Applications on Topological Indices of Zero-Divisor Graph Associated with Commutative Rings
Abstract
1. Introduction
2. Definitions and Notations
3. Results
4. Discussions and Applications
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ali Koam, N.A.; Ali, A.; Azeem, H. On eccentric topological indices based on edges of zero divisor graphs. Symmetry 2019, 11, 907. [Google Scholar] [CrossRef]
- Pinkaew, S.; Boonklurb, R. k-Zero-Divisor and Ideal-Based k-Zero-Divisor Hypergraphs of Some Commutative Rings. Symmetry 2021, 13, 1980. [Google Scholar] [CrossRef]
- Ali, F.; Rather, B.A.; Fatima, N.; Sarfraz, M.; Ullah, A.; Alharbi, K.A.M.; Dad, R. On the topological indices of commuting graphs for finite non-Abelian groups. Symmetry 2022, 14, 1266. [Google Scholar] [CrossRef]
- Sharma, V.; Goswami, R.; Madan, A.K. Eccentric connectivity index: A novel highly discriminating topological descriptor for structure property and structure activity studies. J. Chem. Inf. Comput. Sci. 1997, 37, 273–282. [Google Scholar] [CrossRef]
- Ediz, S. On the Ediz eccentric connectivity index of a graph. Optoelectron. Adv. Mater. Rapid Commun. 2011, 5, 1263–1264. [Google Scholar]
- Gupta, S.; Singh, M.; Madan, A.K. Connective eccentricity index: A novel topological descriptor for predicting biological activity. J. Mol. Graph. Modelling 2000, 18, 18–25. [Google Scholar] [CrossRef] [PubMed]
- Gupta, S.; Singh, M.; Madan, A.K. Application of graph theory: Relationship of eccentric connectivity index and Wiener’s index with anti-inflammatory activity. J. Math. Anal. Appl. 2002, 266, 259–268. [Google Scholar] [CrossRef]
- Wiener, H. Structural determination of paraffin boiling points. J. Am. Chem. Soc. 1947, 69, 17–20. [Google Scholar] [CrossRef] [PubMed]
- Beck, I. Coloring of commutative rings. J. Algebra 1988, 116, 208–226. [Google Scholar] [CrossRef]
- Anderson, D.F.; Axtell, M.C.; Stickles, J.A. The zero-divisor graph of a commutative ring. J. Algebra 1999, 217, 434–447. [Google Scholar] [CrossRef]
- Farooq, R.; Malik, M.A. On some eccentricity based topological indices of nanostar dendrimers. Optoelectron. Adv.-Mater.-Rapid Commun. 2015, 9, 842–849. [Google Scholar]
- Ghorbani, M.; Hosseinzadeh, M.A. A new version of Zagreb indices. Filomat 2012, 26, 93–100. [Google Scholar] [CrossRef]
- Singh, P.; Bhat, V.K. Adjacency matrix and Wiener index of zero divisor graph Γ(Zn). J. Appl. Math. Comput. 2021, 66, 717–732. [Google Scholar] [CrossRef]
- Rather, B.A.; Pirzada, S.; Naikoo, T.A.; Shang, Y. On Laplacian eigenvalues of the zero-divisor graph associated to the ring of integers modulo n. Mathematics 2021, 9, 482. [Google Scholar] [CrossRef]
- Rather, B.A.; Ali, F.; Ullah, A.; Fatima, N.; Dad, R. Aγ eigenvalues of zero divisor graph of integer modulo and Von Neumann regular rings. Symmetry 2022, 14, 1710. [Google Scholar] [CrossRef]
- Kuppan, A.; Ravi Sankar, J. Prime Decomposition of Zero Divisor Graph in a Commutative Ring. Math. Probl. Eng. 2022, 2022, 2152513. Available online: https://www.hindawi.com/journals/mpe/2022/2152513/ (accessed on 24 September 2022). [CrossRef]
- Ahmadi, M.R.; Jahani-Nezhad, R. Energy and Wiener index of zero divisor graph Γ(Zn). Iran. J. Math. Chem. 2011, 2, 45–51. [Google Scholar]
- Elahi, K.; Ahmad, A.; Hasni, R. Construction algorithm for zero divisor graphs of finite commutative rings and their vertex-based eccentric topological indices. Mathematics 2018, 6, 301. [Google Scholar] [CrossRef]
- Ahmadini, A.A.H.; Koam, A.N.; Ahmad, A.; Bača, M.; Semaničová–Feňovčíková, A. Computing Vertex-Based Eccentric Topological Descriptors of Zero-Divisor Graph Associated with Commutative Rings. Math. Probl. Eng. 2020, 2020, 2056902. Available online: https://www.hindawi.com/journals/mpe/2020/2056902/ (accessed on 24 August 2020). [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rayer, C.J.; Jeyaraj, R.S. Applications on Topological Indices of Zero-Divisor Graph Associated with Commutative Rings. Symmetry 2023, 15, 335. https://doi.org/10.3390/sym15020335
Rayer CJ, Jeyaraj RS. Applications on Topological Indices of Zero-Divisor Graph Associated with Commutative Rings. Symmetry. 2023; 15(2):335. https://doi.org/10.3390/sym15020335
Chicago/Turabian StyleRayer, Clement Johnson, and Ravi Sankar Jeyaraj. 2023. "Applications on Topological Indices of Zero-Divisor Graph Associated with Commutative Rings" Symmetry 15, no. 2: 335. https://doi.org/10.3390/sym15020335
APA StyleRayer, C. J., & Jeyaraj, R. S. (2023). Applications on Topological Indices of Zero-Divisor Graph Associated with Commutative Rings. Symmetry, 15(2), 335. https://doi.org/10.3390/sym15020335