904.2
20x 4 x 4 594.4 687.9 615.1 641.8 684.3 80 x 2 x 4 2640.7 2806.6 2661.9 2720.8 2762.9
20 x4 x6 830.9 942.0 857.4 895.2 921.3 80x2x6 3746.5 3959.1 3764.6 3845.6 3894.4
20 x 4 x 8 933.8 1038.5 944.2 1005.9 1009.9 80 x2x8 4218.4 4510.8 4267.7 4343.0 4418.1
20 x 5 x 2 470.4 571.9 496.3 571.4 541.0 80 x3x2 1464.1 1606.9 1496.4 1619.0 1572.1
20 x 5 x 4 621.1 713.6 631.6 748.4 682.6 80 x3 x4 1566.7 1712.7 1595.7 1662.2 1672.0
20x 5% 6 825.1 948.4 843.9 928.2 916.2 80 x3 x6 2624.5 2776.4 2640.5 2746.8 2715.6
20 x5x 8 889.0 997.8 906.6 981.9 965.2 80x3x8 2780.4 2986.7 2816.1 2862.8 2900.0
40 x 2 x 2 1363.2 1446.2 1380.1 1409.9 1437.8 80 x 4 x 2 1901.0 2014.4 1915.4 2132.3 2001.0
40 x2 x4 1903.0 2017.3 1919.7 1949.8 1985.5 80 x4 x4 2013.7 2212.1 2049.9 2260.0 3132.7
40 x2x6 1658.3 1813.4 1674.6 1705.0 1775.6 80 x4 x 6 2242.2 2476.3 2284.6 2412.5 2354.8
40 x2x8 2308.1 2442.8 2336.2 2359.5 2413.3 80 x4 x8 2254.8 2462.0 2290.3 2480.8 2405.9
40 x 3 x 2 938.4 1060.2 967.2 986.8 1014.7 80 x5x2 999.7 1142.8 1030.2 1177.4 1098.4
40 x 3 x4 1446.1 1605.9 1477.9 1516.4 1554.3 80 x5 x4 1724.0 1927.6 1755.0 1955.9 1835.9
40 x 3 x6 1588.9 1736.5 1605.7 1650.1 1683.9 80x5x6 1787.3 2015.1 1826.3 2110.1 1929.8
40 x 3 x 8 1579.6 1725.6 1598.5 1702.2 1683.2 80 x5 x8 1845.6 2055.2 1883.2 2084.2 1952.3
40 x 4 x2 903.4 1026.1 930.5 983.1 986.3 100 x 2 x 2 3094.1 3212.9 3105.0 3163.8 3166.5
40 x4 x 4 1149.4 1268.6 1171.3 1240.6 1236.2 100 x 2 x 4 4898.9 5010.3 4904.5 4978.6 4968.6
40 x4 x6 1199.8 1353.3 1232.6 1326.0 1303.3 100 x 2 x 6 4749.8 4960.7 4784.4 4869.0 4885.1
40 x4 x 8 1357.0 1531.6 1399.9 1535.4 1470.2 100 x 2 x 8 4895.7 5138.5 4938.7 4971.6 5037.0
40 x 5 x 2 661.1 765.6 688.3 771.1 735.3 100 x 3 x 2 2088.2 2254.8 2118.2 2175.5 2194.6
40 x 5 x 4 957.1 1119.3 989.8 1108.9 1063.1 100 x 3 x 4 3212.3 3441.0 3254.6 3356.5 3347.7
40 x5 %6 1148.0 1315.6 1180.3 1259.1 1263.1 100 x 3 x 6 3072.9 3239.3 3092.9 3186.2 3178.1
40 x5x 8 1322.7 1494.5 1346.1 1455.9 1458.5 100 x 3 x 8 3648.3 3889.2 3697.0 3843.5 3833.0
60 x 2 x2 1673.9 1784.6 1691.3 1739.3 1730.9 100 x 4 x 2 1636.4 1769.4 1663.1 1789.0 1724.0
60 x2 x4 2829.7 3009.9 2860.1 2934.4 2947 .4 100 x 4 x 4 2585.6 2789.4 2619.0 2743.0 2694.6
60 x 2 x6 3048.1 3272.0 3074.1 3127.7 3214.0 100 x 4 x 6 2707.3 2954.7 2745.1 2893.4 2864.1
60 x 2 x 8 2894.7 3037.8 2911.2 2965.2 2983.3 100 x 4 x 8 2570.6 2796.7 2607.4 2754.7 2730.0
60 x3 x2 2024.4 2139.1 2033.2 2118.5 2098.8 100 x 5 x 2 1882.9 2063.9 1901.8 2113.7 1969.3
60 x 3 x 4 2127.4 2321.2 2159.4 2237.9 2258.6 100 x 5 x 4 1399.4 1543.3 1427.8 1586.0 1492.3
60 x3 x6 22329 2389.7 22474 2384.2 2352.9 100 x 5 x 6 1702.3 1901.0 1751.8 1945.8 1825.3
60 x 3 x8 2351.6 2501.4 2384.5 2430.6 2451.5 100 x 5 x 8 2242.1 2483.8 2287.9 2504.7 2370.5
120 x 2 x 2 3465.1 3526.3 3513.7 3465.3 3501.8 140 x 2 x 2 43479 4406.0 4403.7 4341.4 4379.8
120 x 2 x 4 5718.8 5746.6 5749.7 5730.2 5740.3 140 x 2 x 4 6481.8 6527.7 6527.0 6484.7 6536.4
120 x 2 x 6 6004.3 6058.6 6067.9 5996.2 6054.9 140 x 2 x 6 6659.5 6791.3 6742.4 6670.5 6763.9
120 x 2 x 8 5774.9 5823.3 5817.8 5778.2 5822.5 140 x 2 x 8 6591.9 6677.5 6665.9 6597.7 6665.3
120 x 3 x 2 2254.5 2319.6 2320.8 2251.9 2304.8 140 x 3 x 2 2579.2 2654.2 2651.9 2587.7 2641.8
120 x 3 x 4 2497.0 2533.4 2526.2 25374 2534.8 140 x 3 x 4 2738.7 2831.5 2805.4 2746.7 2805.9
120 x 3 x 6 3967.7 4044.4 4006.5 4036.4 3972.4 140 x 3 x 6 4734.6 4752.2 4751.4 4807.3 4745.0
120 x 3 x 8 4378.2 4473.7 4453.6 4435.5 4459.2 140 x 3 x 8 3501.2 3605.0 3613.3 3512.4 3585.5
120 x 4 x 2 1799.1 1852.3 1837.5 1877.7 1818.5 140 x 4 x 2 2037.9 2058.0 2060.4 2202.6 2034.0
120 x 4 x 4 2203.7 2273.2 2243.1 2327.0 2220.8 140 x 4 x 4 2512.0 2532.8 2530.0 2593.1 2511.6
120 x4 x 6 2388.6 2428.9 2453.9 2424.8 2425.8 140 x4 x 6 3609.3 3648.7 3684.9 3857.9 3658.4
120 x 4 x 8 3233.4 3243.3 3235.2 3327.4 3236.9 140 x 4 x 8 3933.7 3966.3 4004.6 3946.3 3994 .4
120 x 5 x 2 2397.5 2443.3 24241 2673.7 2415.5 140 x 5 x 2 1969.6 1999.7 1981.8 2038.5 1977.3
120 x 5 x 4 2635.4 2693.5 2702.9 2928.0 2689.8 140 x 5 x 4 2957.1 3015.5 3056.7 3107.6 3023.7
120 x5 x 6 2678.0 2706.5 27254 2864.0 2693.7 140 x5 x 6 3289.5 3340.7 3349.8 3477.8 3304.2
120 x 5x 8 2739.1 2771.3 2777.6 2919.0 2782.5 140 x 5 x 8 3378.6 3467.8 3429.6 3466.8 3420.0
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Figure 3. Convergence curves of five algorithms.
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Figure 4. Box plots of five algorithms.

Table 7. Results of Wilcoxon test.

Wilcoxon-Test MIN MAX AVG
Wilcoxon test (CSFLA, SFLA) 0.000 0.000 0.000
Wilcoxon test (CSFLA, IDCOA) 0.000 0.000 0.000
Wilcoxon test (CSFLA, HVNS) 0.000 0.000 0.000

Wilcoxon test (CSFLA, INOA) 0.000 0.000 0.000
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As shown in Table 4, CSFLA obtains smaller MIN than SFLA on all instances and
MIN of CSFLA is lower than that of SFLA by at least 50 of 101 instances. CSFLA converges
better than SFLA. It can be found from Table 5 that MAX of CSFLA is better than that
of SFLA in 111 of 112 instances and SFLA is worse MAX than CSFLA in at least 50 of
91 instances. CSFLA possesses better stability than SFLA. Table 6 show that CSFLA obtains
smaller AVG than SFLA on all instances and AV G of CSFLA is better than SFLA in at least
50 f 96 instances. CSFLA has a better average performance than SFLA. The significant
performance differences between CSFLA and SFLA also can be seen from Table 7 and
Figures 3 and 4. The new strategies such as the three cooperations really have a positive
impact on the performance of CSFLA, so the new strategies are effective.

Table 4 show that CSFLA performs better than IDCOA, HVNS, and IWOA on MIN.
CSFLA produces smaller MIN than with three comparative algorithms on 104 of 112 in-
stances; moreover, MIN of CSFLA is less than that of IDCOA by at least 50 in 26 instances,
HVNS by at least 50 in 45 instances, and IWOA by at least 50 in 88 instances. CSFLA con-
verges better than the three comparative algorithms. The results in Table 7, Figures 3 and 4
also reveal the convergence advantage of CSFLA.

As stated in Table 5, CSFLA produces smaller M AX than three comparative algorithms
in 102 instances. CSFLA obtains smaller MAX than IDCOA by at least 50 in 20 instances;
MAX of CSFLA is less than that of HVNS by at least 50 in 95 instances and IWOA produces
a larger MAX by at least 50 in 86 instances. CSFLA performs better than its comparative
algorithms on stability performance. Figure 4 and Table 7 also depict the obvious stability
performance difference between CSFLA and its comparative algorithms.

It also can be found from Table 6 that CSFLA outperforms its three comparative
algorithms on AVG. CSFLA generates better AVG than its comparative algorithms in
107 instances. The advantages of CSFLA on average performance can also can be drawn
from Table 7 and Figure 4.

CSFLA possesses three cooperations, two of which are used between two memeplexes
of groups 1 and 2, and one of which is performed between group 1 and group 2. The adap-
tive search strategy is also used in search process of each group. These cooperations can
make full use of the good solutions in memeplexes of group 1 and avoid the computing
resource waste in group 2; as a result, exploration is intensified effectively and high diver-
sity can be kept. The periodical population shuffling can result in good solution structure
of memeplexes in T generations. The exploitation ability is also enhanced, so the new
strategies of CSFLA can make a good balance between exploration and exploitation, and
CSFLA produces promising results on DAHFSP with factory eligibility, which enriches the
optimization algorithm mechanism to solve the analyzed production scheduling problem.

5. Conclusions and Future Topics

DAHFSP with transportation and factory eligibility is seldom considered. In this
study, a new algorithm named CSFLA and based on three cooperations is presented to
solve DAHFSP with factory eligibility. The problem-related feature is used. Memeplexes
are evaluated, group 1 (with the two best memeplexes) and group 2 (with the two worst
memeplexes) are formed. A new cooperation between memeplexes and an adaptive search
strategy are implemented in each group. An adaptive cooperation between groups 1 and 2 is
also given. Population shuffling is executed every T generations. Extensive computational
experiments are conducted on 112 instances. Computational results demonstrate that
new strategies are effective and CSFLA is a very competitive algorithm for the considered
DAHFSP with makespan minimization. However, in real-life manufacturing exists complex
processing environments and constraints, which may cause limitations for this research.

Production scheduling problems exist in the real-life manufacturing processes such
as the casting process and engine assembly plant, and these problems have some special
features. For example, batch processing machines exist in the last stage of HFSP in the
steelmaking continuous-casting process. We will focus on production scheduling problems
in the casting process or other real-world manufacturing issues, and try to solve them
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by applying the characteristics of the problems and the new optimization mechanisms
of meta-heuristics.
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Abbreviations

SDST  sequence-dependent setup time
gbest  the best solution of population
stjig  the start time of the fabfication of com;; at stage | in factory f
etjf  the end time of the fabfication of com;; at stage I in factory f
tstif the start time of transportation of producth i in factory f
tets the end time of transportation of producth i in factory f
astir  the start time of assembly of product i in factory f
aetir  the end time of assembly of product i in factory f
u a large positive number
le- £ decision variable, if com; is allocated in factory f, Xj,- = 1;
otherwise Xj;r =0
Yjifik  decision variable, if com;; is allocated in Mgy, Yjiie = 1;
otherwise inflk =0
Zivin decision variable, if com;; is processed before com; j at stage lin factory f,
ij’ifl = 1; otherwise ij’z‘fl = 0
A; i decision variable, if product i is transported by TM £ A; = 1; otherwise A; = 0
i f decision variable, if product i is transported before product i in factory f, Bir=1;
otherwise B, F= 0
i’ f decision variable, if product i is assembled before product i in factory f, D,y IS 1
otherwise D, F= 0
Eif decision variable, if product i is assembled by AM iz Eif =1; otherwise E; = 0
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