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Abstract: A topological index is a numeric quantity associated with a chemical structure that attempts
to link the chemical structure to various physicochemical properties, chemical reactivity, or biological
activity. LetR be a commutative ring with identity, and Z∗(R) is the set of all non-zero zero divisors
ofR. Then, Γ(R) is said to be a zero-divisor graph if and only if a · b = 0, where a, b ∈ V(Γ(R)) =
Z∗(R) and (a, b) ∈ E(Γ(R)). We define a ∼ b if a · b = 0 or a = b. Then, ∼ is always reflexive and
symmetric, but ∼ is usually not transitive. Then, Γ(R) is a symmetric structure measured by the ∼ in
commutative rings. Here, we will draw the zero-divisor graph from commutative rings and discuss
topological indices for a zero-divisor graph by vertex eccentricity. In this paper, we will compute the
total eccentricity index, eccentric connectivity index, connective eccentric index, eccentricity based
on the first and second Zagreb indices, Ediz eccentric connectivity index, and augmented eccentric
connectivity index for the zero-divisor graph associated with commutative rings. These will help us
understand the characteristics of various symmetric physical structures of finite commutative rings.

Keywords: commutative ring; zero-divisor graph; topological index; degree; distance; eccentricity
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1. Introduction

Chemical graph theory is an area of mathematics that deals with the non-trivial
applications of molecular problems. Chemical graph theory is an interdisciplinary science
that studies molecular structures using graph theory and attempts to identify structural
features involved in structure–property activity relationships using tools from graph theory,
set theory, and statistics [1–3]. The topological characterization of chemical structures with
the desired properties can be used to classify molecules and model unknown structures.
In recent decades, much research has been conducted in this field. The topological index
is a numerical value associated with chemical structures that purport to link chemical
structures to various physicochemical properties, chemical reactivity, or biological activity.
Topological indices are based on transforming a molecular graph into a number that
describes the topology of the molecular graph [4–7]. Molecular modeling investigates the
relationship between a chemical compound’s structure, properties, and activity. Molecular
graphs are frequently used to represent molecules and molecular compounds. A chemical
graph is a model for describing the properties of a chemical compound. A molecular graph
is a simple graph with vertices representing atoms and edges representing bonds. It can
be represented by a drawing, a polynomial, a series of numbers, a matrix, or a derived
number known as a topological index, which was first introduced by Wiener [8] in 1947.

2. Definitions and Notations

A non-empty set R is said to be a ring (R,+, ·) if (R,+) is an abelian group, and
(R, ·) is a semi group and satisfies two distributive laws. A ringR is a commutative ring if
a · b = b · a; ∀a, b ∈ R. An element a 6= 0 of a commutative ringR is said to be zero-divisor

Symmetry 2023, 15, 335. https://doi.org/10.3390/sym15020335 https://www.mdpi.com/journal/symmetry

https://doi.org/10.3390/sym15020335
https://doi.org/10.3390/sym15020335
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://orcid.org/0000-0003-3652-3965
https://orcid.org/0000-0001-9094-503X
https://doi.org/10.3390/sym15020335
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com/article/10.3390/sym15020335?type=check_update&version=2


Symmetry 2023, 15, 335 2 of 14

if there exists an element b 6= 0 inR such that a · b = 0. The zero-divisor graph G(R) was
first introduced in 1988 by Beck [9] where he considered the set of vertices as zero divisors
including zero, with an edge set defined by E = {a · b = 0; ∀a, b ∈ Z(R)}. Later, in 1999,
Anderson and Livingston [10] continued their investigation of zero-divisor graphs, but this
time they only examined non-zero zero divisors and constructed the zero-divisor graph
as a simple graph with all non-zero zero divisors as vertices and an edge set defined by
E = {a · b = 0; ∀a, b ∈ Z∗(R)}, denoted by Γ(R).

LetR be a commutative ring with identity, and Z∗(R) is the set of all non-zero zero
divisors ofR. Then, Γ(R) is said to be a zero-divisor graph if and only if a · b = 0 where
a, b ∈ V(Γ(R)) = Z∗(R) and (a, b) ∈ E(Γ(R)).

In a graph Γ(R), distance d(a, b) is the number of edges in the shortest path between
a vertex a and b. Eccentricity e(a) is considered to be the maximum distance from a vertex
to all other vertices, and degree d(a) is the number of edges adjacent to a vertex a and
the minimum vertex degree in a graph Γ(R) is denoted by δ(Γ(R)), and the maximum
vertex degree is denoted by ∆(Γ(R)). Furthermore, the degree sequence DV is a monotonic,
non-increasing sequence of the vertex degrees of the graph vertices.

Farooq, and Malik [11] introduced the total eccentricity index, which is defined as

Tξ(Γ(R)) = ∑
a∈V(Γ(R))

e(a).

The eccentric connectivity index was introduced by Sharma et al. [4] which is defined
as

ξC(Γ(R)) = ∑
a∈V(Γ(R))

d(a)e(a).

The connective eccentric index was introduced by Gupta, Singh, and Madan [6] which
is defined as

Cξ(Γ(R)) = ∑
a∈V(Γ(R))

d(a)
e(a)

.

The eccentricity-based Zagreb indices were introduced by Ghorbani, and Hossein-
zadeh [12] which are defined as

ξM1(Γ(R)) = ∑
ab∈E(Γ(R))

[e(a) + e(b)],

ξM2(Γ(R)) = ∑
ab∈V(Γ(R))

[e(a)× e(b)]

and
ξM∗1(Γ(R)) = ∑

a∈V(Γ(R))
e(a)2.

The Ediz eccentric connectivity index was introduced by Ediz [5] which is defined as

EξC(Γ(R)) = ∑
a∈V(Γ(R))

S(a)
e(a)

where S(a) = ∑b∈N(a) d(b).
The augmented eccentric connectivity index was introduced by Gupta, Singh, and

Madan [6] which is defined as

AξC(Γ(R)) = ∑
a∈V(Γ(R))

M(a)
e(a)

where M(a) = ∏b∈N(a) d(b).
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3. Results

Let R be a ring and I be the ideal of R, then the set of all cosets R/I = {I + a; a ∈
R/I} forms a ring known as a factor ring. Let Zn[x] = {anxn + · · ·+ a1x + a0|ai ∈ Zn}
be a polynomial of a commutative ring and Zn[x]/〈x2〉 be the factor ring. Here, we
consider the finite commutative rings Zq2 [x]/〈x2〉 and Zpq[x]/〈x2〉 to investigate some
topological indices such as total eccentricity index, eccentric connectivity index, connective
eccentric index, eccentricity based on first and second Zagreb indices, Ediz eccentric
connectivity index and augmented eccentric connectivity index of zero-divisor graph for
the commutative rings.

For R = Zq2 [x]/〈x2〉 with any prime q ≥ 3, then Γ(Zq2 [x]/〈x2〉) be a zero-divisor
graph with (q3 − 1) zero divisors of (Zq2 [x]/〈x2〉) − {0} considered to be vertices and
1
2 (2q5 − 2q4 − q3 − q2 + 2) edges.

Then,

V(Γ(Zq2 [x]/〈x2〉)) = {q, 2q, . . . , (q− 1)q, x, 2x, 3x, . . . , (q2 − 1)x, x + q, x + 2q, . . . , x + (q− 1)q,

2x + q, 2x + 2q, . . . , 2x + (q− 1)q, . . . , (q2 − 1)x + q, (q2 − 1)x + 2q, . . . , (q2 − 1)x + (q− 1)q}
=⇒ V|Γ(Zq2 [x]/x2)| = (q3 − 1)

Now, the vertex set has been divided by

A = {lqx|l = 1, 2, . . . (q− 1) & q - l}
=⇒ |A| = (q− 1)

B = {lq, kx, lqx + lq|l = 1, 2, . . . (q− 1), k = 1, 2, . . . (q2 − 1) & q - k}
=⇒ |B| = 2q(q− 1)

C = {kx + lq|l = 1, 2, . . . (q− 1), k = 1, 2, . . . (q2 − 1) & q - l, k}

=⇒ |C| = (q− 1)
2

[2q(q− 1)]

Additionally, B(Γ(Zq2 [x]/〈x2〉)) and C(Γ(Zq2 [x]/〈x2〉)) are subdivided by

B1 = {kx|k = 1, 2, . . . (q2 − 1)}
=⇒ |B1| = q(q− 1)

B2 = {lq, lqx + lq|l = 1, 2, . . . (q− 1)}
=⇒ |B2| = q(q− 1)

C1 = {kx + q, kx + q(q− 1)|k = 1, 2, . . . (q2 − 1)}
=⇒ |C1| = 2q(q− 1)

C2 = {kx + 2q, kx + q(q− 2)|k = 1, 2, . . . (q2 − 1)}
=⇒ |C2| = 2q(q− 1)

...

C(q−1)/2 = {kx + ((q− 1)/2)q, kx + q(q + 1)/2|k = 1, 2, . . . (q2 − 1)}
=⇒ |C(q−1)/2| = 2q(q− 1)

It is clear to see that if liqx, ljqx ∈ A =⇒ (liqx)(ljqx) = liljq2x2 ≡ 0 mod x2, then
every vertex is adjacent to each other in A, if liqx,∈ A, ljq, k jx, ljqx + ljq ∈ B =⇒ liljq2x ≡
0 mod q2, lik jqx2 ≡ 0 mod x2, liljq2x2 + liljq2x ≡ 0 mod q2, then every vertex in A
is adjacent to every vertex in B and if liqx,∈ A, k jx + ljq ∈ C =⇒ (liqx)(k jx + ljq) =

lik jqx2 + liljq2x ≡ 0 mod x2 or mod q2, then every vertex in A is adjacent to every
vertex in C.
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In addition, if kix, k jx ∈ B1 =⇒ (kix)(k jx) = kik jx2 ≡ 0 mod x2, then every vertex
is adjacent to each other in B1. Similarly, it holds for B2. However, kix ∈ B1, ljq ∈ B2 =⇒
(kix)(ljq) = kiljqx 6≡ 0 mod x2, then no vertex in B1 is adjacent to vertex in B2.

Additionally, if kix + q, k jx + q(q− 1) ∈ C1 =⇒ (kix + q)(k jx + q(q− 1)) = kik jx2 +

(k1 + k j)q2x + q2(q− 1) ≡ 0 mod x2 or mod q2 then kix + q is adjacent to k jx + q(q1) in
C1 but no two kix + q or k jx + q(q1) has zero product by modulo x2 or q2 in C1. Similarly,
it holds for C2, C3, . . . , C(q−1)/2.

For example, q = 3 then we have a graph Γ(Z9[x]/〈x2〉) in Figure 1.
The vertex set Γ(Z9[x]/〈x2〉) has been divided by

A = {3x, 6x}
B1 = {x, 2x, 4x, 5x, 7x, 8x}
B2 = {3, 6, 3x + 3, 3x + 6, 6x + 3, 6x + 6}
C1 = {2x + 3, 5x + 3, 8x + 3, x + 6, 4x + 6, 7x + 6}
C2 = {x + 3, 4x + 3, 7x + 3, 2x + 6, 5x + 6, 8x + 6}

Figure 1. Γ(Z9[x]/〈x2〉) .

Lemma 1. Let Γ(Zq2 [x]/〈x2〉) be a zero-divisor graph with any prime q ≥ 3. Then,

DV = {(q3 − 2)︸ ︷︷ ︸
(q−1)times

, (q2 − 2)︸ ︷︷ ︸
2q(q−1)times

, (q2 − 1)︸ ︷︷ ︸
(q−1)

2 [2q(q−1)]times

}

ξV = { 1︸︷︷︸
(q−1)times

, 2︸︷︷︸
2q(q−1)times

, 2︸︷︷︸
(q−1)

2 [2q(q−1)]times

}

where DV and ξV are degree sequences and their eccentricity sequences of Γ(Zq2 [x]/〈x2〉).

Theorem 1. Let Γ(Zq2 [x]/〈x2〉) be a zero-divisor graph with any prime q ≥ 3. Then,

Tξ(Γ(Zq2 [x]/〈x2〉)) = 2q3 − q− 1
ξC(Γ(Zq2 [x]/〈x2〉)) = 2q5 + q4 − 5q3 − 4q2 + 4q + 2

Cξ(Γ(Zq2 [x]/〈x2〉)) = 1
2 (q

5 + 2q4 − 4q3 − 2q2 − q + 4)
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Proof. Let Γ(Zq2 [x]/〈x2〉) be a zero-divisor graph with (q3 − 1) vertices and 1
2 (2q5 − 2q4 −

q3 − q2 + 2) edges. Then,

A = {lqx|l = 1, 2, . . . (q− 1) & q - l}
=⇒ |A| = (q− 1)

B = {lq, kx, lqx + lq|l = 1, 2, . . . (q− 1), k = 1, 2, . . . (q2 − 1) & q - k}
=⇒ |B| = 2q(q− 1)

C = {kx + lq|l = 1, 2, . . . (q− 1), k = 1, 2, . . . (q2 − 1) & q - l, k}

=⇒ |C| = (q− 1)
2

[2q(q− 1)]

By Lemma 1, we have
It is clear that a ∈ A is adjacent to all divisors of Zq2 [x]/〈x2〉, then A = {a ∈

V(Γ(Zq2 [x]/〈x2〉)) 3 d(a) = (q3 − 2) & e(a) = 1} and |A| = (q− 1).
However, a ∈ B is adjacent only to divisors in A & B, then B = {a ∈ V(Γ(Zq2 [x]/〈x2〉)) 3

d(a) = (q2 − 2) & e(a) = 2} and |B| = 2[q(q− 1)].
Additionally, a ∈ C is adjacent to divisors in A and & C but no two kix + q or

k jx + q(q1) has zero product by modulo x2 or q2 in C. C = {a ∈ V(Γ(Zq2 [x]/〈x2〉)) 3
d(a) = (q2 − 1) & e(a) = 2} and |C| = (q−1)

2 [2q(q− 1)].

Tξ(Γ(Zq2 [x]/〈x2〉)) = ∑
a∈V(Γ(Zq2 [x]/〈x2〉))

e(a)

= (q− 1)[1] + 2q(q− 1)[2] +
(q− 1)

2
[2q(q− 1)][2]

= 2q3 − q− 1

ξC(Γ(Zq2 [x]/〈x2〉)) = ∑
a∈V(Γ(Zq2 [x]/〈x2〉))

d(a)e(a)

= (q− 1)[(q3 − 2)× 1] + 2q(q− 1)[(q2 − 2)× 2] +
(q− 1)

2
[2q(q− 1)][(q2 − 1)× 2]

= 2q5 + q4 − 5q3 − 4q2 + 4q + 2

Cξ(Γ(Zq2 [x]/〈x2〉)) = ∑
a∈V(Γ(Zq2 [x]/〈x2〉))

d(a)
e(a)

= (q− 1)
[
(q3 − 2)

2

]
+ 2q(q− 1)

[
(q2 − 2)

2

]
+

(q− 1)
2

[2q(q− 1)]
[
(q2 − 1)

2

]
=

1
2
(q5 + 2q4 − 4q3 − 2q2 − q + 4)

Theorem 2. Let Γ(Zq2 [x]/〈x2〉) be a zero-divisor graph with any prime q ≥ 3. Then,

ξM1(Γ(Zq2 [x]/〈x2〉)) = 2q5 + q4 − 5q3 − 4q2 + 4q + 2
ξM∗1(Γ(Zq2 [x]/〈x2〉)) = 4q3 − 3q− 1

and

ξM2(Γ(Zq2 [x]/〈x2〉)) = 1
2 (4q5 − 8q3 − 7q2 + 9q + 2)
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Proof. By Lemma 1, we have
A = {a ∈ V(Γ(Zq2 [x]/〈x2〉)) 3 d(a) = (q3 − 2) & e(a) = 1}
and |A| = (q− 1)
A = {a ∈ V(Γ(Zq2 [x]/〈x2〉)) 3 d(a) = (q2 − 2) & e(a) = 2}
and |B| = 2[q(q− 1)]
A = {a ∈ V(Γ(Zq2 [x]/〈x2〉)) 3 d(a) = (q2 − 1) & e(a) = 2}
and |C| = (q−1)

2 [2q(q− 1)]
E1 = {ab ∈ E(Γ(Zq2 [x]/〈x2〉))|[d(a), d(b)] = [(q3 − 2), (q3 − 2)] & [e(a), e(b)] = [1, 1]}
and |E1| = 1

2 [q
2 − 3q + 2]

E2 = {ab ∈ E(Γ(Zq2 [x]/〈x2〉))|[d(a), d(b)] = [(q3 − 2), (q2 − 2)] & [e(a), e(b)] = [1, 2]}
and |E2| = 2q(q− 1)2

E3 = {ab ∈ E(Γ(Zq2 [x]/〈x2〉))|[d(a), d(b)] = [(q3 − 2), (q2 − 1)] & [e(a), e(b)] = [1, 2]}
and |E3| = q(q− 1)3

E4 = {ab ∈ E(Γ(Zq2 [x]/〈x2〉))|[d(a), d(b)] = [(q2 − 2), (q2 − 2)] & [e(a), e(b)] = [2, 2]}
and |E4| = (q4 − 2q3 + q)
E5 = {ab ∈ E(Γ(Zq2 [x]/〈x2〉))|[d(a), d(b)] = [(q2 − 1), (q2 − 1)] & [e(a), e(b)] = [2, 2]}
and |E5| = q−1

2 [(q(q− 1))2]

ξM1(Γ(Zq2 [x]/〈x2〉)) = ∑
ab∈E(Γ(Zq2 [x]/x2))

[e(a) + e(b)]

=
1
2
[q2 − 3q + 2][1 + 1] + 2q(q− 1)2[1 + 2] + q(q− 1)3[1 + 2]

+ (q4 − 2q3 + q)[2 + 2] +
(q− 1)

2
[(q(q− 1))3][2 + 2]

= 2q5 + q4 − 5q3 − 4q2 + 4q + 2

ξM∗1(Γ(Zq2 [x]/x2)) = ∑
a∈V(Γ(Zq2 [x]/〈x2〉)))

e(a)2

= (q− 1)[12] + 2q(q− 1)[22] +
(q− 1)

2
[2q(q− 1)][22]

= 4q3 − 3q− 1

ξM2(Γ(Zq2 [x]/〈x2〉)) = ∑
ab∈E(Γ(Zq2 [x]/x2))

[e(a)(b)]

=
1
2
[q2 − 3q + 2][1× 1] + 2q(q− 1)2[1× 2] + q(q− 1)3[1× 2]

+ (q4 − 2q3 + q)[2× 2] +
(q− 1)

2
[(q(q− 1))3][2× 2]

=
1
2
(4q5 − 8q3 − 7q2 + 9q + 2)

Theorem 3. Let Γ(Zq2 [x]/〈x2〉) be zero-divisor graph with any prime q ≥ 3. Then,

EξC(Zq2 [x]/〈x2〉) = 1
2 (2q7 − 3q5 − 13q4 + 13q3 + 9q2 − 8)

AξC(Zq2 [x]/〈x2〉) = (q− 1)(q3 − 2)(q−2)[(q2 − 2)2q(q−1)(q2 − 1)(q(q−1))2

+ q(q3−2)
2 {2(q2 − 2)q(q−1)−1 + q(q− 1)(q2 − 1)q(q−1)}]
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Proof. By Lemma 1, we have
A = {a ∈ V(Γ(Zq2 [x]/〈x2〉)) 3 d(a) = (q3 − 2) & e(a) = 1}
and |A| = (q− 1)
B = {a ∈ V(Γ(Zq2 [x]/〈x2〉)) 3 d(a) = (q2 − 2) & e(a) = 2}
and |B| = 2[q(q− 1)]
C = {a ∈ V(Γ(Zq2 [x]/〈x2〉)) 3 d(a) = (q2 − 1) & e(a) = 2}
and |C| = (q−1)

2 [2q(q− 1)]

EξC(Zq2 [x]/〈x2〉) = ∑
a∈V(Γ(Zq2 [x]/〈x2〉))

S(a)
e(a)

where S(a) = ∑b∈N(a) d(b)

EξC(Γ(Zq2 [x]/〈x2〉)) = ∑
a∈V(Γ(Zq2 [x]/〈x2〉))

S(a)
e(a)

= (q− 1)
[
(q5 + q4 − 4q3 − 2q2 + q + 4)

1

]
+ 2q(q− 1)

[
(2q4 − 2q3 − 3q2 + 4)

2

]
+

(q− 1)
2

[2q(q− 1)]
[
(2q4 − 2q3 − q2 − q + 2)

2

]
=

1
3
(2q7 − 3q5 − 13q4 + 13q3 + 9q2 − 8)

AξC(Zq2 [x]/〈x2〉) = ∑
a∈V(Γ(Zq2 [x]/〈x2〉))

M(a)
e(a)

where M(a) = ∏b∈N(a) d(b)

AξC(Γ(Zq2 [x]/〈x2〉)) = ∑
a∈V(Γ(Zq2 [x]/〈x2〉))

M(a)
e(a)

= (q− 1)

[
(q2 − 2)2q(q−1)(q2 − 1)q(q−2)2

(q3 − 2)(q−2)

1

]

+ 2q(q− 1)

[
(q2 − 2)q(q−1)−1(q3 − 2)(q−1)

2

]

+
(q− 1)

2
[2q(q− 1)]

[
(q2 − 1)q(q−1)(q3 − 2)(q−1)

2

]

=
(q− 1)(q3 − 2)(q−2)[(q2 − 2)2q(q−1)(q2 − 1)(q(q−1))2

+ q(q3−2)
2 {2(q2 − 2)q(q−1)−1 + q(q− 1)(q2 − 1)q(q−1)}]

For R = Zpq[x]/〈x2〉 with any prime 2 < p < q, then Γ(Zpq[x]/〈x2〉) be a zero-
divisor graph with (pq2 + p2q− pq− 1) zero divisors of (Zpq[x]/〈x2〉)− {0} considered
as a vertices and 1

2 [7p2q2 − 6pq2 − 6p2q + 3pq + 2] edges.



Symmetry 2023, 15, 335 8 of 14

Then

V(Γ(Zpq[x]/〈x2〉)) =
{p, 2p, . . . , (q− 1)p, q, 2q, . . . , (p− 1)q, x, 2x, . . . , (pq− 1)x,

x + p, x + 2p, . . . , x + (q− 1)p, x + q, x + 2q, . . . , x + (p− 1)q,

2x + p, 2x + 2p, . . . , 2x + (q− 1)p, 2x + q, 2x + 2q, . . . , 2x + (p− 1)q, . . . ,

(q− 1)px + p, (q− 1)px + 2p, . . . , (q− 1)px + (q− 1)p,

(p− 1)qx + q, (p− 1)qx + 2q, . . . , (p− 1)qx + (p− 1)q}
=⇒ V|Γ(Zpq[x]/〈x2〉)| = pq2 + p2q− pq− 1

By using these vertices, there exists an edge defined between a and b by E = {ab =
0; ∀a, b ∈ R} and E|Γ(Zpq[x]/〈x2〉)| = 1

2 [7p2q2 − 6pq2 − 6p2q + 3pq + 2].

V1 = {jpx|j = 1, 2, . . . (p− 1)}
=⇒ |V1| = (p− 1)

V2 = {kx + mp|k = 1, 2, . . . (pq− 1), m = 1, 2, . . . (q− 1) & p - k}
=⇒ |V2| = (p− 1)q(q− 1)

V3 = {lpx + mp|l = 0, 1, . . . (q− 1)}
=⇒ |V3| = q(q− 1)

V4 = {kx + nq|k = 1, 2, . . . (pq− 1), n = 1, 2, . . . (p− 1) & q - k}
=⇒ |V4| = p(p− 1)(q− 1)

V5 = {lpx + nq|l = 0, 1, . . . (q− 1)}
=⇒ |V5| = p(p− 1)

V6 = {mpx|m = 1, 2, . . . (q− 1)}
=⇒ |V6| = (p− 1)q(q− 1)

V7 = {kx|k = 1, 2, . . . (pq− 1) & p, q - k}
=⇒ |V7| = p(p− 1)(q− 1)

It is clear to see that if a, b ∈ V1 =⇒ ab ≡ 0 mod x2, then every vertex is adjacent
to each other in V1. Similarly, it holds V6 and V7. In addition, if a ∈ V1, b ∈ V2 =⇒ ab ≡
0 mod x2 or ab ≡ 0 mod pq then every vertex in V1 is adjacent to every vertex in V2.
Similarly, every vertex in V1 is adjacent to every vertex in V3 ∪V6 ∪ V7 and every vertex in
V6 is adjacent to every vertex in V4 ∪V5 ∪ V7. Additionally, every vertex in V2 is adjacent
to every vertex in V5.

For example, if p = 3 and q = 5, then we have a graph Γ(Z15[x]/〈x2〉) in Figure 2.
The vertex set Γ(Z15[x]/〈x2〉) has been divided by

V1 = {5x, 10x}
V2 = {x + 3, x + 6, x + 9, x + 12, . . . , 14x + 3, 14x + 6, 14x + 9, 14x + 12}
V3 = {x + 5, x + 10, . . . , 14x + 5, 14x + 10}
V4 = {3, 6, 9, 12, 3x + 3, 3x + 6, 3x + 9, 3x + 12, . . . , 12x + 3, 12x + 6, 12x + 9, 12x + 12}
V5 = {5, 10, 5x + 5, 5x + 10, 10x + 5, 10x + 10}
V6 = {3x, 6x, 9x, 12x}
V7 = {x, 2x, 4x, 7x, 8x, 11x, 13x, 14x}
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Figure 2. Γ(Z15[x]/〈x2〉).

Lemma 2. Let Γ(Zpq[x]/〈x2〉) be a zero-divisor graph with any prime 2 < p < q. Then,

DV = {(pq2 − 2)︸ ︷︷ ︸
(p−1)times

; (p− 1)︸ ︷︷ ︸
(p−1)q(q−1)times

; (p2 − 1︸ ︷︷ ︸
q(q−1)times

; (q− 1)︸ ︷︷ ︸
p(p−1)(q−1)times

; (q2 − 1)︸ ︷︷ ︸
p(p−1)times

; (p2q− 2)︸ ︷︷ ︸
(q−1)times

; (pq− 2)︸ ︷︷ ︸
(p−1)(q−1)times

}

ξV = { 2︸︷︷︸
(p−1)times

; 3︸︷︷︸
(p−1)q(q−1)times

; 3︸︷︷︸
q(q−1)times

; 3︸︷︷︸
p(p−1)(q−1)times

; 3︸︷︷︸
p(p−1)times

; 2︸︷︷︸
(q−1)times

; 2︸︷︷︸
(p−1)(q−1)times

}

where DV and ξV are degree and eccentricity sequences of Γ(Zpq[x]/〈x2〉).

Theorem 4. Let Γ(Zpq[x]/〈x2〉) be a zero-divisor graph with any prime 2 < p < q. Then

Tξ(Γ(Zpq[x]/〈x2〉)) = 3pq2 + 3p2q− 4pq− 2
ξC(Γ(Zpq[x]/〈x2〉)) = 18p2q2 − 16pq2 − 16p2q + 10pq + 4

Cξ(Γ(Zpq[x]/〈x2〉)) = 1
2 (2q5 − q4 − 2q3 − q2 − 2q + 4)

Proof. Let Γ(Zpq[x]/〈x2〉) be zero-divisor graph with (pq2 + p2q− pq− 1) zero divisors
of (Zpq[x]/〈x2〉)− {0} vertices and 1

2 [7p2q2 − 6pq2 − 6p2q + 3pq + 2] edges.
By Lemma 2, we have

Tξ(Γ(Zpq[x]/〈x2〉)) = ∑
a∈V(Γ(Zpq [x]/〈x2〉))

e(a)

= (p− 1)(2) + (p− 1)q(q− 1)(3) + q(q− 1)(3) + p(p− 1)(q− 1)(3) + p(p− 1)(3)

+ (q− 1)(2) + (p− 1)(q− 1)(2)

= 3pq2 + 3p2q− 4pq− 2
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ξC(Γ(Zpq[x]/〈x2〉)) = ∑
a∈V(Γ(Zpq [x]/〈x2〉))

d(a)e(a)

= (p− 1)[(pq2 − 2)× 2] + (p− 1)q(q− 1)[(p2q− 2)× 3] + q(q− 1)[(p− 1)(q− 1)× 3]

+ p(p− 1)(q− 1)[(p2 − 1)× 3] + p(p− 1)[(q2 − 1)× 3] + (q− 1)[(p− 1)× 2]

+ (p− 1)(q− 1)[(q− 1)× 2]

= 18p2q2 − 16pq2 − 16p2q + 10pq + 4

Cξ(Γ(Zpq[x]/〈x2〉)) = ∑
a∈V(Γ(Zpq [x]/〈x2〉))

d(a)
e(a)

= (p− 1)
[
(pq2 − 2)

3

]
+ (p− 1)q(q− 1)

[
(p2q− 2)

3

]
+ q(q− 1)

[
(p− 1)(q− 1)

3

]
+ p(p− 1)(q− 1)

[
(p2 − 1)

3

]
+ p(p− 1)

[
(q2 − 1)

3

]
+ (q− 1)

[
(p− 1)

2

]
+ (p− 1)(q− 1)

[
(q− 1)

2

]
=

1
2
(2q5 − q4 − 2q3 − q2 − 2q + 4)

Theorem 5. Let Γ(Zpq[x]/〈x2〉) be a zero-divisor graph with any prime 2 < p < q. Then,

ξM1(Γ(Zpq[x]/〈x2〉)) = 18p2q2 − 16pq2 − 16p2q + 10pq + 4
ξM∗1(Γ(Zpq[x]/〈x2〉)) = 9pq2 + 9p2q− 14pq− 4

and

ξM2(Γ(Zpq[x]/〈x2〉)) = 23p2q2 − 21pq2 − 21p2q + 15pq + 4

Proof. By Lemma 2, we have

ξM1(Γ(Zpq[x]/〈x2〉)) = ∑
ab∈E(Γ(Zpq [x]/〈x2〉))

[e(a) + e(b)]

=
1
2
(p2 − 3p + 2)(2 + 2) + (p− 1)2q(q− 1)(2 + 3) + (p− 1)q(q− 1)(2 + 3)

+ (p− 1)(q− 1)(2 + 2) + (p− 1)2(q− 1)(2 + 2) + p(p− 1)q(q− 1)(3 + 3)

+ p(p− 1)(q− 1)(2 + 3) + (p− 1)(q− 1)2(2 + 2) +
1
2
(q2 − 3q + 2)(2 + 2)

+
1
2
(p2q2 + (p + q)2 − 2pq(p + q)− (p + q) + pq)(2 + 2) + (q− 1)2 p(p− 1)(3 + 2)

= 18p2q2 − 16pq2 − 16p2q + 10pq + 4

ξM∗1(Γ(Zpq[x]/〈x2〉)) = ∑
a∈V(GΓ(Zpq [x]/〈x2〉)))

e(a)2

= (p− 1)(22) + (p− 1)q(q− 1)(32) + q(q− 1)(32) + p(p− 1)(q− 1)(32) + p(p− 1)(32)

+ (q− 1)(22) + (p− 1)(q− 1)(22)

= 9pq2 + 9p2q− 14pq− 4
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ξM2(Γ(Zpq[x]/〈x2〉)) = ∑
ab∈E(Γ(Zpq [x]/〈x2〉))

[e(a)(b)]

=
1
2
(p2 − 3p + 2)(2× 2) + (p− 1)2q(q− 1)(2× 3) + (p− 1)q(q− 1)(2× 3)

+ (p− 1)(q− 1)(2× 2) + (p− 1)2(q− 1)(2× 2) + p(p− 1)q(q− 1)(3× 3)

+ p(p− 1)(q− 1)(2× 3) + (p− 1)(q− 1)2(2× 2) +
1
2
(q2 − 3q + 2)(2× 2)

+
1
2
(p2q2 + (p + q)2 − 2pq(p + q)− (p + q) + pq)(2× 2) + (q− 1)2 p(p− 1)(3× 2)

= 23p2q2 − 21pq2 − 21p2q + 15pq + 4

Theorem 6. Let Γ(Zpq[x]/〈x2〉) be a zero-divisor graph with any prime 2 < p < q. Then,

EξC(Γ(Zpq[x]/〈x2〉))

=
1
6
(2p3q4 − 2pq4 + 2p4q3 + 5p3q3 − 4pq3 − 57p2q2

+ 42pq2 − 2p4q− 4p3q + 42p2q− 12pq− 12)

and

AξC(Γ(Zpq[x]/〈x2〉))

=
1
3
{q(q− 1)(pq2 − 2)(p−1)[(p− 1) + (q2 − 1)p(p−1)]

+ p(p− 1)(p2q− 2)(q−1)[(q− 1) + (p2 − 1)q(q−1)]}

+
1
2
(pq2 − 2)(p−2)(p2q− 2)(q−2)(pq− 2)(pq−(p+q))

{[(p− 1)(p−1)q(q−1)+1(p2 − 1)q(q−1)(p2q− 2)(pq− 2)]

+ [(q− 1)p(p−1)(q−1)+1(q2 − 1)p(p−1)(pq− 2)] + [(p− 1)(q− 1)(p2q− 2)]}

Proof. By Lemma 2, we have

EξC(Zpq[x]/〈x2〉) = ∑
a∈V(Γ(Zpq [x]/〈x2〉))

S(a)
e(a)

where S(a) = ∑b∈N(a) d(b)

EξC(Γ(Zpq[x]/〈x2〉)) = ∑
a∈V(Γ(Zpq [x]/〈x2〉))

S(a)
e(a)

= (p− 1)
[
(5p2q2 − 5pq2 − 4p2q + pq + 4)

2

]
+ (p− 1)q(q− 1)

[
(p2q2 − pq2 − 2p + 2)

3

]
+ q(q− 1)

[
(2p2q2 − 2pq2 − p2 − p + 2)

3

]
+ p(p− 1)(q− 1)

[
(p2q2 − p2q− 2q + 2)

3

]
+ p(p− 1)

[
(2p2q2 − 2p2q− q2 − q + 2)

3

]
+ (q− 1)

[
(5p2q2 − 4pq2 − 5p2q + pq + 4)

2

]
+ (p− 1)(q− 1)

[
(3p2q2 − 2pq2 − 2p2q− 2pq + 4)

2

]
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=
1
6
(2p3q4 − 2pq4 + 2p4q3 + 5p3q3 − 4pq3 − 57p2q2

+ 42pq2 − 2p4q− 4p3q + 42p2q− 12pq− 12)

AξC(Zpq[x]/〈x2〉) = ∑
a∈V(Γ(Zpq [x]/〈x2〉))

M(a)
e(a)

where M(a) = ∏b∈N(a) d(b)

AξC(Γ(Zpq[x]/〈x2〉)) = ∑
a∈V(Γ(Zpq [x]/〈x2〉))

M(a)
e(a)

= (p− 1)

[
(p− 1)(p−1)q(q−1)(p2 − 1)q(q−1)(p2q− 2)(p−1)(q−1)(pq2 − 2)(p−2)

2

]

+ (p− 1)q(q− 1)

[
(pq2 − 2)(p−1)

3

]
+ q(q− 1)

[
(pq2 − 2)(p−1)(q2 − 1)p(p−1)

3

]

+ p(p− 1)(q− 1)

[
(p2q− 2)(q−1)

3

]
+ p(p− 1)

[
(p2q− 2)(q−1)(p2 − 1)q(q−1)

3

]

+ (q− 1)

[
(pq2 − 2)(p−1)(q− 1)p(p−1)(q−1)(q2 − 1)p(p−1)(pq− 2)(p−1)(q−1)(p2q− 2)(q−2)

2

]

+ (p− 1)(q− 1)

[
(pq2 − 2)(p−1)(p2q− 2)(q−1)(pq− 2)(pq−(p+q))

2

]

=
1
3
{q(q− 1)(pq2 − 2)(p−1)[(p− 1) + (q2 − 1)p(p−1)]

+ p(p− 1)(p2q− 2)(q−1)[(q− 1) + (p2 − 1)q(q−1)]}

+
1
2
(pq2 − 2)(p−2)(p2q− 2)(q−2)(pq− 2)(pq−(p+q))

{[(p− 1)(p−1)q(q−1)+1(p2 − 1)q(q−1)(p2q− 2)(pq− 2)]

+ [(q− 1)p(p−1)(q−1)+1(q2 − 1)p(p−1)(pq− 2)] + [(p− 1)(q− 1)(p2q− 2)]}

4. Discussions and Applications

Algebraic structures were investigated separately because of their strong links to repre-
sentation theory and number theory, as well as their widespread use in combinatorics [2,3].
As a result of extensive mathematical research in this area, finite rings and fields have
received a significant amount of focus for their applications to cryptography and coding
theory [13–16].

Here, we investigated the eccentricity-based indices associated with factor ring
Zn[x]/〈x2〉 and obtained the zero-divisor graph of the factor rings Zq2 [x]/〈x2〉 and
Zpq[x]/〈x2〉.

Let Γ(Zq2 [x]/〈x2〉) be a zero-divisor graph with prime q ≥ 3, then ξC(Γ(Zq2 [x]/〈x2〉)) =
ξM1(Γ(Zq2 [x]/〈x2〉)) and

Tξ(Γ(Zq2 [x]/〈x2〉)) < ξM∗1(Γ(Zq2 [x]/〈x2〉)) < ξC(Γ(Zq2 [x]/〈x2〉))
< ξM2(Γ(Zq2 [x]/〈x2〉)) < EξC(Γ(Zq2 [x]/〈x2〉)) < AξC(Γ(Zq2 [x]/〈x2〉))
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Let Γ(Zpq[x]/〈x2〉) be a zero-divisor graph with prime 2 < p < q, then
ξC(Γ(Zpq[x]/〈x2〉)) = ξM1(Γ(Zpq[x]/〈x2〉)) and

Tξ(Γ(Zpq[x]/〈x2〉)) < ξM∗1(Γ(Zpq[x]/〈x2〉)) < ξC(Γ(Zpq[x]/〈x2〉))
< ξM2(Γ(Zpq[x]/〈x2〉)) < EξC(Γ(Zpq[x]/〈x2〉)) < AξC(Γ(Zpq[x]/〈x2〉))

These values help understand the characteristics of various symmetric physical struc-
tures of finite commutative rings and have received significant focus for their applications
to cryptography and coding theory. They may also help design strong symmetric phys-
ical structures for robotics and identify computer network issues associated with speed,
distance, and time. This research will aid in the understanding the properties of various
physical structures such as carbohydrates, silicone structures, polymers, hexagonal chains,
and cylindrical fullerenes [17–19]. They can also create a productive physical design in
mechanics and solve various computer network problems.

5. Conclusions

In this paper, we explored various topological indices and discussed the total eccen-
tricity index, eccentric connectivity index, connective eccentric index, eccentricity based
on the first and second Zagreb indices, Ediz eccentric connectivity index, and augmented
eccentric connectivity index for the zero-divisor graph associated with commutative rings.
Additionally, we showed that the boundaries are related to topological indices for the
zero-divisor graph.
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