# The Symmetry Energy: Current Status of Ab Initio Predictions vs. Empirical Constraints

## Abstract

**:**

## 1. Introduction

## 2. Symmetry Energy: General Aspects

## 3. Theoretical Tools

#### 3.1. Energy per Nucleon in Infinite Matter

#### 3.2. Chiral Effective Field Theory

#### 3.2.1. Quantifying Errors in Chiral EFT

#### 3.3. The Two-Nucleon Force

#### 3.4. The Three-Nucleon Force

## 4. Ab Initio Predictions in Infinite Matter

#### 4.1. Symmetric Nuclear Matter

#### 4.2. Neutron Matter and the Symmetry Energy

#### 4.3. Impact on the Neutron Skin

## 5. Impact of the Isovector Part of the Free-Space $\mathit{NN}$ Force

## 6. Conclusions and Future Perspective: Where Do We Go from Here?

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Acknowledgments

## Conflicts of Interest

## References

- Available online: https://frib.msu.edu (accessed on 3 December 2022).
- Zahed, I.; Broen, G.E. The Skyrme model. Phys. Rept.
**1986**, 142, 1. [Google Scholar] [CrossRef] - Li, G. Skyrme forces and their Applications in Low Energy Nuclear Physics. Commun. Theor. Phys.
**1990**, 13, 457. [Google Scholar] - Bender, M.; Heenen, P.-H.; Reinhard, P.-G. Self-consistent mean-field models for nuclear structure. Rev. Mod. Phys.
**2003**, 75, 121. [Google Scholar] [CrossRef] - Waletcka, J.D. A Theory of highly condensed matter. Annals Phys.
**1974**, 83, 491. [Google Scholar] [CrossRef] - Serot, B.D.; Waletcka, J.D. The Relativistic Nuclear Many Body Problem. Adv. Nucl. Phys.
**1986**, 16, 1. [Google Scholar] - Serot, B.D.; Waletcka, J.D. Recent Progress in Quantum Hadrodynamics. Int. J. Mod. Phys.
**1997**, E6, 515. [Google Scholar] [CrossRef] - Brown, B.A. Neutron Radii in Nuclei and the Neutron Equation of State. Phys. Rev. Lett.
**2000**, 85, 5296. [Google Scholar] [CrossRef] - Piekarewicz, J.; Fattoyev, F. Neutron-rich matter in heaven and on Earth. Phys. Today
**2019**, 72, 30. [Google Scholar] [CrossRef] - Santos, B.M.; Dutra, M.; Lourenco, O.; Delfino, A. Correlations between the nuclear matter symmetry energy, its slope, and curvature. J. Phys. Conf. Ser.
**2015**, 630, 012033. [Google Scholar] [CrossRef] - Fattoyev, F.J.; Horowitz, C.J.; Piekarewicz, J.; Shen, G. Relativistic effective interaction for nuclei, giant resonances, and neutron stars. Phys. Rev. C
**2010**, 82, 055803. [Google Scholar] [CrossRef] - Roca-Maza, X.; Centelles, M.; Vinas, X.; Warda, M. Neutron Skin of
^{208}Pb, Nuclear Symmetry Energy, and the Parity Radius Experiment. Phys. Rev. Lett.**2011**, 106, 252501. [Google Scholar] [CrossRef] - Mondal, C.; Agrawal, B.K.; De, J.N.; Samaddar, S.K.; Centelles, M.; Vinas, X. Searching for a universal correlation among symmetry energy parameters. Proc. DAE Symp. Nucl. Phys.
**2017**, 62, 72. [Google Scholar] - Tews, I.; Lattimer, J.M.; Ohnishi, A.; Kolomeitsev, E.E. Symmetry Parameter Constraints from a Lower Bound on Neutron-matter Energy. Astrophys. J.
**2017**, 848, 105. [Google Scholar] [CrossRef] [Green Version] - Mondal, C.; Agrawal, B.K.; De, J.N.; Samaddar, S.K. Correlations among symmetry energy elements in Skyrme models. Int. J. Mod. Phys. E
**2018**, 27, 1850078. [Google Scholar] [CrossRef] - Tong, H.; Ren, X.-L.; Ring, P.; Shen, S.-H.; Wang, S.-B.; Meng, J. Relativistic Brueckner-Hartree-Fock theory in nuclear matter without the average momentum approximation. Phys. Rev. C
**2018**, 98, 054302. [Google Scholar] [CrossRef] - Holt, J.W.; Lim, Y. Universal correlations in the nuclear symmetry energy, slope parameter, and curvature. Phys. Lett. B
**2018**, 784, 77. [Google Scholar] [CrossRef] - Agrawal, B.K.; De, J.N.; Samaddar, S.K.; Colo, G.; Sulaksono, A. Constraining the density dependence of symmetry energy from nuclear masses. Phys. Rev. C
**2013**, 87, 051306. [Google Scholar] [CrossRef] - Vinas, X.; Centelles, M.; Roca-Maza, X.; Warda, M. Density dependence of the nuclear symmetry energy from measurements of neutron radii in nuclei. AIP Conf. Proc.
**2014**, 1606, 256. [Google Scholar] - Agrawal, B.K.; De, J.N.; Samaddar, S.K. Determining the density content of symmetry energy and neutron skin: An empirical approach. Phys. Rev. Lett.
**2012**, 109, 262501. [Google Scholar] [CrossRef] - Tsang, M.B.; Zhang, Y.; Danielewicz, P.; Famiano, M.; Li, Z.; Lynch, W.G.; Steiner, A.W. Constraints on the density dependence of the symmetry energy. Phys. Rev. Lett.
**2009**, 102, 122701. [Google Scholar] [CrossRef] - Tsang, M.B.; Stone, J.R.; Camera, F.; Danielewicz, P.; Gandolfi, S.; Hebeler, K.; Horowitz, C.J.; Jenny, L.; Lynch, Z.; Kohley, Z.; et al. Constraints on the symmetry energy and neutron skins from experiments and theory. Phys. Rev. C
**2012**, 86, 015803. [Google Scholar] [CrossRef] - Lattimer, J.M.; Lim, Y. Constraining the symmetry parameters of the nuclear interaction. Astrophys. J.
**2013**, 771, 51. [Google Scholar] [CrossRef] - Kortelainen, M.; Lesinski, T.; Moré, J.; Nazarewicz, W.; Sarich, J.; Schunck, N.; Stoitsov, M.V.; Wild, S. Nuclear energy density optimization. Phys. Rev. C
**2010**, 82, 024313. [Google Scholar] [CrossRef] - Danielewicz, P.; Lee, J. Symmetry energy II: Isobaric analog states. Nucl. Phys. A
**2014**, 922, 1. [Google Scholar] [CrossRef] [Green Version] - Roca-Maza, X.; Viñas, X.; Centelles, M.; Agrawal, B.K.; Colò, G.; Paar, N.; Piekarewicz, J.; Vretenar, D. Neutron skin thickness from the measured electric dipole polarizability in
^{68}Ni,^{120}Sn, and^{208}Pb. Phys. Rev. C**2015**, 92, 064304. [Google Scholar] [CrossRef] - Tamii, A.; Poltoratska, I.; von Neumann-Cosel, P.; Fujita, Y.; Adachi, T.; Bertulani, C.A.; Carter, J.; Dozono, M.; Fujita, H.; Fujita, K.; et al. Complete Electric Dipole Response and the Neutron Skin in
^{208}Pb. Phys. Rev. Lett.**2011**, 107, 062502. [Google Scholar] [CrossRef] - Brown, B.A. Constraints on the Skyrme Equations of State from Properties of Doubly Magic Nuclei. Phys. Rev. Lett.
**2013**, 111, 232502. [Google Scholar] [CrossRef] - Russotto, P.; Gannon, S.; Kupny, S.; Lasko, P.; Acosta, L.; Adamczyk, M.; Al-Ajlan, A.; Al-Garawi, M.; Al-Homaidhi, S.; Amorini, F.; et al. Results of the ASY-EOS experiment at GSI: The symmetry energy at suprasaturation density. Phys. Rev. C
**2016**, 94, 034608. [Google Scholar] [CrossRef] - Russotto, P.; Wu, P.Z.; Zoric, M.; Chartier, M.; Leifels, Y.; Lemmon, R.C.; Li, Q.; Łukasik, J.; Pagano, A.; Pawłowski, P.; et al. Symmetry energy from elliptic flow in
^{197}Au +^{197}Au. Phys. Lett. B**2011**, 697, 471. [Google Scholar] [CrossRef] - Weinberg, S. Nuclear forces from chiral lagrangians. Phys. Lett. B
**1990**, 251, 288. [Google Scholar] [CrossRef] - Weinberg, S. Three-body interactions among nucleons and pions. Phys. Lett. B
**1992**, 295, 114. [Google Scholar] [CrossRef] - Reed, B.T.; Fattoyev, F.J.; Horowitz, C.J.; Piekarewicz, J. Implications of PREX-II on the equation of state of neutron-rich matter. Phys. Rev. Lett.
**2021**, 126, 172503. [Google Scholar] [CrossRef] - Sammarruca, F.; Millerson, R. The Equation of State of Neutron-Rich Matter at Fourth Order of Chiral Effective Field Theory and the Radius of a Medium-Mass Neutron Star. Universe
**2022**, 8, 133. [Google Scholar] [CrossRef] - Alam, N.; Agrawal, B.K.; Fortin, M.; Pais, H.; Providencia, C.; Raduta, A.R.; Sulaksono, A. Strong correlations of neutron star radii with the slopes of nuclear matter incompressibility and symmetry energy at saturation. Phys. Rev. C
**2016**, 94, 052801. [Google Scholar] [CrossRef] - Coraggio, L.; Holt, J.W.; Itaco, N.; Machleidt, R.; Marcucci, L.E.; Sammarruca, F. Nuclear-matter equation of state with consistent two- and three-body perturbative chiral interactions. Phys. Rev. C
**2014**, 89, 044321. [Google Scholar] [CrossRef] - Carbone, A.; Cipollone, A.; Barbieri, C.; Rios, A.; Polls, A. Self-consistent Green’s functions formalism with three-body interactions. Phys. Rev. C
**2013**, 88, 054326. [Google Scholar] [CrossRef] - Machleidt, R.; Entem, D.R. Chiral Effective Field Theory and Nuclear Forces. Phys. Rep.
**2011**, 503, 1. [Google Scholar] [CrossRef] - Epelbaum, E.; Krebs, H.; Meißner, U.-G. Improved chiral nucleon-nucleon potential up to next-to-next-to-next-to-leading order. Eur. Phys. J. A
**2015**, 51, 53. [Google Scholar] [CrossRef] - Entem, D.R.; Machleidt, R.; Nosyk, Y. High-quality two-nucleon potentials up to fifth order of the chiral expansion. Phys. Rev. C
**2017**, 96, 024004. [Google Scholar] [CrossRef] - Hoferichter, M.; Ruiz de Elvira, J.; Kubis, B.; Meissner, U.-G. Matching Pion-Nucleon Roy-Steiner Equations to Chiral Perturbation Theory. Phys. Rev. Lett.
**2015**, 115, 192301. [Google Scholar] [CrossRef] - Hoferichter, M.; Ruiz de Elvira, J.; Kubis, B.; Meissner, U.-G. Roy-Steiner-equation analysis of pion-nucleon scattering. Phys. Rep.
**2016**, 625, 1. [Google Scholar] [CrossRef] - Hoppe, J.; Drischler, C.; Furnstahl, R.J.; Hebeler, K.; Schwenk, A. Weinberg eigenvalues for chiral nucleon-nucleon interactions. Phys. Rev. C
**2017**, 96, 054002. [Google Scholar] [CrossRef] - Drischler, C.; Hebeler, K.; Schwenk, A. Chiral interactions up to next-to-next-to-next-to-leading order and nuclear saturation. Phys. Rev. Lett.
**2019**, 122, 042501. [Google Scholar] [CrossRef] [PubMed] - Epelbaum, E.; Nogga, A.; Glöckle, W.; Kamada, H.; Meißner, U.-G.; Witala, H. Three nucleon forces from chiral effective field theory. Phys. Rev. C
**2002**, 66, 064001. [Google Scholar] [CrossRef] [Green Version] - Holt, J.W.; Kaiser, N.; Weise, W. Chiral three-nucleon interaction and the
^{14}C-dating β decay. Phys. Rev. C**2009**, 79, 054331. [Google Scholar] [CrossRef] - Holt, J.W.; Kaiser, N.; Weise, W. Density-dependent effective nucleon-nucleon interaction from chiral three-nucleon forces. Phys. Rev. C
**2010**, 81, 024002. [Google Scholar] [CrossRef] - Hebeler, K.; Schwenk, A. Chiral three-nucleon forces and neutron matter. Phys. Rev. C
**2010**, 82, 014314. [Google Scholar] [CrossRef] - Bernard, V.; Epelbaum, E.; Krebs, H.; Meißner, U.-G. Subleading contributions to the chiral three-nucleon force: Long-range terms. Phys. Rev. C
**2008**, 77, 064004. [Google Scholar] [CrossRef] - Bernard, V.; Epelbaum, E.; Krebs, H.; Meißner, U.-G. Subleading contributions to the chiral three-nucleon force. II. Short-range terms and relativistic corrections. Phys. Rev. C
**2011**, 84, 054001. [Google Scholar] [CrossRef] - Kaiser, N.; Singh, B. Density-dependent NN interaction from subleading chiral three-nucleon forces: Long-range terms. Phys. Rev. C
**2019**, 100, 014002. [Google Scholar] [CrossRef] - Kaiser, N. Density-dependent nn-potential from subleading chiral three-neutron forces: Long-range terms. arXiv
**2020**, arXiv:2010.02739v4. [Google Scholar] - Kaiser, N.; Niessner, V. Density-dependent NN interaction from subleading chiral 3N forces: Short-range terms and relativistic corrections. Phys. Rev. C
**2018**, 98, 054002. [Google Scholar] [CrossRef] - Treuer, L. Density-Dependent Neutron-Neutron Interaction from Subleading Chiral Three-Neutron Forces. arXiv
**2020**, arXiv:2009.11104. [Google Scholar] - Drischler, C.; Hebeler, K.; Schwenk, A. Supplemental Material for “Chiral Interactions up to Next-to-Next-to-Next-to-Leading Order and Nuclear Saturation”. Available online: https://journals-aps-org.uidaho.idm.oclc.org/prl/supplemental/10.1103/PhysRevLett.122.042501/MC_MBPT_short_supp.pdf (accessed on 2 February 2023).
- Nosyk, Y.; Entem, D.R.; Machleidt, R. Nucleon-nucleon potentials from Δ-full chiral effective-field-theory and implications. Phys. Rev. C
**2021**, 104, 054001. [Google Scholar] [CrossRef] - Sammarruca, F.; Millerson, R. Overview of symmetric nuclear matter properties from chiral interactions up to fourth order of the chiral expansion. Phys. Rev. C
**2021**, 104, 064312. [Google Scholar] [CrossRef] - Hu, B.; Jiang, W.; Miyagi, T.; Sun, Z.; Ekström, A.; Forssen, C.; Hagen, G.; Holt, J.D.; Papenbrock, T.; Stroberg, S.R.; et al. Ab initio predictions link the neutron skin of
^{208}Pb to nuclear forces. Nat. Phys.**2022**, 18, 1196–1200. [Google Scholar] [CrossRef] - Sammarruca, F.; Millerson, R. Analysis of the neutron matter equation of state and the symmetry energy up to fourth order of chiral effective field theory. Phys. Rev. C
**2021**, 104, 034308. [Google Scholar] [CrossRef] - Drischler, C.; Carbone, A.; Hebeler, K.; Schwenk, A. Neutron matter from chiral two- and three-nucleon calculations up to N
^{3}LO. Phys. Rev. C**2016**, 94, 054307. [Google Scholar] [CrossRef] - Oyamatsu, K.; lida, K.; Koura, H. Neutron drip line and the equation of state of nuclear matter. Phys. Rev. C
**2010**, 82, 027301. [Google Scholar] [CrossRef] - Baldo, M.; Burgio, G.F. The Nuclear Symmetry Energy. Prog. Part. Nucl. Phys.
**2016**, 91, 203. [Google Scholar] [CrossRef] - Burrello, S.; Colonna, M.; Zheng, H. The Symmetry Energy of the Nuclear EoS: A Study of Collective Motion and Low-Energy Reaction Dynamics in Semiclassical Approaches. Front. Phys.
**2019**, 7, 53. [Google Scholar] [CrossRef] - Moeller, P.; Myers, W.D.; Sagawa, H.; Yoshida, S. New Finite-Range Droplet Mass Model and Equation-of-State Parameters. Phys. Rev. Lett.
**2012**, 108, 052501. [Google Scholar] [CrossRef] [PubMed] - Moeller, P.; Sierk, A.J.; Ichikawa, T.; Sagawa, H. Nuclear ground-state masses and deformations (FRDM) 2012. At. Data Nucl. Tables
**2016**, 109, 1. [Google Scholar] [CrossRef] - Lynch, W.G.; Tsang, M.B. Decoding the density dependence of the nuclear symmetry energy. Phys. Lett. B
**2022**, 830, 137098. [Google Scholar] [CrossRef] - Akmal, A.; Pandharipande, V.R.; Ravenhall, D.G. Equation of state of nucleon matter and neutron star structure. Phys. Rev. C
**1998**, 58, 1804. [Google Scholar] [CrossRef] - Drischler, C.; Soma, V.; Schwenk, A. Microscopic calculations and energy expansions for neutron-rich matter. Phys. Rev. C
**2014**, 89, 025806. [Google Scholar] [CrossRef] [Green Version] - Drischler, C.; Furnstahl, R.J.; Melendez, J.A.; Phillips, D.R. How Well Do We Know the Neutron-Matter Equation of State at the Densities Inside Neutron Stars? A Bayesian Approach with Correlated Uncertainties. Phys. Rev. Lett.
**2020**, 125, 202702. [Google Scholar] [CrossRef] - Zhang, Z.; Chen, L.-W. Electric dipole polarizability in
^{208}Pb as a probe of the symmetry energy and neutron matter around ρ_{0}/3. Phys. Rev. C**2015**, 92, 031301. [Google Scholar] [CrossRef] - Page, D.; Lattimer, J.M.; Prakash, M.; Steiner, A.W. Neutrino Emission from Cooper Pairs and Minimal Cooling of Neutron Stars. Astrophys. J.
**2009**, 707, 1131. [Google Scholar] [CrossRef] - Lattimer, J.M.; Pethick, C.J.; Prakash, M.; Haensel, P. Direct URCA Process in Neutron Stars. Phys. Rev. Lett.
**1991**, 66, 2701. [Google Scholar] [CrossRef] - Thapa, V.B.; Sinah, M. Direct URCA process in light of PREX-2. arXiv
**2022**, arXiv:2203.02272. [Google Scholar] - Malik, T.; Agrawal, B.K.; Providencia, C. Inferring the nuclear symmetry energy at supra saturation density from neutrino cooling. Phys. Rev. C
**2022**, 106, L042801. [Google Scholar] [CrossRef] - Patra, N.K.; Iman, S.k.M.d.A.; Agrawal, B.K.; Mukherjee, A.; Malik, T. Nearly model-independent constraints on dense matter equation of state. Phys. Rev. D
**2022**, 106, 043024. [Google Scholar] [CrossRef] - Sammarruca, F. Neutron skin systematics from microscopic equations of state. Phys. Rev. C
**2022**, 105, 064303. [Google Scholar] [CrossRef] - Drischler, C.; Holt, J.W.; Wellenhofer, C. Chiral Effective Field Theory and the High-Density Nuclear Equation of State. Annu. Rev. Nucl. Part. Sci.
**2021**, 71, 403. [Google Scholar] [CrossRef] - Lim, Y.; Holt, J. Bayesian modeling of the nuclear equation of state for neutron star tidal deformabilities and GW170817. Eur. Phys. J. A
**2019**, 55, 209. [Google Scholar] [CrossRef] - Reinhard, P.-G.; Roca-Maza, X.; Nazarewicz, W. Combined Theoretical Analysis of the Parity-Violating Asymmetry for
^{48}Ca and^{208}Pb. Phys. Lett.**2022**, 129, 232501. [Google Scholar] [CrossRef] - PREX, CREX, and Nuclear Models: The Plot Thickens. Available online: https://frib.msu.edu/news/2022/prl-paper.html (accessed on 3 December 2022).

**Figure 1.**Diagrammatic representation of the Brueckner integral equation. Intermediate nucleon lines with the double slash represent in-medium particle states.

**Figure 2.**Diagrams of the leading 3NF: (

**a**) the long-range 2PE, depending on the ${c}_{1,3,4}$; (

**b**) the medium-range 1PE, involving ${c}_{D}$; and (

**c**) the short-range contact, proportional to ${c}_{E}$.

**Figure 3.**Selected diagrams of the subleading 3NF, each representative of a specific topology: (

**a**) 2PE; (

**b**) 2P1PE; (

**c**) ring; (

**d**) 1P-contact; (

**e**) 2P-contact.

**Figure 5.**(Color online) Energy per neutron in NM vs. density, from leading (black dashes) to fourth order (solid red).

**Figure 6.**(Color online) The symmmetry energy vs. density, from leading (black dashes) to fourth order (solid red).

**Figure 7.**(Color online) The proton fraction in $\beta $-stable matter vs. density, from leading (black dashes) to fourth order (solid red).

**Figure 8.**(Color online) Discrepancy between the CREX and PREX measurements and theoretical predictions. See text and ref. [80] for more details.

**Figure 9.**(Color online) Phase shifts for selected isospin-1 partial waves as a function of the laboratory energy. Solid black: original potential; Red dashes: modified potential.

**Figure 10.**(Color online) Energy per neutron as a function of NM density. Solid black: original potential; Red dashes: modified potential.

**Table 1.**The LECs used in our calculations. n is the exponent of the regulator, Equation (25). The LECs ${c}_{1,3,4}$ are given in units of GeV${}^{-1}$, and ${C}_{S}$ and ${C}_{T}$ are in units of GeV${}^{-2}$.

Order | n | ${\mathit{c}}_{1}$ | ${\mathit{c}}_{3}$ | ${\mathit{c}}_{4}$ | ${\mathit{C}}_{\mathit{S}}$ | ${\mathit{C}}_{\mathit{T}}$ |
---|---|---|---|---|---|---|

N${}^{2}$LO | 2 | −0.74 | −3.61 | 2.44 | ||

N${}^{3}$LO | 2 | −1.07 | −5.32 | 3.56 | −118.13 | −0.25 |

**Table 2.**Predictions for the saturation properties of SNM from the final PPD of ref. [58]. Shown are the medians, 68% credible regions (CR), and 90% CR. The last column contains our predictions [57]. The energy per nucleon, E/A, and the incompressibility, K, are in units of MeV. The saturation density, ${\rho}_{0}$, is in units of fm${}^{-3}$.

Observable | Median | 68% CR | 90% CR | Our Predictions |
---|---|---|---|---|

$E/A$ | −15.2 | [−16.3, −13.9] | [17.1, −13.4] | −14.98 ± 0.85 |

${\rho}_{0}$ | 0.163 | [0.147, 0.176] | [0.140, 0.186] | 0.161 ± 0.015 |

${K}_{0}$ | 264 | [219, 300] | [202, 336] | 216 ± 33 |

**Table 3.**The energy per neutron, the symmetry energy, the L parameter, and the pressure at N${}^{3}$LO at selected densities, $\rho $, in units of ${\rho}_{0}$ = 0.155 fm${}^{-3}$. L is defined in Equation (7) and calculated at the specified density. The values in parentheses are from ref. [66]. The constraint for L in the third row ($\rho =0.67{\rho}_{0}$) applies to $\rho $ = 0.1 fm${}^{-3}$. The constraint at $\rho =0.31{\rho}_{0}$ is from ref. [70].

$\mathit{\rho}$$\left({\mathit{\rho}}_{0}\right)$ | $\frac{\mathit{E}}{\mathit{N}}\left(\mathit{\rho}\right)$ (MeV) | ${\mathit{e}}_{\mathit{sym}}\left(\mathit{\rho}\right)$ (MeV) | $\mathit{L}\left(\mathit{\rho}\right)$ (MeV) | ${\mathit{P}}_{\mathit{NM}}\left(\mathit{\rho}\right)$ (MeV/fm${}^{3}$) |
---|---|---|---|---|

1 | 15.56 ± 1.10 | 31.57 ± 1.53 (33.3 ± 1.3) | 49.58 ± 8.47 (59.6 ± 22.1) | 2.562 ± 0.438 (3.2 ± 1.2) |

0.72 (0.72 ± 0.01) | 11.52 ± 0.43 | 26.46 ± 0.82 (25.4 ± 1.1) | 44.91 ± 3.40 | 1.05 ± 0.13 |

0.67 (0.66 ± 0.04) | 10.81 ± 0.41 | 25.25 ± 0.72 (25.5 ± 1.1) | 44.65 ± 3.23 (53.1 ± 6.1) | 0.859 ± 0.120 |

0.63 (0.63 ± 0.03) | 10.39 ± 0.41 | 24.47 ± 0.66 (24.7 ± 0.8) | 43.81 ± 3.11 | 0.748 ± 0.116 |

0.31 (0.31 ± 0.03) | 6.715 ± 0.086 | 15.43 ± 0.12 (15.9 ± 1.0) | 32.35 ± 0.55 | 0.174 ± 0.008 |

0.21 (0.22 ± 0.07) | 5.472 ± 0.039 | 11.73 ± 0.05 (10.1 ± 1.0) | 27.57 ± 0.11 | 0.106 ± 0.002 |

**Table 4.**The neutron skin of ${}^{208}$Pb, S, calculated as described in ref. [76] using the given symmetry energy, J, and its slope at ${\rho}_{0}$, L.

J (MeV) | L (MeV) | S (fm) | Source for J, L |
---|---|---|---|

31.3 ± 0.8 | 52.6 ± 4.0 | [0.13, 0.17] | [34] |

(31.1, 32.5) | [44.8, 56.2] | [0.12, 0.17] | [44] |

(28, 35) | [20, 72] | [0.078, 0.20] | [77] |

(27, 43) | [7.17, 135] | [0.055, 0.28] | [78] |

38.29 ± 4.66 | 109.56 ± 36.41 | [0.17, 0.31] | [33] |

**Table 5.**The energy per neutron, its slope, and the pressure at a density of 0.155 fm${}^{-3}$ with the originl and the modified potentials. Only the 2NF is included.

Calculated Quantity | N${}^{3}$LO(450) | Modified Potential |
---|---|---|

${e}_{n}\left({\rho}_{0}\right)$ (MeV) | 11.11 | 13.88 |

${\left(\frac{\partial {e}_{n}\left(\rho \right)}{\partial \rho}\right)}_{{\rho}_{0}}$ (MeV/fm${}^{-3}$) | 39.79 | 70.03 |

$P\left({\rho}_{0}\right)$ (MeV/fm${}^{3}$) | 0.956 | 1.68 |

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |

© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Sammarruca, F.
The Symmetry Energy: Current Status of Ab Initio Predictions vs. Empirical Constraints. *Symmetry* **2023**, *15*, 450.
https://doi.org/10.3390/sym15020450

**AMA Style**

Sammarruca F.
The Symmetry Energy: Current Status of Ab Initio Predictions vs. Empirical Constraints. *Symmetry*. 2023; 15(2):450.
https://doi.org/10.3390/sym15020450

**Chicago/Turabian Style**

Sammarruca, Francesca.
2023. "The Symmetry Energy: Current Status of Ab Initio Predictions vs. Empirical Constraints" *Symmetry* 15, no. 2: 450.
https://doi.org/10.3390/sym15020450