Next Article in Journal
Covariant Cubic Interacting Vertices for Massless and Massive Integer Higher Spin Fields
Next Article in Special Issue
An Application of Touchard Polynomials on Subclasses of Analytic Functions
Previous Article in Journal
Exact Solutions of Nonlinear Partial Differential Equations Using the Extended Kudryashov Method and Some Properties
Previous Article in Special Issue
Analytic Invariants of Semidirect Products of Symmetric Groups on Banach Spaces
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

New Versions of Fuzzy-Valued Integral Inclusion over p-Convex Fuzzy Number-Valued Mappings and Related Fuzzy Aumman’s Integral Inequalities

by
Nasser Aedh Alreshidi
1,
Muhammad Bilal Khan
2,*,
Daniel Breaz
3 and
Luminita-Ioana Cotirla
4,*
1
Department of Mathematics, College of Science, Northern Border University, Arar 73213, Saudi Arabia
2
Department of Mathematics and Computer Science, Transilvania University of Brasov, 500036 Brasov, Romania
3
Department of Computing, Mathematics and Electronics, “1 Decembrie 1918” University of Alba Iulia, 510009 Alba Iulia, Romania
4
Department of Mathematics, Technical University of Cluj-Napoca, 400114 Cluj-Napoca, Romania
*
Authors to whom correspondence should be addressed.
Symmetry 2023, 15(12), 2123; https://doi.org/10.3390/sym15122123
Submission received: 31 October 2023 / Revised: 21 November 2023 / Accepted: 23 November 2023 / Published: 28 November 2023
(This article belongs to the Special Issue Symmetry in Geometric Theory of Analytic Functions)

Abstract

:
It is well known that both concepts of symmetry and convexity are directly connected. Similarly, in fuzzy theory, both ideas behave alike. It is important to note that real and interval-valued mappings are exceptional cases of fuzzy number-valued mappings ( F N V M s) because fuzzy theory depends upon the unit interval that make a significant contribution to overcoming the issues that arise in the theory of interval analysis and fuzzy number theory. In this paper, the new class of  p -convexity over up and down ( U D ) fuzzy relation has been introduced which is known as  U D - p -convex fuzzy number-valued mappings ( U D - p -convex  F N V M s). We offer a thorough analysis of Hermite–Hadamard-type inequalities for  F N V M s that are  U D - p -convex using the fuzzy Aumann integral. Some previous results from the literature are expanded upon and broadly applied in our study. Additionally, we offer precise justifications for the key theorems that Kunt and İşcan first deduced in their article titled “Hermite–Hadamard–Fejer type inequalities for p-convex functions”. Some new and classical exceptional cases are also discussed. Finally, we illustrate our findings with well-defined examples.

1. Introduction

Since the discovery of the first convex inequality, also referred to as the Jensen inequality, convex inequalities have been a hotly debated subject in mathematics. There are many inequalities that are derived using convexity; for example, see the books [1,2]. See the works [3,4,5,6,7,8,9,10,11,12,13,14] for further information on the applications of inequality to diverse areas of mathematics, such as numerical analysis, probability density functions, and optimization. It should be noted that L’Hospital and Leibniz first proposed the concept of fractional calculus in 1695. Numerous mathematicians, including Riemann, Grunwald, Letnikov, Hadamard, and Weyl, expanded on this idea. These mathematicians contributed significantly to fractional calculus and its many applications. For further information on fractional calculus, see [15,16,17,18,19,20,21,22,23,24,25,26,27]. In the modern era, fractional calculus is frequently used to describe a variety of phenomena, such as the fractional conservation of mass, and the fractional Schrodinger equation in quantum theory. One of the inequalities that has garnered the most interest in the mathematical community is the Hermite–Hadamard inequality [28], which was independently proven by Charles Hermite and Jacques Hadamard. Numerous mathematicians have generalized this inequality in numerous ways. For more related results, see [29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44]. The inequality is written as if  𝒯 : I R  is a convex function on  I  and  𝚤 ,   𝚥 I  with  𝚤 𝚥  such that:
𝒯 𝚤 + 𝚥 2 1 𝚥 𝚤 𝚤 𝚥 𝒯 d 𝒯 𝚤 + 𝒯 𝚥 2 .
New variations of these disparities have been obtained in recent years using various creative ways. For instance, the Hermite–Hadamard inequality’s first fractional analog was discovered by Sarikaya et al. [45]. Ramik [46] used fuzzy numbers to derive inequalities in 1985 and applied the inequality in fuzzy optimization. The concept of  F N V M s was created by the authors in [47] using Jensen-type inequalities. Costa et al.’s [48] computation of fresh integral inequality uses the idea of  F N V M s. For more information, see [49,50,51,52,53,54,55,56,57,58,59] and the references therein. In order to look at inequalities of the Jensen and Hermite–Hadamard types, Zhao et al. [60] introduced the concept of generalized interval-valued convexity. Liu et al. used J-inclusions to study the modular inequalities of interval-valued soft sets in [61]. Yang et al.’s [62] formulation of novel Hermite–Hadamard-type inequalities in conjunction with exponential  F N V M  was published in 2021. The authors of [63] computed Ostrowski-type inequalities and applied them to numerical integration using the concept of interval-valued mappings. Santos–Gomez used fuzzy number-valued pre-invex functions in [64] to study coordinated inequalities. In [65], Khan et al. developed new harmonically  F N V M -based Hermite–Hadamard inclusions. According to the authors of [66], some Hermite–Hadamard inequalities and their weighted variants, referred to as Fejer-type inclusions, involve generalized fractional operators with an exponential kernel. See [67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82] for contemporary research and applications involving the Hermite–Hadamard inequality.
This inequality was discovered by many scholars as a result of the generalization employing various types of convexity with fractional operators [83,84,85,86,87,88,89]. The works go into further detail concerning the Hermite–Hadamard inequality and  U D - p -convex inequality. In the current study, several  U D - p -convex inequalities are derived together with fuzzy Aumann integral operators using the fuzzy number-valued settings and newly defined fuzzy  U D -convexity. In this study, the recent findings of Kunt and İşcan [90] are generalized and several exceptional cases are discussed.

2. Preliminaries

We will go through the fundamental terminologies and findings in this section, which aid in comprehending the ideas behind our fresh findings.
Let  L C  be the space of all closed and bounded intervals of  R , and  L C  be defined by
= * , * = R | * * , * , * R .
If  * = * , then   is said to be degenerate. In this article, all intervals will be non-degenerate intervals. If  * 0 , then  * ,   *  is called a positive interval. The set of all positive intervals is denoted by  L C +  and defined as
L C + = * , * : * , * L C   a n d   * 0 .
Let  τ R  and  τ  be defined by
τ = τ * ,   τ *   i f   τ > 0 , 0             i f   τ = 0 , τ * , τ *     i f   τ < 0 .  
Then the Minkowski difference  Ɖ , addition  + Ɖ ,  and  × Ɖ  for  , Ɖ L C  are defined by
Ɖ * , Ɖ * + * , * = Ɖ * + * , Ɖ * + * ,
Ɖ * , Ɖ * × * , * = m i n Ɖ * * , Ɖ * * , Ɖ * * , Ɖ * * , m a x Ɖ * * , Ɖ * * , Ɖ * * , Ɖ * * ,
Ɖ * , Ɖ * * , * = Ɖ * * , Ɖ * * .
Remark 1. 
(i) For given  Ɖ * ,   Ɖ * ,   * ,   * L C ,  the relation  I  defined on  L C  by  * ,   * I Ɖ * ,   Ɖ *  if and only if  * Ɖ * ,   Ɖ * *  for all  Ɖ * ,   Ɖ * ,   * ,   * L C  is a partial interval inclusion relation. The relation  * ,   * I Ɖ * ,   Ɖ *  is coincident to  * ,   * Ɖ * ,   Ɖ *  on  L C .  It can be easily seen that “ I ” looks like “up and down” on the real line  R ,  so we call  I  “up and down” (or “ U D ” order, in short) [80]. For  Ɖ * ,   Ɖ * ,   * ,   * L C ,  the Hausdorff–Pompeiu distance between intervals  Ɖ * ,   Ɖ *  and  * ,   *  is defined by
d H Ɖ * , Ɖ * , * , * = m a x Ɖ * * , Ɖ * * .
It is a familiar fact that  L C , d H  is a complete metric space [74,75,76].
Noting that we will be using the traditional definitions of fuzzy set and fuzzy numbers, we will only review some fundamental ideas about fuzzy set and fuzzy numbers. Be mindful that we refer to the set of all fuzzy subsets and fuzzy numbers of  R  as  L , and  L C .
Definition 1 
([78,79]). Given  f ~ L C , the level sets or cut sets are given by  f ~ τ = R | f ~ τ  for all  τ 0 ,   1  and by  f ~ 0 = c l R | f ~ > 0 , where  f ~ 0  is known as support of  f ~ . These sets are known as  τ -level sets or  τ -cut sets of  f ~ .
Definition 2 
([48]).  Let  f ~ , g ~ L C . Then, relation  F  is given on  L C  by  f ~ F g ~  when and only when  f ~ τ I g ~ τ , for every  τ [ 0 ,   1 ] ,  which are left- and right-order relations.
Definition 3 
([77]). Let  f ~ , g ~ L C . Then, relation  F  is given on  L C  by  f ~ F g ~  when and only when  f ~ τ I g ~ τ  for every  τ [ 0 ,   1 ] ,  which is  t h e   U D order relation on  L C .
Remember the approaching notions, which are offered in the literature. If  f ~ , g ~ L C , and  τ R , then, for every  τ 0 ,   1 ,  the arithmetic operations addition “ , multiplication “ , and scaler multiplication “ ” are defined by
f ~ g ~ τ = f ~ τ + g ~ τ ,
f ~ g ~ τ = f ~ τ ×   g ~ τ ,
𝒯 f ~ τ = 𝒯 f ~ τ ,
Equations (4)–(6) directly relate to these processes.
Definition 4 
([69]). Let  H  be a Hausdorff metric. Then a supremum metric is handled by the space  L C ; that is, for each  f ~ ,   g ~ L C , the whole metric space is represented by the formula
d f ~ ,   g ~ = sup 0 τ 1 d H f ~ τ ,   g ~ τ ,
Theorem 1 
([75,78]).  𝒯  is an Aumann integrable (IA integrable) over  [ 𝚤 ,   𝚥 ]  when and only when  𝒯 *  and  𝒯 *  both are integrable over  𝚤 ,   𝚥 ,  such that
I A 𝚤 𝚥 𝒯 d = 𝚤 𝚥 𝒯 * d ,   𝚤 𝚥 𝒯 * d ,
where  𝒯 : [ 𝚤 ,   𝚥 ] R L C  is an interval-valued mapping ( I V M ) fulfilling that  𝒯 = 𝒯 * ,   𝒯 * .
The literature supports the following inferences [47,48,70,72,73]:
Definition 5. 
([48]). A fuzzy interval-valued map   𝒯 ~ : K R L C  is called  F N V M . For each  τ ( 0 ,   1 ] ,  its  I V M s are classified according to their  τ -cuts  𝒯 τ : K R L C  are given by  𝒯 τ = 𝒯 * , τ ,   𝒯 * , τ  for all  K .  Here, for each  τ ( 0 ,   1 ] ,  the end point real functions  𝒯 * . , τ ,   𝒯 * . , τ : K R  are called lower and upper functions of  𝒯 ~ ( ) .
Definition 6. 
Let     𝒯 ~ : [ 𝚤 ,   𝚥 ] R L C   be a    F N V M  . Then, fuzzy integral of    𝒯 ~   over    𝚤 ,   𝚥 ,  denoted by    F A 𝚤 𝚥 𝒯 ~ d  , is given level-wise by
F A 𝚤 𝚥 𝒯 ~ d   τ = I A 𝚤 𝚥 𝒯 τ d = 𝚤 𝚥 𝒯 , τ d : 𝒯 , τ R 𝚤 ,   𝚥 ,   τ ,
 for all  τ ( 0 ,   1 ] ,  where  R 𝚤 ,   𝚥 ,   τ  denotes the collection of Riemannian integrable functions of  I V M s. The  F N V M   𝒯 ~  is  F A -integrable over  [ 𝚤 ,   𝚥 ]  if  F A 𝚤 𝚥 𝒯 ~ d L C .  Note that, if  𝒯 * , τ ,   𝒯 * , τ  are Lebesgue-integrable, then  𝒯  is fuzzy Aumann-integrable function over  [ 𝚤 ,   𝚥 ] , see [47].
Theorem 2. 
Let    𝒯 ~ : [ 𝚤 ,   𝚥 ] R L C  be a    F N V M  , its    I V M  s are classified according to their    τ  -cuts    𝒯 τ : [ 𝚤 ,   𝚥 ] R L C  are given by    𝒯 τ = 𝒯 * , τ ,   𝒯 * , τ  for all    [ 𝚤 ,   𝚥 ]  and for all    τ ( 0 ,   1 ] .  Then,    𝒯 ~  is    F A  -integrable over    [ 𝚤 ,   𝚥 ]  if and only if,    𝒯 * , τ  and    𝒯 * , τ  are both    A  -integrable over    [ 𝚤 ,   𝚥 ]  . Moreover, if    𝒯 ~  is    F A  -integrable over    𝚤 ,   𝚥 ,  then
F A 𝚤 𝚥 𝒯 ~ d τ = A 𝚤 𝚥 𝒯 * , τ d ,   A 𝚤 𝚥 𝒯 * , τ d = I A 𝚤 𝚥 𝒯 τ d ,
 for all  τ ( 0 ,   1 ] .  For all  τ 0 ,   1 ,   F A 𝚤 ,   𝚥 ,   τ  denotes the collection of all  F A -integrable  F N V M s over  [ 𝚤 ,   𝚥 ] .
Definition 7 
([80]). Let  𝚤 ,   𝚥  be a convex interval. Then,  F N V M   𝒯 ~ : 𝚤 ,   𝚥 L C  is said to be  U D -convex on   𝚤 ,   𝚥  if
𝒯 ~ + 1 F 𝒯 ~ ( 1 ) 𝒯 ~ ,
 for all     ,   𝚤 ,   𝚥 ,   0 ,   1 ,  where    𝒯 ~ F 0 ~  , for all    𝚤 ,   𝚥  . If inequality (16) is reversed, then    𝒯 ~  is said to be    U D  -concave    F N V M  on    𝚤 ,   𝚥  . The set of all    U D  -convex (   U D  -concave)    F N V M  s is denoted by
U D F S X 𝚤 ,   𝚥 ,   L C ,   U D F S V 𝚤 ,   𝚥 ,   L C .
Definition 8. 
Let  𝚤 ,   𝚥  be a  p -convex interval. Then,  F N V M   𝒯 ~ : 𝚤 ,   𝚥 L C  is said to be  U D - p -convex on   𝚤 ,   𝚥  if
𝒯 ~ p + 1 p 1 p   F 𝒯 ~ ( 1 ) 𝒯 ~ ,
 for all     ,   𝚤 ,   𝚥 ,   0 ,   1 ,  where    𝒯 ~ F 0 ~  , for all    𝚤 ,   𝚥  . If inequality (17) is reversed, then    𝒯 ~  is said to be    U D - p -concave    F N V M  on    𝚤 ,   𝚥  . The set of all    U D - p -convex ( U D - p -concave)    F N V M  s is denoted by
U D F S X 𝚤 , ȷ ,   L C ,   p ,   U D F S V 𝚤 ,   𝚥 ,   L C ,   p .
Remark 2. 
If  p 1 , then  U D - p -convex  F N V M  becomes  U D -convex  F N V M , see Definition 7.
When  p 1 , then inequality (17) is converted into inequality obtained from the definition of harmonically  U D -convex  F N V M s.
The following results discuss the characterization of definition of  U D -convex  F N V M
Theorem 3. 
Let  𝚤 ,   𝚥  be a convex set, and  𝒯 ~ : 𝚤 ,   𝚥 L C  be a  F N V M . The family of  I V M s  is defined by  τ -cuts  𝒯 τ : 𝚤 ,   𝚥 R K C + K C  are given by
𝒯 τ = 𝒯 * , τ ,   𝒯 * , τ ,     𝚤 ,   𝚥
 for all  𝚤 ,   𝚥  and for all  τ 0 ,   1 . Then,  𝒯 ~  is  U D - p -convex on  𝚤 ,   𝚥 ,  if and only if, for all  τ 0 ,   1 ,   𝒯 * ,   τ  is  p -convex and  𝒯 * ,   τ  is  p -concave functions .
Proof. 
Assume that for each  τ 0 ,   1 ,   𝒯 * ,   τ  is  p -convex and  𝒯 * ,   τ  is  p -concave functions on  𝚤 ,   𝚥 .  Then, from (17) we have
𝒯 * p + 1 p 1 p   ,   τ 𝒯 * ,   τ + 1 𝒯 * ,   τ ,     , 𝚤 ,   𝚥 ,   0 ,   1 ,
and
𝒯 * p + 1 p 1 p   ,   τ 𝒯 * ,   τ + 1 𝒯 * ,   τ ,   , 𝚤 ,   𝚥 ,   0 ,   1 .
Then, by (9), (11), and (18), we obtain
𝒯 τ p + 1 p 1 p   = 𝒯 * p + 1 p 1 p   ,   τ ,   𝒯 * p + 1 p 1 p ,   τ , I 𝒯 * ,   τ ,   𝒯 * ,   τ + 1 𝒯 * ,   τ ,   1 𝒯 * ,   τ ,
that is
𝒯 ~ p + 1 p 1 p   F 𝒯 ~ 1 𝒯 ~ ,   , 𝚤 ,   𝚥 ,   0 ,   1 .
Hence,  𝒯 ~  is  U D - p -convex  F N V M  on  𝚤 , 𝚥 .
Conversely, let  𝒯 ~  be  U D - p -convex  F N V M  on  𝚤 ,   𝚥 .  Then, for all  , 𝚤 ,   𝚥 , and  0 ,   1 ,  we have
𝒯 ~ p + 1 p 1 p   F 𝒯 ~ 1 𝒯 ~ .
Therefore, from (18), we have
𝒯 τ p + 1 p 1 p   = 𝒯 * p + 1 p 1 p   ,   τ ,   𝒯 * p + 1 p 1 p   ,   τ .
Again, from (9), (11), and (18), we obtain
𝒯 τ + 1 𝒯 τ = 𝒯 * ,   τ ,   𝒯 * ,   τ + 1 𝒯 * ,   τ ,   1 𝒯 * ,   τ ,
for all  , 𝚤 ,   𝚥  and  0 ,   1 .  Then, by  U D - p -convexity of  𝒯 ~ , we have for all  , 𝚤 ,   𝚥  and  0 ,   1   such that
𝒯 * p + 1 p 1 p   ,   τ 𝒯 * ,   τ + 1 𝒯 * ,   τ ,
and
𝒯 * p + 1 p 1 p   ,   τ 𝒯 * ,   τ + 1 𝒯 * ,   τ ,
for each  τ 0 ,   1 .  Hence, the result follows. □
Example 1. 
We consider the  F N V M   𝒯 : [ 0 ,   1 ] L C  defined by,
𝒯 λ = λ 2 2 ,   λ 0 ,   2 2 4 2 λ 2 2 ,   λ ( 2 2 ,   4 2 ] 0 ,   o t h e r w i s e ,
then, for each  τ 0 ,   1 ,  we have  𝒯 τ = 2 τ 2 , ( 4 2 τ ) 2   . Since end point functions,  𝒯 * ,   τ  is  p -convex and  𝒯 * ,   τ  is  p -concave functions . for each  τ [ 0 ,   1 ] . Hence  𝒯 ~  is  U D - p -convex  F N V M .
Remark 3. 
If  𝒯 *   ,   τ = 𝒯 *   ,   τ , then Definition 6 cuts down to the definition of classical  p -convex function, [90].
If   𝒯 * ,   τ = 𝒯 * ,   τ  and   p 1  , then definition 6 cuts down to the definition of classical convex function.

3. Jensen’s and Schur’s Type Inequalities

We first provide a new ideal inequality known as discrete Jensen’s type inequality for  U D - p -convex  F N V M . This is how it is explained.
Theorem 4. 
Let  l R + ,  𝚤 l 𝚤 ,   𝚥 ,   l = 1 ,   2 ,   3 ,   , k ,   k 2  and  𝒯 ~ U D F S X 𝚤 ,   𝚥 ,   L C ,   p  and for all  τ 0 ,   1 , the family of  I V M s  is defined by  τ -cuts  𝒯 τ : 𝚤 ,   𝚥 R K C +  are given by  𝒯 τ = 𝒯 * , τ ,   𝒯 * , τ  for all  𝚤 ,   𝚥 . Then,
𝒯 ~ 1 W k l = 1 k l 𝚤 l p 1 p F l k l W k 𝒯 ~ 𝚤 l ,
where   W k = l = 1 k l . If   𝒯 ~  is   U D - p -concave, then inequality (19) is reversed.
Proof. 
When  k = 2 , then inequality (19) is true. Consider inequality (19) is true for  k = n 1 ,  then
𝒯 ~ 1 W n 1 l = 1 n 1 l 𝚤 l p 1 p F l = 1 n 1 l W n 1 𝒯 ~ 𝚤 l .
Now, let us prove that inequality (19) holds for  k = n .
𝒯 ~ 1 W n l = 1 n l 𝚤 l p 1 p = 𝒯 ~ 1 W n l = 1 n 2 l 𝚤 l p + n 1 + n W n ( n 1 n 1 + n 𝚤 n 1 p + n n 1 + n 𝚤 n p 1 p .
Therefore, for each  τ 0 ,   1 ,  we have
𝒯 * 1 W n l = 1 n l 𝚤 l p 1 p , τ 𝒯 * 1 W n l = 1 n l 𝚤 l p 1 p , τ = 𝒯 * 1 W n l = 1 n 2 l 𝚤 l p + n 1 + n W n ( n 1 n 1 + n 𝚤 n 1 p + n n 1 + n 𝚤 n p 1 p , τ , = 𝒯 * 1 W n l = 1 n 2 l 𝚤 l p + n 1 + n W n ( n 1 n 1 + n 𝚤 n 1 p + n n 1 + n 𝚤 n p 1 p , τ , l = 1 n 2 l W n 𝒯 * 𝚤 l , τ + n 1 + n W n 𝒯 * n 1 n 1 + n 𝚤 n 1 p + n n 1 + n 𝚤 n p 1 p , τ ,   l = 1 n 2 l W n 𝒯 * 𝚤 l , τ + n 1 + n W n 𝒯 * n 1 n 1 + n 𝚤 n 1 p + n n 1 + n 𝚤 n p 1 p , τ , l = 1 n 2 l W n 𝒯 * 𝚤 l , τ + n 1 + n W n   n 1 n 1 + n 𝒯 * 𝚤 n 1 , τ + n n 1 + n 𝒯 * 𝚤 n , τ ,   l = 1 n 2 l W n 𝒯 * 𝚤 l , τ + n 1 + n W n n 1 n 1 + n 𝒯 * 𝚤 n 1 , τ + n n 1 + n 𝒯 * 𝚤 n , τ , l = 1 n 2 l W n 𝒯 * 𝚤 l , τ + n 1 W n 𝒯 * 𝚤 n 1 , τ + n W n 𝒯 * 𝚤 n , τ ,   l = 1 n 2 l W n 𝒯 * 𝚤 l , τ + n 1 W n 𝒯 * 𝚤 n 1 , τ + n W n 𝒯 * 𝚤 n , τ , = l = 1 n l W n 𝒯 * 𝚤 l , τ ,   = l = 1 n l W n 𝒯 * 𝚤 l , τ .
From which, we have
𝒯 * 1 W n l = 1 n l 𝚤 l p 1 p , τ ,   𝒯 * 1 W n l = 1 n l 𝚤 l p 1 p , τ I l = 1 n l W n 𝒯 * 𝚤 l , τ ,   l = 1 n l W n 𝒯 * 𝚤 l , τ ,
that is
𝒯 ~ 1 W n l = 1 n l 𝚤 l p 1 p F l = 1 n l W n 𝒯 ~ 𝚤 l ,
and the result follows. □
If  1 = 2 = 3 = = k = 1 ,  then from (19) we obtain following outcome:
Corollary 1. 
Let  𝚤 l 𝚤 ,   𝚥 ,   l = 1 ,   2 ,   3 ,   , k ,   k 2 , and  𝒯 ~ U D F S X 𝚤 ,   𝚥 ,   L C ,   p . The family of  I V M s  is defined by  τ -cuts  𝒯 τ : 𝚤 ,   𝚥 R K C +  are given by  𝒯 τ = 𝒯 * , τ ,   𝒯 * , τ  for all  𝚤 ,   𝚥 , and for all  τ 0 ,   1 . Then,
𝒯 ~ 1 W k l = 1 k l 𝚤 l p 1 p F 𝚥 = 1 k 1 k 𝒯 ~ 𝚤 l .
If   𝒯 ~  is an   p -concave, then inequality (20) is reversed.
Here is the generalized form of discrete Schur’s type inequality for  U D - p -convex  F N V M .
Theorem 5. 
Let  𝒯 ~ U D F S X 𝚤 ,   𝚥 ,   L C ,   p . The family of  I V M s  is defined by  τ -cuts  𝒯 τ : 𝚤 ,   𝚥 R K C +  are given by  𝒯 τ = 𝒯 * , τ ,   𝒯 * , τ  for all  𝚤 ,   𝚥 , and for all  τ 0 ,   1 . If  𝚤 1 ,   𝚤 2 ,   𝚤 3 𝚤 ,   𝚥 , such that  𝚤 1 < 𝚤 2 < 𝚤 3  and  𝚤 3 p 𝚤 1 p ,  𝚤 3 p 𝚤 2 p ,   𝚤 2 p 𝚤 1 p 0 ,   1 , then we have
𝚤 3 p 𝚤 1 p 𝒯 ~ 𝚤 2 F 𝚤 3 p 𝚤 2 p 𝒯 ~ 𝚤 1 𝚤 2 p 𝚤 1 p 𝒯 ~ 𝚤 3 .
If   𝒯 ~  is a   U D - p -concave, then inequality (21) is reversed.
Proof. 
Let  𝚤 1 ,   𝚤 2 ,   𝚤 3 𝚤 ,   𝚥  and  𝚤 3 p 𝚤 1 p > 0 .  Consider   = 𝚤 3 p 𝚤 2 p 𝚤 3 p 𝚤 1 p  , then  𝚤 2 p = 𝚤 1 p + 1 𝚤 3 p .  Since  𝒯 ~  is a  U D - p -convex  F N V M , then by hypothesis, we have
𝒯 ~ 𝚤 2 F 𝚤 3 p 𝚤 2 p 𝚤 3 p 𝚤 1 p 𝒯 ~ 𝚤 1 𝚤 2 p 𝚤 1 p 𝚤 3 p 𝚤 1 p 𝒯 ~ 𝚤 3 .
Therefore, for each  τ 0 ,   1 ,  we have
𝒯 * 𝚤 2 , τ 𝚤 3 p 𝚤 2 p 𝚤 3 p 𝚤 1 p 𝒯 * 𝚤 1 , τ + 𝚤 2 p 𝚤 1 p 𝚤 3 p 𝚤 1 p 𝒯 * 𝚤 3 , τ , 𝒯 * 𝚤 2 , τ 𝚤 3 p 𝚤 2 p 𝚤 3 p 𝚤 1 p 𝒯 * 𝚤 1 , τ + 𝚤 2 p 𝚤 1 p 𝚤 3 p 𝚤 1 p 𝒯 * 𝚤 3 , τ ,
= 𝚤 3 p 𝚤 2 p 𝚤 3 p 𝚤 1 p 𝒯 * 𝚤 1 , τ + 𝚤 2 p 𝚤 1 p 𝚤 3 p 𝚤 1 p 𝒯 * 𝚤 3 , τ ,   = 𝚤 3 p 𝚤 2 p 𝚤 3 p 𝚤 1 p 𝒯 * 𝚤 1 , τ + 𝚤 2 p 𝚤 1 p 𝚤 3 p 𝚤 1 p 𝒯 * 𝚤 3 , τ .
From (23), we have
𝚤 3 p 𝚤 1 p 𝒯 * 𝚤 2 , τ 𝚤 3 p 𝚤 2 p 𝒯 * 𝚤 1 , τ + 𝚤 2 p 𝚤 1 p 𝒯 * 𝚤 3 , τ , 𝚤 3 p 𝚤 1 p 𝒯 * 𝚤 2 , τ 𝚤 3 p 𝚤 2 p 𝒯 * 𝚤 1 , τ + 𝚤 2 p 𝚤 1 p 𝒯 * 𝚤 3 , τ ,
that is
𝚤 3 p 𝚤 1 p 𝒯 * 𝚤 2 , τ ,   𝚤 3 p 𝚤 1 p 𝒯 * 𝚤 2 , τ I 𝚤 3 p 𝚤 2 p 𝒯 * 𝚤 1 , τ + 𝚤 3 p 𝚤 2 p 𝒯 * 𝚤 3 , τ ,   𝚤 2 p 𝚤 1 p 𝒯 * 𝚤 1 , τ + 𝚤 2 p 𝚤 1 p 𝒯 * 𝚤 3 , τ ,
hence
𝚤 3 p 𝚤 1 p 𝒯 ~ 𝚤 2 F 𝚤 3 p 𝚤 2 p 𝒯 ~ 𝚤 1 𝚤 2 p 𝚤 1 p 𝒯 ~ 𝚤 3 .
The following theorem provides a clarification of Jensen’s type inequality for  U D - p -convex  F N V M s.
Theorem 6. 
Let  l R + ,  𝚤 l 𝚤 ,   𝚥 ,   l = 1 ,   2 ,   3 ,   , k ,   k 2  and  𝒯 ~ U D F S X 𝚤 ,   𝚥 ,   L C ,   p . The family of  I V M s  is defined by  τ -cuts  𝒯 τ : 𝚤 ,   𝚥 R K C +  are given by  𝒯 τ = 𝒯 * , τ ,   𝒯 * , τ  for all  𝚤 ,   𝚥  and for all  τ 0 ,   1 . If  𝚤 ,   U [ 𝚤 , 𝚥 ] , then
l = 1 k l W k 𝒯 ~ 𝚤 l F l = 1 k U p 𝚤 l p U p 𝚤 p l W k 𝒯 ~ 𝚤 , τ 𝚤 l p 𝚤 p U p 𝚤 p l W k 𝒯 ~ U , τ ,
where   W k = l = 1 k l .  If   𝒯 ~  is   U D - p -concave, then inequality (24) is reversed.
Proof. 
Consider  𝚤 = 𝚤 1 ,   𝚤 l = 𝚤 2 ,   l = 1 ,   2 ,   3 ,   , k U = 𝚤 3 . Then, by hypothesis and inequality (24), we have
𝒯 ~ 𝚤 l F U p 𝚤 l p U p 𝚤 p 𝒯 ~ 𝚤 , τ 𝚤 l p 𝚤 p U p 𝚤 p 𝒯 ~ U , τ .
Therefore, for each  τ 0 ,   1 , we have
𝒯 * 𝚤 l , τ U p 𝚤 l p U p 𝚤 p 𝒯 * 𝚤 , τ + 𝚤 l p 𝚤 p U p 𝚤 p 𝒯 * U , τ , 𝒯 * 𝚤 l , τ U 𝚤 l p U p 𝚤 p 𝒯 * 𝚤 , τ + 𝚤 l p 𝚤 p U p 𝚤 p 𝒯 * U , τ .
The above inequality can be written as
l W k 𝒯 * 𝚤 l , τ U p 𝚤 l p U p 𝚤 p l W k 𝒯 * 𝚤 , τ + 𝚤 l p 𝚤 p U p 𝚤 p l W k 𝒯 * U , τ , l W k 𝒯 * 𝚤 l , τ U p 𝚤 l p U p 𝚤 p l W k 𝒯 * 𝚤 , τ + 𝚤 l p 𝚤 p U p 𝚤 p l W k 𝒯 * U , τ .
Taking the sum of all inequalities (25) for  l = 1 ,   2 ,   3 ,   , k ,  we have
l = 1 k l W k 𝒯 * 𝚤 l , τ l = 1 k U p 𝚤 l p U p 𝚤 p l W k 𝒯 * 𝚤 , τ + 𝚤 l p 𝚤 p U p 𝚤 p l W k 𝒯 * U , τ , l = 1 k l W k 𝒯 * 𝚤 l , τ l = 1 k U p 𝚤 l p U p 𝚤 p l W k 𝒯 * 𝚤 , τ + 𝚤 l p 𝚤 p U p 𝚤 p l W k 𝒯 * U , τ .
That is
l = 1 k l W k 𝒯 𝚤 l = l = 1 k l W k 𝒯 * 𝚤 l , τ ,   l = 1 k l W k 𝒯 * 𝚤 l , τ I l = 1 k U p 𝚤 l p U p 𝚤 p l W k 𝒯 * 𝚤 , τ + 𝚤 l p 𝚤 p U p 𝚤 p l W k 𝒯 * U , τ ,   l = 1 k U p 𝚤 l p U p 𝚤 p l W k 𝒯 * 𝚤 , τ + 𝚤 l p 𝚤 p U p 𝚤 p l W k 𝒯 * U , τ , I l = 1 k U p 𝚤 l p U p 𝚤 p l W k 𝒯 * 𝚤 , τ ,   𝒯 * 𝚤 , τ + l = 1 k U p 𝚤 l p U p 𝚤 p l W k 𝒯 * U , τ ,   𝒯 * U , τ . = l = 1 k U p 𝚤 l p U p 𝚤 p l W k 𝒯 𝚤 , τ + l = 1 k U p 𝚤 l p U p 𝚤 p l W k 𝒯 U , τ .
Thus,
l = 1 k l W k 𝒯 ~ 𝚤 l F l = 1 k U p 𝚤 l p U p 𝚤 p l W k 𝒯 ~ 𝚤 𝚤 l p 𝚤 p U p 𝚤 p l W k 𝒯 ~ U ,
completes the proof. □
In the next outcomes, we shall discuss the exceptional cases that are acquired from the Theorems 6 and 7.
If  𝒯 * , τ = 𝒯 * , τ  with   τ = 1 , then Theorems 5 and 6 cuts down to the following results:
Corollary 2 
([81]). Let   l R + ,  𝚤 l 𝚤 ,   𝚥 ,   l = 1 ,   2 ,   3 ,   , k ,   k 2  and let  𝒯 : 𝚤 ,   𝚥 R +  be a non-negative real-valued function. If  𝒯  is a  p -convex function, then
𝒯 1 W k l = 1 k l 𝚤 l p 1 p l = 1 k l W k 𝒯 𝚤 l ,
where  W k = l = 1 k l .  If    𝒯  is  p -concave function, then inequality (26) is reversed.
Corollary 3 
([81]). Let  l R + ,  𝚤 l 𝚤 ,   𝚥 ,   l = 1 ,   2 ,   3 ,   ,   k ,   k 2  and  𝒯 : 𝚤 ,   𝚥 R +  be a non-negative real-valued function. If  𝒯  is a  p -convex function and  𝚤 1 ,   𝚤 2 , , 𝚤 l 𝚤 ,   U [ 𝚤 , 𝚥 ]   then,
l = 1 k l W k 𝒯 𝚤 l l = 1 k U p 𝚤 l p U p 𝚤 p l W k 𝒯 𝚤 + 𝚤 l p 𝚤 p U p 𝚤 p l W k 𝒯 U ,
where   W k = l = 1 k l .  If   𝒯  is a   p -concave function, then inequality (27) is reversed.

4. Fuzzy Aumann’s Integral Hermite–Hadamard Type Inequalities

Primary goal and focus of this section is to establish a novel version of the H-H-type inequalities in the mode of  U D - p -convex  F N V M s via fuzzy Aumann’s integrals.
Theorem 7. 
Let   𝒯 ~ U D F S X 𝚤 ,   𝚥 ,   L C ,   p  . The family of   I V M s  is defined by   τ -cuts   𝒯 τ : 𝚤 ,   𝚥 R K C +  are given by   𝒯 τ = 𝒯 * , τ ,   𝒯 * , τ  for all   𝚤 ,   𝚥  and for all   τ 0 ,   1  . If   𝒯 ~ F A 𝚤 ,   𝚥 ,   τ , then
𝒯 ~ 𝚤 p + 𝚥 p 2 1 p F p 𝚥 p 𝚤 p ( F A ) 𝚤 𝚥 p 1 𝒯 ~ d F 𝒯 ~ 𝚤 𝒯 ~ 𝚥 2 .
If  𝒯 ~ ( )  is  U D - p -concave  F N V M , then
𝒯 ~ 𝚤 p + 𝚥 p 2 1 p F p 𝚥 p 𝚤 p F A 𝚤 𝚥 p 1 𝒯 ~ d F 𝒯 ~ 𝚤 𝒯 ~ 𝚥 2
Proof. 
Let  𝒯 ~ : 𝚤 ,   𝚥 L C  be an  U D - p -convex  F N V M . Then, by hypothesis, we have
2 𝒯 ~ 𝚤 p + 𝚥 p 2 1 p F 𝒯 ~ 𝚤 p + 1 v p 1 p 𝒯 ~ 1 𝚤 p + 𝚥 p 1 p .
Therefore, for every  τ [ 0 ,   1 ] , we have
2 𝒯 * 𝚤 p + 𝚥 p 2 1 p ,   τ 𝒯 * 𝚤 p + 1 𝚥 p 1 p ,   τ + 𝒯 * 1 𝚤 p + 𝚥 p 1 p ,   τ ,   2 𝒯 * 𝚤 p + 𝚥 p 2 1 p ,   τ 𝒯 * 𝚤 p + 1 𝚥 p 1 p ,   τ + 𝒯 * 1 𝚤 p + 𝚥 p 1 p , τ .
Then
2 0 1 𝒯 * 𝚤 p + 𝚥 p 2 1 p ,   τ d 0 1 𝒯 * 𝚤 p + 1 𝚥 p 1 p , τ d + 0 1 𝒯 * 1 𝚤 p + 𝚥 p 1 p ,   τ d ,   2 0 1 𝒯 * 𝚤 p + 𝚥 p 2 1 p , τ d 0 1 𝒯 * 𝚤 p + 1 𝚥 p 1 p ,   τ d + 0 1 𝒯 * 1 𝚤 p + 𝚥 p 1 p , τ d .
It follows that
𝒯 * 𝚤 p + 𝚥 p 2 1 p ,   τ p 𝚥 p 𝚤 p 𝚤 𝚥 p 1 𝒯 * ,   τ d , 𝒯 * 𝚤 p + 𝚥 p 2 1 p ,   τ p 𝚥 p 𝚤 p 𝚤 𝚥 p 1 𝒯 * ,   τ d .
That is
𝒯 * 𝚤 p + 𝚥 p 2 1 p ,   τ ,   𝒯 * 𝚤 p + 𝚥 p 2 1 p ,   τ I p 𝚥 p 𝚤 p 𝚤 𝚥 p 1 𝒯 * ,   τ d ,   𝚤 𝚥 p 1 𝒯 * ,   τ d .
Thus,
𝒯 ~ 𝚤 p + 𝚥 p 2 1 p F p 𝚥 p 𝚤 p ( F A ) 𝚤 𝚥 p 1 𝒯 ~ d .
In a similar way as above, we have
p 𝚥 p 𝚤 p ( F A ) 𝚤 𝚥 p 1 𝒯 ~ d F 𝒯 ~ 𝚤 𝒯 ~ 𝚥 2 .
Combining (21) and (22), we have
𝒯 ~ 𝚤 p + 𝚥 p 2 1 p F p 𝚥 p 𝚤 p ( F A ) 𝚤 𝚥 p 1 𝒯 ~ d F 𝒯 ~ 𝚤 𝒯 ~ 𝚥 2 .
Hence, the required result. □
Remark 4. 
If  p = 1 , then Theorem 7, cuts down to the outcome for  U D -convex  F N V M , as shown in [77]:
𝒯 ~ 𝚤 + 𝚥 2 F 1 𝚥 𝚤 ( F A ) 𝚤 𝚥 𝒯 ~ d F 𝒯 ~ 𝚤 𝒯 ~ 𝚥 2
If  𝒯 * ,   τ = 𝒯 * ,   τ  with   τ = 1 , then Theorem 7, cuts down to the finding for  p -convex function, as shown in [90]:
𝒯 𝚤 p + 𝚥 p 2 1 p p 𝚥 p 𝚤 p ( A ) 𝚤 𝚥 p 1 𝒯 d 𝒯 𝚤 + 𝒯 𝚥 2 .
If   𝒯 * ,   τ = 𝒯 * ,   τ  with   τ = 1  and   p = 1  , then Theorem 7 cuts down to the outcome for classical convex function:
𝒯 𝚤 + 𝚥 2 1 𝚥 𝚤 A 𝚤 𝚥 𝒯 d 𝒯 𝚤 + 𝒯 𝚥 2 .
Example 2. 
Let  p  be an odd number and the  F N V M   𝒯 ~ : 𝚤 ,   𝚥 = [ 2 ,   3 ] L C  defined by,
𝒯 ~ λ = λ 2 + p 2 1 p 2   λ 2 p 2 ,   3 , 2 + p 2 λ p 2 1   λ 3 ,   2 + p 2 ,   0   otherwise .
Then, for each  τ 0 ,   1 ,  we have  𝒯 τ = 1 τ 2 p 2 + 3 τ ,   1 τ 2 + p 2 + 3 τ . Since endpoint functions  𝒯 * , τ = 1 τ 2 p 2 + 3 τ ,   𝒯 * ,   τ = 1 τ 2 + p 2 + 3 τ  are  p -convex functions for each  τ [ 0 ,   1 ] . Then,  𝒯 ~  is  U D - p -convex  F N V M .
We now computing the following
𝒯 * 𝚤 p + 𝚥 p 2 1 p , τ = 1 τ 4 10 2 + 3 τ , 𝒯 * 𝚤 p + 𝚥 p 2 1 p , τ = 1 τ 4 + 10 2 + 3 τ , p 𝚥 p 𝚤 p   𝚤 𝚥 p 1 𝒯 * ,   τ d = 2 3 1 τ 2 p 2 + 3 τ d 843 2000 1 τ + 3 τ , p 𝚥 p 𝚤 p   𝚤 𝚥 p 1 𝒯 * ,   τ d = 2 3 1 τ 2 + p 2 + 3 τ d 179 50 1 τ + 3 τ , 𝒯 * 𝚤 ,   τ + 𝒯 * 𝚥 ,   τ 2 = 1 τ 4 2 3 2 + 3 τ , 𝒯 * 𝚤 ,   τ + 𝒯 * 𝚥 ,   τ 2 = 1 τ 4 + 2 + 3 2 + 3 τ ,
for all     τ 0 ,   1 .    That means
1 τ 4 10 2 + 3 τ , 1 τ 4 + 10 2 + 3 τ I 843 2000 1 τ + 3 τ , 179 50 1 τ + 3 τ I 1 τ 4 2 3 2 + 3 τ , 1 τ 4 + 2 + 3 2 + 3 τ ,
 for all     τ 0 ,   1 ,    and Theorem 7 has been verified.
Theorem 8 presents the extended version of Aumann’s integral Hermite–Hadamard type inequalities.
Theorem 8. 
Let     𝒯 ~ U D F S X 𝚤 ,   𝚥 ,   L C ,   p . The family of     I V M s    is defined by   τ -cuts     𝒯 τ : 𝚤 ,   𝚥 R K C +  are given by     𝒯 τ = 𝒯 * , τ ,   𝒯 * , τ    for all   𝚤 ,   𝚥  and for all     τ 0 ,   1  . If     𝒯 ~ F A 𝚤 ,   𝚥 ,   τ , then
𝒯 ~ 𝚤 p + 𝚥 p 2 1 p F   2 F p 𝚥 p 𝚤 p ( F A ) 𝚤 𝚥 p 1 𝒯 ~ d F 1 F 𝒯 ~ 𝚤 𝒯 ~ 𝚥 2 ,
where
1 = 𝒯 ~ 𝚤 𝒯 ~ 𝚥 2 𝒯 ~ 𝚤 p + 𝚥 p 2 1 p 2 ,   2 = 𝒯 ~ 3 𝚤 p + 𝚥 p 4 1 p 𝒯 ~ 𝚤 p + 3 𝚥 p 4 1 p 2 ,   and   1 = 1 * ,   1 * ,   2 = 2 * ,   2 * .
Proof. 
Take  𝚤 p ,   𝚤 p + 𝚥 p 2 ,  we have
2 𝒯 ~ 𝚤 p + 1 𝚤 p + 𝚥 p 2 1 p 2 + 1 𝚤 p + 𝚤 p + 𝚥 p 2 1 p 2 F 𝒯 ~ 𝚤 p + 1 𝚤 p + 𝚥 p 2 1 p   𝒯 ~ 1 𝚤 p + 𝚤 p + 𝚥 p 2 1 p .
Therefore, for every  τ [ 0 ,   1 ] , we have
2 𝒯 * 𝚤 p + 1 𝚤 p + 𝚥 p 2 1 p 2 + 1 𝚤 p + 𝚤 p + 𝚥 p 2 1 p 2 ,   τ 𝒯 * 𝚤 p + 1 𝚤 p + 𝚥 p 2 1 p ,   τ + 𝒯 * 1 𝚤 p + 𝚤 p + 𝚥 p 2 1 p ,   τ ,
2 𝒯 * 𝚤 p + 1 𝚤 p + 𝚥 p 2 1 p 2 + 1 𝚤 p + 𝚤 p + 𝚥 p 2 1 p 2 ,   τ 𝒯 * 𝚤 p + 1 𝚤 p + 𝚥 p 2 1 p ,   τ   + 𝒯 * 1 𝚤 p + 𝚤 p + 𝚥 p 2 1 p , τ .
In consequence, we obtain
𝒯 * 3 𝚤 p + 𝚥 p 4 1 p ,   τ 2 p 𝚥 p 𝚤 p   𝚤 𝚤 p + 𝚥 p 2 𝒯 * ,   τ d , 𝒯 * 3 𝚤 p + 𝚥 p 4 1 p ,   τ 2 p 𝚥 p 𝚤 p 𝚤 𝚤 p + 𝚥 p 2 𝒯 * ,   τ d .
That is
𝒯 * 3 𝚤 p + 𝚥 p 4 1 p ,   τ ,   𝒯 * 3 𝚤 p + 𝚥 p 4 1 p ,   τ 2 I p 𝚥 p 𝚤 p 𝚤 𝚤 p + 𝚥 p 2 𝒯 * ,   τ d ,   𝚤 𝚤 p + 𝚥 p 2 𝒯 * ,   τ d .
It follows that
𝒯 ~ 3 𝚤 p + 𝚥 p 4 1 p 2 F p 𝚥 p 𝚤 p ( F A ) 𝚤 𝚤 p + 𝚥 p 2 𝒯 ~ d .
In a similar way as above, we have
𝒯 ~ 𝚤 p + 3 𝚥 p 4 1 p 2 F p 𝚥 p 𝚤 p ( F A ) 𝚤 p + 𝚥 p 2 𝚥 𝒯 ~ d .
Combining (37) and (38), we have
𝒯 ~ 3 𝚤 p + 𝚥 p 4 1 p 𝒯 ~ 𝚤 p + 3 𝚥 p 4 1 p 2 F p 𝚥 p 𝚤 p ( F A ) 𝚤 𝚥 𝒯 ~ d .
By using Theorem 7, we have
𝒯 ~ 𝚤 p + 𝚥 p 2 1 p = 𝒯 ~ 1 2 . 3 𝚤 p + 𝚥 p 4 + 1 2 . 𝚤 p + 3 𝚥 p 4 1 p .
Therefore, for every  τ [ 0 ,   1 ] , we have
𝒯 * 𝚤 p + 𝚥 p 2 1 p ,   τ = 𝒯 * 1 2 . 3 𝚤 p + 𝚥 p 4 + 1 2 . 𝚤 p + 3 𝚥 p 4 1 p ,   τ , 𝒯 * 𝚤 p + 𝚥 p 2 1 p ,   τ = 𝒯 * 1 2 . 3 𝚤 p + 𝚥 p 4 + 1 2 . 𝚤 p + 3 𝚥 p 4 1 p ,   τ ,   1 2 𝒯 * 3 𝚤 p + 𝚥 p 4 1 p ,   τ + 1 2 𝒯 * 𝚤 p + 3 𝚥 p 4 1 p ,   τ , 1 2 𝒯 * 3 𝚤 p + 𝚥 p 4 1 p ,   τ + 1 2 𝒯 * 𝚤 p + 3 𝚥 p 4 1 p ,   τ , = 2 * , = 2 * , p 𝚥 p 𝚤 p   𝚤 𝚥 𝒯 * ,   τ d ,   p 𝚥 p 𝚤 p   𝚤 𝚥 𝒯 * ,   τ d , 1 2 𝒯 * 𝚤 ,   τ + 𝒯 * 𝚥 ,   τ 2 + 𝒯 * 𝚤 p + 𝚥 p 2 1 p ,   τ ,   1 2 𝒯 * 𝚤 ,   τ + 𝒯 * 𝚥 ,   τ 2 + 𝒯 * 𝚤 p + 𝚥 p 2 1 p ,   τ , = 1 * , 1 2 𝒯 * 𝚤 ,   τ + 𝒯 * 𝚥 ,   τ 2 + 𝒯 * 𝚤 ,   τ + 𝒯 * 𝚥 ,   τ 2 ,   = 1 * , 1 2 𝒯 * 𝚤 ,   τ + 𝒯 * 𝚥 ,   τ 2 + 𝒯 * 𝚤 , τ + 𝒯 * 𝚥 , τ 2 , = 𝒯 * 𝚤 ,   τ + 𝒯 * 𝚥 ,   τ 2 ,   = 𝒯 * 𝚤 ,   τ + 𝒯 * 𝚥 ,   τ 2 ,
that is
𝒯 ~ 𝚤 p + 𝚥 p 2 1 p F   2 F p 𝚥 p 𝚤 p ( F A ) 𝚤 𝚥 𝒯 ~ d F 1 F 𝒯 ~ 𝚤 𝒯 ~ 𝚥 2 ,
hence, the result follows. □
Example 3. 
Let  p  be an odd number and the  F N V M   𝒯 ~ : 𝚤 ,   𝚥 = [ 2 ,   3 ] L C  defined by,  𝒯 τ = 1 τ 2 p 2 + 3 τ ,   1 τ 2 + p 2 + 3 τ ,  as in Example 2, then  𝒯 ~ ( )  is  U D - p -convex  F N V M  and satisfying (38). We have  𝒯 * ,   τ = 1 τ 2 p 2 + 3 τ and  𝒯 * ,   τ = 1 τ 2 + p 2 + 3 τ . We now computing the following
𝒯 * 𝚤 ,   τ + 𝒯 * 𝚥 ,   τ 2 = 4 + 2 ʚ 1 ʚ 2 + 3 2 ,   𝒯 * 𝚤 ,   τ + 𝒯 * 𝚥 ,   τ 2 = 4 + 10 ʚ + 1 + ʚ 2 + 3 2 , 1 * = 𝒯 * 𝚤 ,   τ + 𝒯 * 𝚥 ,   τ 2 + 𝒯 * 𝚤 p + 𝚥 p 2 1 p ,   τ 2 = 8 + 4 ʚ 1 ʚ 2 + 3 + 2 × 5 4 ,   1 * = 𝒯 * 𝚤 ,   τ + 𝒯 * 𝚥 ,   τ 2 + 𝒯 * 𝚤 p + 𝚥 p 2 1 p ,   τ 2 = 8 + 20 ʚ + 1 + ʚ 2 + 3 + 2 × 5 4 , 2 * = 1 2   𝒯 * 3 𝚤 p + 𝚥 p 4 1 p ,   τ + 𝒯 * 𝚤 p + 3 𝚥 p 4 1 p ,   τ = 5 + 7 ʚ 11 1 ʚ ,   2 * = 1 2 𝒯 * 3 𝚤 p + 𝚥 p 4 1 p ,   τ + 𝒯 * 𝚤 p + 3 𝚥 p 4 1 p ,   τ = 11 + 23 ʚ + 11 1 + ʚ 4 , 𝒯 * 𝚤 p + 𝚥 p 2 1 p , τ = 1 τ 4 10 2 + 3 τ , 𝒯 * 𝚤 p + 𝚥 p 2 1 p , τ = 1 τ 4 + 10 2 + 3 τ .
Then, we obtain that
1 ʚ 4 10 2 + 3 ʚ 5 + 7 ʚ 11 1 ʚ 4 843 2000 1 ʚ + 3 ʚ     8 + 4 ʚ 1 ʚ 2 + 3 + 2 × 5 4 1 ʚ 4 2 3 2 + 3 ʚ 1 + ʚ 4 + 10 2 + 3 ʚ 11 + 23 ʚ + 11 1 + ʚ 4 179 50 1 + ʚ + 3 ʚ   8 + 20 ʚ + 1 + ʚ 2 + 3 + 2 × 5 4 1 + ʚ 4 + 2 + 3 2 + 3 ʚ .
Hence, Theorem 8 is verified.
The next outcomes will give us the Aumann’s integral Hermite–Hadamard type inequalities for the product of two  U D - p -convex  F N V M s
Theorem 9. 
Let   𝒯 ~ , Υ ~ U D F S X 𝚤 ,   𝚥 ,   L C ,   p  . Then,   τ -cuts   𝒯 τ ,   Υ τ : 𝚤 ,   𝚥 R K C +  are defined by   𝒯 τ = 𝒯 * , τ ,   𝒯 * , τ  and   Υ τ = Υ * , τ ,   Υ * , τ  for all   𝚤 ,   𝚥  and for all   τ 0 ,   1  . If   𝒯 ~ Υ ~ F A 𝚤 ,   𝚥 ,   τ , then
p 𝚥 p 𝚤 p F A 𝚤 𝚥 p 1 𝒯 ~ Υ ~ d F M ~ 𝚤 , 𝚥 3 N ~ 𝚤 , 𝚥 6 .
where  M ~ 𝚤 , 𝚥 = 𝒯 ~ 𝚤 Υ ~ 𝚤 𝒯 ~ 𝚥 Υ ~ 𝚥 ,   N ~ 𝚤 , 𝚥 = 𝒯 ~ 𝚤 Υ ~ 𝚥 𝒯 ~ 𝚥 Υ ~ 𝚤 ,  and  M τ 𝚤 , 𝚥 = M * 𝚤 , 𝚥 ,   τ ,   M * 𝚤 , 𝚥 ,   τ  and  N τ 𝚤 , 𝚥 = N * 𝚤 , 𝚥 ,   τ ,   N * 𝚤 , 𝚥 ,   τ .
Example 4. 
Let  p  be an odd number, and  U D - p -convex  F N V M s  𝒯 ~ , Υ ~ : 𝚤 ,   𝚥 = [ 2 ,   3 ] L C  are, respectively, defined by  𝒯 τ = 1 τ 2 p 2 + 3 τ ,   1 τ 2 + p 2 + 3 τ ,  as in example 3, and taking  Υ τ = τ p , ( 2 τ ) p   . Since  𝒯 ~ ( )  and  Υ ~ ( )  both are  U D - p -convex  F N V M s and  𝒯 * ,   τ = 1 τ 2 p 2 + 3 τ ,  𝒯 * ,   τ = 1 τ 2 + p 2 + 3 τ , and  Υ * ,   τ = τ p ,  Υ * ,   τ = ( 2 τ ) p , then we computing the following, where  p = 1
p 𝚥 p 𝚤 p 𝚤 𝚥 p 1 𝒯 * , τ × Υ * , τ d = τ 10 25 16 2 + 36 3 τ 36 3 + 16 2 + 50 , p 𝚥 p 𝚤 p 𝚤 𝚥 p 1 𝒯 * , τ × Υ * , τ d = 2 τ 10 25 + 16 2 36 3 τ + 36 3 16 2 + 50 , M * 𝚤 , 𝚥 ,   τ 3 = 5 + 2 2 + 3 3 τ   2 3 + τ 3 10 2 2 3 3 ,   M * 𝚤 , 𝚥 ,   τ 3 = 3 τ 1 2 2 + 2 2 3 τ 1 2 2 10 3 τ 3 4 2 3 2 1 3 2 + 125 24 , N * 𝚤 , 𝚥 ,   τ 6 = τ 6 15 τ + 1 τ 10 + 3 2 + 2 3 N * 𝚤 , 𝚥 ,   τ 6 = 2 τ 6 10 + 3 2 + 2 3 3 2 + 2 3 τ + 15 τ ,
for each   τ 0 ,   1 ,  that means
τ 10 25 16 2 + 36 3 τ 36 3 + 16 2 + 50     5 + 2 2 + 3 3 τ   2 3 + τ 3 10 2 2 3 3 + τ 6 15 τ + 1 τ 10 + 3 2 + 2 3 ,   2 τ 10 25 + 16 2 36 3 τ + 36 3 16 2 + 50   3 τ 1 2 2 + 2 2 3 τ 1 2 2 10 3 τ 3 4 2 3 2 1 3 2 + 125 24 + 2 τ 6 10 + 3 2 + 2 3 3 2 + 2 3 τ + 15 τ .
Hence, Theorem 9 has been verified.
Theorem 10. 
Let   𝒯 ~ , Υ ~ U D F S X 𝚤 ,   𝚥 ,   L C ,   p . The family of   I V M s  is defined by   τ -cuts   𝒯 τ ,   Υ τ : 𝚤 ,   𝚥 R K C +  are given by   𝒯 τ = 𝒯 * , τ ,   𝒯 * , τ  and   Υ τ = Υ * , τ ,   Υ * , τ  for all   𝚤 ,   𝚥  and for all   τ 0 ,   1 . If   𝒯 ~ Υ ~ F A 𝚤 ,   𝚥 ,   τ , then
2 𝒯 ~ 𝚤 p + 𝚥 p 2 1 p Υ ~ 𝚤 p + 𝚥 p 2 1 p F p 𝚥 p 𝚤 p F A 𝚤 𝚥 p 1 𝒯 ~ Υ ~ d M ~ 𝚤 , 𝚥 6 N ~ 𝚤 , 𝚥 3 .
where   M ~ 𝚤 , 𝚥 = 𝒯 ~ 𝚤 Υ ~ 𝚤 𝒯 ~ 𝚥 Υ ~ 𝚥 ,   N ~ 𝚤 , 𝚥 = 𝒯 ~ 𝚤 Υ ~ 𝚥 𝒯 ~ 𝚥 Υ ~ 𝚤 ,  and  M τ 𝚤 , 𝚥 = M * 𝚤 , 𝚥 ,   τ ,   M * 𝚤 , 𝚥 ,   τ  and  N τ 𝚤 , 𝚥 = N * 𝚤 , 𝚥 ,   τ ,   N * 𝚤 , 𝚥 ,   τ .
Proof. 
By hypothesis, for each  τ 0 ,   1 ,  we have
𝒯 * 𝚤 p + 𝚥 p 2 1 p , τ × Υ * 𝚤 p + 𝚥 p 2 1 p , τ 𝒯 * 𝚤 p + 𝚥 p 2 1 p , τ × Υ * 𝚤 p + 𝚥 p 2 1 p , τ 1 4 𝒯 * 𝚤 p + 1 𝚥 p 1 p ,   τ × Υ * 𝚤 p + 1 𝚥 p 1 p ,   τ + 𝒯 * 𝚤 p + 1 𝚥 p 1 p ,   τ × Υ * 1 𝚤 p + 𝚥 p 1 p ,   τ + 1 4 𝒯 * 1 𝚤 p + 𝚥 p 1 p ,   τ × Υ * 𝚤 p + 1 𝚥 p 1 p ,   τ + 𝒯 * 1 𝚤 p + 𝚥 p 1 p ,   τ × Υ * 1 𝚤 p + 𝚥 p 1 p ,   τ   ,   1 4 𝒯 * 𝚤 p + 1 𝚥 p 1 p ,   τ × Υ * 𝚤 p + 1 𝚥 p 1 p ,   τ + 𝒯 * 𝚤 p + 1 𝚥 p 1 p ,   τ × Υ * 1 𝚤 p + 𝚥 p 1 p ,   τ   + 1 4 𝒯 * 1 𝚤 p + 𝚥 p 1 p ,   τ × Υ * 𝚤 p + 1 𝚥 p 1 p ,   τ + 𝒯 * 1 𝚤 p + 𝚥 p 1 p ,   τ × Υ * 1 𝚤 p + 𝚥 p 1 p ,   τ ,   1 4 𝒯 * 𝚤 p + 1 𝚥 p 1 p ,   τ × Υ * 𝚤 p + 1 𝚥 p 1 p ,   τ + 𝒯 * 1 𝚤 p + 𝚥 p 1 p ,   τ × Υ * 1 𝚤 p + 𝚥 p 1 p ,   τ   + 1 4 𝒯 * 𝚤 ,   τ + 1 𝒯 * 𝚥 ,   τ × 1 Υ * 𝚤 ,   τ + Υ * 𝚥 ,   τ + 1 𝒯 * 𝚤 ,   τ + 𝒯 * 𝚥 ,   τ × Υ * 𝚤 ,   τ + 1 Υ * 𝚥 ,   τ ,   1 4 𝒯 * 𝚤 p + 1 𝚥 p 1 p ,   τ × Υ * 𝚤 p + 1 𝚥 p 1 p ,   τ + 𝒯 * 1 𝚤 p + 𝚥 p 1 p ,   τ × Υ * 1 𝚤 p + 𝚥 p 1 p ,   τ + 1 4 𝒯 * 𝚤 ,   τ + 1 𝒯 * 𝚥 ,   τ × 1 Υ * 𝚤 ,   τ + Υ * 𝚥 ,   τ + 1 𝒯 * 𝚤 ,   τ + 𝒯 * 𝚥 ,   τ × Υ * 𝚤 ,   τ + 1 Υ * 𝚥 ,   τ ,   = 1 4 𝒯 * 𝚤 p + 1 𝚥 p 1 p ,   τ × Υ * 𝚤 p + 1 𝚥 p 1 p ,   τ + 𝒯 * 1 𝚤 p + 𝚥 p 1 p ,   τ × Υ * 1 𝚤 p + 𝚥 p 1 p ,   τ   + 1 2 2 + 1 2 N * 𝚤 , 𝚥 ,   τ + 1 + 1 M * 𝚤 , 𝚥 ,   τ ,   = 1 4 𝒯 * 𝚤 p + 1 𝚥 p 1 p ,   τ × Υ * 𝚤 p + 1 𝚥 p 1 p ,   τ + 𝒯 * 1 𝚤 p + 𝚥 p 1 p ,   τ × Υ * 1 𝚤 p + 𝚥 p 1 p ,   τ   + 1 2 2 + 1 2 N * 𝚤 , 𝚥 ,   τ + 1 + 1 M * 𝚤 , 𝚥 ,   τ ,  
A -integrating over  0 ,   1 ,  we have
2   𝒯 * 𝚤 p + 𝚥 p 2 1 p , τ × Υ * 𝚤 p + 𝚥 p 2 1 p , τ p 𝚥 p 𝚤 p 𝚤 𝚥 p 1 𝒯 * , τ × Υ * , τ d + M * 𝚤 , 𝚥 ,   τ 6 + N * 𝚤 , 𝚥 ,   τ 3 ,   2   𝒯 * 𝚤 p + 𝚥 p 2 1 p , τ × Υ * 𝚤 p + 𝚥 p 2 1 p , τ p 𝚥 p 𝚤 p 𝚤 𝚥 p 1 𝒯 * , τ × Υ * , τ d + M * 𝚤 , 𝚥 ,   τ 6 + N * 𝚤 , 𝚥 ,   τ 3 ,
that is
2 𝒯 ~ 𝚤 p + 𝚥 p 2 1 p Υ ~ 𝚤 p + 𝚥 p 2 1 p F p 𝚥 p 𝚤 p F A 𝚤 𝚥 p 1 𝒯 ~ Υ ~ d M ~ 𝚤 , 𝚥 6 N ~ 𝚤 , 𝚥 3 .
Hence, the required result. □
Example 5. 
Let  p  be an odd number, and  U D - p -convex  F N V M s  𝒯 ~ , Υ ~ : 𝚤 ,   𝚥 = [ 2 ,   3 ] L C  are, respectively, defined by  𝒯 τ = 1 τ 2 p 2 + 3 τ ,   1 τ 2 + p 2 + 3 τ ,  as in Example 3, and  Υ τ = τ p , ( 2 τ ) p   . Since  𝒯 ~ ( )  and  Υ ~ ( )  both are  U D - p -convex  F N V M s and  𝒯 * ,   τ = 1 τ 2 p 2 + 3 τ ,  𝒯 * ,   τ = 1 τ 2 + p 2 + 3 τ , and  Υ * ,   τ = τ p ,  Υ * ,   τ = ( 2 τ ) p , then we computing the following, where  p = 1
2 𝒯 * 𝚤 p + 𝚥 p 2 1 p , τ × Υ * 𝚤 p + 𝚥 p 2 1 p , τ = 5 2 2 + 10 τ 2 + 4 10 τ ,   2 𝒯 * 𝚤 p + 𝚥 p 2 1 p , τ × Υ * 𝚤 p + 𝚥 p 2 1 p , τ = 5 2 2 τ 4 + 10 + 2 10 τ , M * 𝚤 , 𝚥 ,   τ 6 = 5 + 2 2 + 3 3 τ   2 6 + τ 6 10 2 2 3 3 ,   M * 𝚤 , 𝚥 ,   τ 6 = 3 2 τ 1 2 2 + 2 2 6 τ 1 2 2 5 3 τ 3 4 2 3 4 1 6 2 + 125 48 , N * 𝚤 , 𝚥 ,   τ 3 = τ 3 15 τ + 1 τ 10 + 3 2 + 2 3 N * 𝚤 , 𝚥 ,   τ 3 = 2 τ 3 10 + 3 2 + 2 3 3 2 + 2 3 τ + 15 τ ,
for each   τ 0 ,   1 ,  that means
5 2 2 + 10 τ 2 + 4 10 τ   τ 10 25 16 2 + 36 3 τ 36 3 + 16 2 + 50 + 5 + 2 2 + 3 3 τ   2 6 + τ 6 10 2 2 3 3 + τ 3 15 τ + 1 τ 10 + 3 2 + 2 3 , 5 2 2 τ 4 + 10 + 2 10 τ   2 τ 10 25 + 16 2 36 3 τ + 36 3 16 2 + 50 + 3 2 τ 1 2 2 + 2 2 6 τ 1 2 2 5 3 τ 3 4 2 3 4 1 6 2 + 125 48 + 2 τ 3 10 + 3 2 + 2 3 3 2 + 2 3 τ + 15 τ ,
 hence, Theorem 10 is verified.
𝐻-𝐻 Fejér inequality for UD-p-convex FNVM
Theorem 11. 
(𝐻-𝐻  Fejér inequality for   U D - p -convex   F N V M ) Let   𝒯 ~ U D F S X 𝚤 ,   𝚥 ,   L C ,   p . The family of   I V M s  is defined by   τ -cuts   𝒯 τ : 𝚤 ,   𝚥 R K C +  are given by   𝒯 τ = 𝒯 * , τ ,   𝒯 * , τ  for all   𝚤 ,   𝚥  and for all   τ 0 ,   1  . If   𝒯 ~ F A 𝚤 ,   𝚥 ,   τ  and   Ɲ : 𝚤 ,   𝚥 R , Ɲ ( ) 0 ,  symmetric with respect to   𝚤 p + 𝚥 p 2 1 p ,  then
p 𝚥 p 𝚤 p F A 𝚤 𝚥 p 1 𝒯 ~ Ɲ ( ) d F 𝒯 ~ 𝚤 𝒯 ~ 𝚥 0 1 Ɲ 1 𝚤 p + 𝚥 p 1 p d .
If   𝒯 ~  is   U D - p -concave   F N V M , then inequality (41) is reversed.
Proof. 
Let  𝒯 ~  be an  U D - p -convex  F N V M . Then, for each  τ 0 ,   1 ,  we have
𝒯 * 𝚤 p + 1 𝚥 p 1 p ,   τ Ɲ 𝚤 p + 1 𝚥 p 1 p 𝒯 * 𝚤 ,   τ + 1 𝒯 * 𝚥 ,   τ Ɲ 𝚤 p + 1 𝚥 p 1 p ,
𝒯 * 𝚤 p + 1 𝚥 p 1 p ,   τ Ɲ 𝚤 p + 1 𝚥 p 1 p 𝒯 * 𝚤 ,   τ + 1 𝒯 * 𝚥 ,   τ Ɲ 𝚤 p + 1 𝚥 p 1 p .
And
  𝒯 * 1 𝚤 p + 𝚥 p 1 p ,   τ Ɲ 1 𝚤 p + 𝚥 p 1 p 1 𝒯 * 𝚤 ,   τ + 𝒯 * 𝚥 ,   τ Ɲ 1 𝚤 p + 𝚥 p 1 p , 𝒯 * 1 𝚤 p + 𝚥 p 1 p ,   τ Ɲ 1 𝚤 p + 𝚥 p 1 p 1 𝒯 * 𝚤 ,   τ + 𝒯 * 𝚥 ,   τ Ɲ 1 𝚤 p + 𝚥 p 1 p .
After adding (42) and (43), and integrating over  0 ,   1 ,  we get
  0 1 𝒯 * 𝚤 p + 1 𝚥 p 1 p ,   τ Ɲ 𝚤 p + 1 𝚥 p 1 p d   + 0 1 𝒯 * 1 𝚤 p + 𝚥 p 1 p ,   τ Ɲ 1 𝚤 p + 𝚥 p 1 p d     0 1 𝒯 * 𝚤 ,   τ Ɲ 𝚤 p + 1 𝚥 p 1 p + 1 Ɲ 1 𝚤 p + 𝚥 p 1 p + 𝒯 * 𝚥 ,   τ 1 Ɲ 𝚤 p + 1 𝚥 p 1 p + Ɲ 1 𝚤 p + 𝚥 p 1 p d , 0 1 𝒯 * 1 𝚤 p + 𝚥 p 1 p ,   τ Ɲ 1 𝚤 p + 𝚥 p 1 p d   + 0 1 𝒯 * 𝚤 p + 1 𝚥 p 1 p ,   τ Ɲ 𝚤 p + 1 𝚥 p 1 p d     0 1 𝒯 * 𝚤 ,   τ Ɲ 𝚤 p + 1 𝚥 p 1 p + 1 Ɲ 1 𝚤 p + 𝚥 p 1 p + 𝒯 * 𝚥 ,   τ 1 Ɲ 𝚤 p + 1 𝚥 p 1 p + Ɲ 1 𝚤 p + 𝚥 p 1 p d ,   = 2 𝒯 * 𝚤 ,   τ 0 1 Ɲ 𝚤 p + 1 𝚥 p 1 p d + 2 𝒯 * 𝚥 ,   τ 0 1 Ɲ 1 𝚤 p + 𝚥 p 1 p d , = 2 𝒯 * 𝚤 ,   τ 0 1 Ɲ 𝚤 p + 1 𝚥 p 1 p d + 2 𝒯 * 𝚥 ,   τ 0 1 Ɲ 1 𝚤 p + 𝚥 p 1 p d .
Since  Ɲ  is symmetric, then
  = 2 𝒯 * 𝚤 ,   τ + 𝒯 * 𝚥 ,   τ 0 1 Ɲ 1 𝚤 p + 𝚥 p 1 p d , = 2 𝒯 * 𝚤 ,   τ + 𝒯 * 𝚥 ,   τ 0 1 Ɲ 1 𝚤 p + 𝚥 p 1 p d .
Since
  0 1 𝒯 * 𝚤 p + 1 𝚥 p 1 p ,   τ Ɲ 𝚤 p + 1 𝚥 p 1 p d   = 0 1 𝒯 * 1 𝚤 p + 𝚥 p 1 p ,   τ Ɲ 1 𝚤 p + 𝚥 p 1 p d = p 𝚥 p 𝚤 p   𝚤 𝚥 p 1 𝒯 * , τ Ɲ ( ) d   0 1 𝒯 * 1 𝚤 p + 𝚥 p 1 p ,   τ Ɲ 1 𝚤 p + 𝚥 p 1 p d   = 0 1 𝒯 * 𝚤 p + 1 𝚥 p 1 p ,   τ Ɲ 𝚤 p + 1 𝚥 p 1 p d = p 𝚥 p 𝚤 p   𝚤 𝚥 p 1 𝒯 * ,   τ Ɲ ( ) d .  
Then, from (44), we have
p 𝚥 p 𝚤 p   𝚤 𝚥 p 1 𝒯 * , τ Ɲ ( ) d 𝒯 * 𝚤 ,   τ + 𝒯 * 𝚥 ,   τ 0 1 Ɲ 1 𝚤 p + 𝚥 p 1 p d ,     p 𝚥 p 𝚤 p   𝚤 𝚥 p 1 𝒯 * , τ Ɲ ( ) d s 𝒯 * 𝚤 ,   τ + 𝒯 * 𝚥 ,   τ 0 1 Ɲ 1 𝚤 p + 𝚥 p 1 p d ,
that is
p 𝚥 p 𝚤 p   𝚤 𝚥 p 1 𝒯 * , τ Ɲ d ,   p 𝚥 p 𝚤 p   𝚤 𝚥 p 1 𝒯 * , τ Ɲ d
I 𝒯 * 𝚤 ,   τ + 𝒯 * 𝚥 ,   τ ,   𝒯 * 𝚤 ,   τ + 𝒯 * 𝚥 ,   τ 0 1 Ɲ 1 𝚤 p + 𝚥 p 1 p d ,
hence
p 𝚥 p 𝚤 p F A 𝚤 𝚥 p 1 𝒯 ~ Ɲ ( ) d F 𝒯 ~ 𝚤 𝒯 ~ 𝚥 0 1 Ɲ 1 𝚤 p + 𝚥 p 1 p d .
Theorem 12. 
(𝐻-𝐻  Fejér inequality for   U D - p -convex   F N V M )  Let   𝒯 ~ U D F S X 𝚤 ,   𝚥 ,   L C ,   p . The family of   I V M s  is defined by   τ -cuts   𝒯 τ : 𝚤 ,   𝚥 R K C +  are given by   𝒯 τ = 𝒯 * , τ ,   𝒯 * , τ  for all   𝚤 ,   𝚥  and for all   τ 0 ,   1 . If   𝒯 ~ F A 𝚤 ,   𝚥 ,   τ  and   Ɲ : 𝚤 ,   𝚥 R , Ɲ ( ) 0 ,  symmetric with respect to   𝚤 p + 𝚥 p 2 1 p ,  and   𝚤 𝚥 p 1 Ɲ ( ) d > 0 , then
𝒯 ~ 𝚤 p + 𝚥 p 2 1 p F 1 𝚤 𝚥 p 1 Ɲ ( ) d F A 𝚤 𝚥 p 1 𝒯 ~ Ɲ ( ) d .
If   𝒯 ~  is   U D - p -concave   F N V M , then inequality (46) is reversed.
Proof. 
Since  𝒯 ~  is an  U D -convex, then for  τ 0 ,   1 ,  we have
𝒯 * 𝚤 p + 𝚥 p 2 1 p ,   τ 1 2 𝒯 * 𝚤 p + 1 𝚥 p 1 p ,   τ + 𝒯 * 1 𝚤 p + 𝚥 p 1 p ,   τ , 𝒯 * 𝚤 p + 𝚥 p 2 1 p ,   τ 1 2 𝒯 * 𝚤 p + 1 𝚥 p 1 p ,   τ + 𝒯 * 1 𝚤 p + 𝚥 p 1 p ,   τ .
Since  Ɲ 𝚤 p + 1 𝚥 p 1 p = Ɲ 1 𝚤 p + 𝚥 p 1 p , then by multiplying (47) by  Ɲ 1 𝚤 p + 𝚥 p 1 p  and integrate it with respect to   over  0 , 1 ,  we obtain
  𝒯 * 𝚤 p + 𝚥 p 2 1 p ,   τ 0 1 Ɲ 1 𝚤 p + 𝚥 p 1 p d     1 2 0 1 𝒯 * 𝚤 p + 1 𝚥 p 1 p ,   τ Ɲ 𝚤 p + 1 𝚥 p 1 p d + 0 1 𝒯 * 1 𝚤 p + 𝚥 p 1 p ,   τ d Ɲ 1 𝚤 p + 𝚥 p 1 p , 𝒯 * 𝚤 p + 𝚥 p 2 1 p ,   τ 0 1 Ɲ 1 𝚤 p + 𝚥 p 1 p d     1 2 0 1 𝒯 * 𝚤 p + 1 𝚥 p 1 p ,   τ Ɲ 𝚤 p + 1 𝚥 p 1 p d + 0 1 𝒯 * 1 𝚤 p + 𝚥 p 1 p ,   τ Ɲ 1 𝚤 p + 𝚥 p 1 p d .
Since
    0 1 𝒯 * 𝚤 p + 1 𝚥 p 1 p ,   τ Ɲ 𝚤 p + 1 𝚥 p 1 p d   = 0 1 𝒯 * 1 𝚤 p + 𝚥 p 1 p ,   τ Ɲ 1 𝚤 p + 𝚥 p 1 p d = p 𝚥 p 𝚤 p   𝚤 𝚥 p 1 𝒯 * , τ Ɲ ( ) d ,     0 1 𝒯 * 1 𝚤 p + 𝚥 p 1 p ,   τ Ɲ 1 𝚤 p + 𝚥 p 1 p d   = 0 1 𝒯 * 𝚤 p + 1 𝚥 p 1 p ,   τ Ɲ 𝚤 p + 1 𝚥 p 1 p d = p 𝚥 p 𝚤 p   𝚤 𝚥 p 1 𝒯 * , τ Ɲ ( ) d .    
Then, from (49) we have
  𝒯 * 𝚤 p + 𝚥 p 2 1 p ,   τ 1 𝚤 𝚥 p 1 Ɲ d   𝚤 𝚥 p 1 𝒯 * , τ Ɲ d ,   𝒯 * 𝚤 p + 𝚥 p 2 1 p ,   τ 1 𝚤 𝚥 p 1 Ɲ d   𝚤 𝚥 p 1 𝒯 * , τ Ɲ d ,
from which, we have
  𝒯 * 𝚤 p + 𝚥 p 2 1 p ,   τ ,   𝒯 * 𝚤 p + 𝚥 p 2 1 p ,   τ     I 1 𝚤 𝚥 p 1 Ɲ d   𝚤 𝚥 p 1 𝒯 * , τ Ɲ d ,   𝚤 𝚥 p 1 𝒯 * , τ Ɲ d ,    
that is
𝒯 ~ 𝚤 p + 𝚥 p 2 1 p F 1 𝚤 𝚥 p 1 Ɲ ( ) d F A 𝚤 𝚥 p 1 𝒯 ~ Ɲ ( ) d ,
this completes the proof. □
Remark 5. 
If in Theorems 11 and 12,  p = 1 , then we obtain the appropriate theorems for  U D -convex fuzzy- I V M s  [77].
If in the Theorems 11 and 12,  𝒯 * , γ = 𝒯 * , γ  with   γ = 1 , then we obtain the appropriate theorems for  p -convex function [84].
If in the Theorems 11 and 12,  𝒯 * , γ = 𝒯 * , γ  with   γ = 1  and  p = 1 , then we obtain the appropriate theorems for convex function [90].
If   Ɲ = 1 ,  then combining Theorems 11 and 12, we get Theorem 7.
Example 6. 
We consider the  F N V M   𝒯 ~ : 0 ,   2 L C  defined by,
𝒯 ~ θ = θ 2 + p 2 3 2 2 p 2   θ 2 p 2 ,   3 2 ,   2 + p 2 θ 2 + p 2 3 2   θ 3 2 ,   2 + p 2 ,   0   otherwise ,
Then, for each  τ 0 ,   1 ,  we have  𝒯 τ = 1 τ 2 p 2 + 3 2 τ , 1 + τ 2 + p 2 + 3 2 τ . Since end point mappings  𝒯 * , τ ,  and  𝒯 * , τ  are convex and concave mappings, respectively, for each  τ [ 0 ,   1 ] , then  𝒯 ~  is  U D -convex  F N V M . If
Ɲ = p 2 ,   σ 0 , 1 , 2 p 2 ,   σ 1 ,   2 ,  
then  Ɲ 2 p = Ɲ 0 , for all  0 ,   2 .
Since  𝒯 * , τ = 1 τ 2 p 2 + 3 2 τ  and  𝒯 * , τ = 1 + τ 2 + p 2 + 3 2 τ .
Now we compute the following:
p 𝚥 p 𝚤 p 𝚤 𝚥 p 1 𝒯 * , τ Ɲ d = 1 2 0 2 p 1 𝒯 * , τ Ɲ d   = 1 2 0 1 p 1 𝒯 * , τ Ɲ d + 1 2 1 2 p 1 𝒯 * , τ Ɲ d , p 𝚥 p 𝚤 p 𝚤 𝚥 p 1 𝒯 * , τ Ɲ d = 1 2 0 2 p 1 𝒯 * , τ Ɲ d   = 1 2 0 1 p 1 𝒯 * , τ Ɲ d + 1 2 1 2 p 1 𝒯 * , τ Ɲ d , = 1 2 0 1 1 τ 2 1 2 + 3 2 τ d + 1 2 1 2 1 τ 2 1 2 + 3 2 τ 2 d = 1 4 13 3 π 2 + τ π 8 1 12 ,   = 1 2 0 1 1 + τ 2 + 1 2 + 3 2 τ d + 1 2 1 2 1 + τ 2 + 1 2 + 3 2 τ 2 d = 1 4 19 3 + π 2 + τ π 8 + 31 12 .  
And
𝒯 * 𝚤 ,   τ + 𝒯 * 𝚥 ,   τ 0 1 Ɲ 1 𝚤 p + 𝚥 p 1 p d   = 4 1 τ 2 1 τ + 3 τ 0 1 2 2 d + 1 2 1 2 1 d = 1 3 4 1 τ 2 1 τ + 3 τ ,   𝒯 * 𝚤 ,   τ + 𝒯 * 𝚥 ,   τ 0 1 Ɲ 1 𝚤 p + 𝚥 p 1 p d   = 4 1 + τ + 2 1 + τ + 3 τ 0 1 2 2 d + 1 2 1 2 1 d = 1 3 4 1 + τ + 2 1 + τ + 3 τ .  
From (50) and (51), we have
1 4 13 3 π 2 + τ π 4 7 6 ,   1 4 19 3 + π 2 + τ π 4 + 25 6 I 1 3 4 1 τ 2 1 τ + 3 τ ,   1 3 4 1 + τ + 2 1 + τ + 3 τ ,   for   all   τ 0 ,   1 .
Hence, Theorem 11 is verified.
For Theorem 12, we have
𝒯 * 𝚤 p + 𝚥 p 2 1 p ,   τ = 𝒯 * 1 ,   τ = 2 + τ 2 ,   𝒯 * 𝚤 p + 𝚥 p 2 1 p ,   τ = 𝒯 * 1 ,   τ = 3 2 + 3 τ 2 ,  
𝚤 𝚥 Ɲ d = 0 1 d + 1 2 2 d = 4 3 ,
  p 𝚤 𝚥 Ɲ d   𝚤 𝚥 p 1 𝒯 * , τ Ɲ d = 3 8 13 3 π 2 + 3 τ 2 π 8 1 12 ,   p 𝚤 𝚥 Ɲ d   𝚤 𝚥 p 1 𝒯 * , τ Ɲ d = 3 8 19 3 + π 2 + 3 τ 2 π 8 + 31 12 .  
From (52) and (53), we have
2 + τ 2 ,   3 2 + 3 τ 2 I 3 8 13 3 π 2 + 3 τ 2 π 8 1 12 ,   3 8 19 3 + π 2 + 3 τ 2 π 8 + 31 12 .
Hence, Theorem 12 has been verified.

5. Conclusions

This work examines the new class of  p -convexity over up and down fuzzy relation which is known as  U D - p -convex  F N V M s. The usage of  F N V M s in probability density functions and numerical integration makes the subject intriguing. Kunt and İşcan’s (see, [90]) indings are generalized in the context of convex  F N V M s. We obtain both a novel Hermite–Hadamard-type inequality and a Hermite–Hadamard–Fejer-type inequality. There are no doubts regarding the feasibility of generalizing the fuzzy Aumann integral type inequalities found in this article because we have given some exceptional cases that can be viewed as applications of main outcomes. Some new examples have been provided to discuss the validity of main results.

Author Contributions

Conceptualization, M.B.K.; validation, L.-I.C.; formal analysis, L.-I.C.; investigation, M.B.K. and D.B.; resources, M.B.K. and D.B.; writing—original draft, M.B.K. and D.B.; writing—review and editing, M.B.K. and N.A.A.; visualization, D.B., N.A.A. and L.-I.C.; supervision, D.B. and N.A.A.; project administration, D.B., L.-I.C. and N.A.A. All authors have read and agreed to the published version of the manuscript.

Funding

The authors extend their appreciation to the Deanship of Scientific Research at Northern Border University, Arar, Saudi Arabia for funding this research work through the project number “NBU-FFR-2023-0157”.

Data Availability Statement

No new data were created or analyzed in this study. Data sharing is not applicable to this article.

Acknowledgments

The authors extend their appreciation to the Deanship of Scientific Research at Northern Border University, Arar, Saudi Arabia for funding this research work through the project number “NBU-FFR-2023-0157”. The Rector of Transilvania University of Brasov, Romanai, is acknowledged by the author “M.B.K” for offering top-notch research and academic environments.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Pěcaríc, J.; Proschan, F.; Tong, Y. (Eds.) Convex Functions, Partial Orderings, and Statistical Applications; Academic Press: London, UK, 1992. [Google Scholar]
  2. Mitrinovíc, D.S. Analytic Inequalities; Springer: Berlin/Heidelberg, Germany, 1970. [Google Scholar]
  3. Aljaaidi, T.A.; Pachpatte, D.B. The Minkowski’s inequalities via Riemann-Liouville fractional integral operators. Rend. Circ. Mat. Palermo Ser. B 2021, 70, 893–906. [Google Scholar] [CrossRef]
  4. Awan, M.U.; Talib, S.; Chu, Y.M.; Noor, M.A.; Noor, K.I. Some new refinements of Hermite-Hadamard-type inequalities Involving-Riemann-Liouville fractional integrals and applications. Math. Probl. Eng. 2020, 2020, 3051920. [Google Scholar] [CrossRef]
  5. Chen, H.; Katugampola, U.N. Hermite-Hadamard and Hermite-Hadamard-Fejr type inequalities for generalized fractional integrals. J. Math. Anal. Appl. 2017, 446, 1274–1291. [Google Scholar] [CrossRef]
  6. Sarikaya, M.Z.; Yildirim, H. On Hermite-Hadamard type inequalities for Riemann-Liouville fractional integrals. Miskolc Math. Notes 2016, 17, 1049–1059. [Google Scholar] [CrossRef]
  7. Chu, Y.-M.; Wang, G.-D.; Zhang, X.-H. The Schur multiplicative and harmonic convexities of the complete symmetric function. Math. Nachr. 2011, 284, 653–663. [Google Scholar] [CrossRef]
  8. Chu, Y.-M.; Xia, W.-F.; Zhang, X.-H. The Schur concavity, Schur multiplicative and harmonic convexities of the second dual form of the Hamy symmetric function with applications. J. Multivar. Anal. 2012, 105, 412–421. [Google Scholar] [CrossRef]
  9. Cheng, J.-F.; Chu, Y.-M. Solution to the linear fractional differential equation using Adomian decomposition method. Math. Probl. Eng. 2011, 2011, 587068. [Google Scholar] [CrossRef]
  10. Cheng, J.-F.; Chu, Y.-M. On the fractional difference equations of order (2, q). Abstr. Appl. Anal. 2011, 2011, 497259. [Google Scholar] [CrossRef]
  11. Khan, M.B.; Althobaiti, A.; Lee, C.-C.; Soliman, M.S.; Li, C.-T. Some New Properties of Convex Fuzzy-Number-Valued Mappings on Coordinates Using Up and Down Fuzzy Relations and Related Inequalities. Mathematics 2023, 11, 2851. [Google Scholar] [CrossRef]
  12. Khan, M.B.; Macías-Díaz, J.E.; Althobaiti, A.; Althobaiti, S. Some New Properties of Exponential Trigonometric Convex Functions Using Up and Down Relations over Fuzzy Numbers and Related Inequalities through Fuzzy Fractional Integral Operators Having Exponential Kernels. Fractal Fract. 2023, 7, 567. [Google Scholar] [CrossRef]
  13. Khan, M.B.; Guiro, J.L.G. Riemann Liouville fractional-like integral operators, convex-like real-valued mappings and their applications over fuzzy domain. Chaos Solitons Fractals 2023, 177, 114196. [Google Scholar] [CrossRef]
  14. Khan, M.B.A.; Othman, H.A.; Santos-García, G.; Saeed, T.; Soliman, M.S. On fuzzy fractional integral operators having exponential kernels and related certain inequalities for exponential trigonometric convex fuzzy-number valued mappings. Chaos Solitons Fractals 2023, 169, 113274. [Google Scholar] [CrossRef]
  15. Hermann, R. Fractional Calculus: An Introduction for Physicists; World Scientific: Singapore, 2011. [Google Scholar]
  16. Oldham, K.B.; Spanier, J. (Eds.) The Fractional Calculus Theory and Applications of Differentiation and Integration to Arbitrary Order; Academic Press: London, UK, 1974. [Google Scholar]
  17. Yang, X.J. General Fractional Derivatives: Theory, Methods and Applications; Chapman & Hall: London, UK, 2019. [Google Scholar]
  18. Khan, M.B.; Santos-García, G.; Budak, H.; Treanțǎ, S.; Soliman, M.S. Some new versions of Jensen, Schur and Hermite-Hadamard type inequalities for (𝒑, 𝕵)-convex fuzzy-interval-valued functions. AIMS Math. 2023, 8, 7437–7470. [Google Scholar] [CrossRef]
  19. Khan, M.B.; Othman, H.A.; Voskoglou, M.G.; Abdullah, L.; Alzubaidi, A.M. Some Certain Fuzzy Aumann Integral Inequalities for Generalized Convexity via Fuzzy Number Valued Mappings. Mathematics 2023, 11, 550. [Google Scholar] [CrossRef]
  20. Khan, M.B.; Rakhmangulov, A.; Aloraini, N.; Noor, M.A.; Soliman, M.S. Generalized Harmonically Convex Fuzzy-Number-Valued Mappings and Fuzzy Riemann–Liouville Fractional Integral Inequalities. Mathematics 2023, 11, 656. [Google Scholar] [CrossRef]
  21. Khan, M.B.; Catas, A.; Aloraini, N.; Soliman, M.S. Some Certain Fuzzy Fractional Inequalities for Up and Down -Pre-Invex via Fuzzy-Number Valued Mappings. Fractal Fract. 2023, 7, 171. [Google Scholar] [CrossRef]
  22. Cheng, J.-F.; Chu, Y.-M. Fractional difference equations with real variable. Abstr. Appl. Anal. 2012, 2012, 918529. [Google Scholar] [CrossRef]
  23. Hu, X.-M.; Tian, J.-F.; Chu, Y.-M.; Lu, Y.-X. On Cauchy–Schwarz inequality for N-tuple diamond-alpha integral. J. Inequal. Appl. 2020, 2020, 1–15. [Google Scholar] [CrossRef]
  24. Zhao, T.-H.; Chu, Y.-M.; Wang, H. Logarithmically complete monotonicity properties relating to the gamma function. Abstr. Appl. Anal. 2011, 2011, 896483. [Google Scholar] [CrossRef]
  25. Ashpazzadeh, E.; Chu, Y.-M.; Hashemi, M.S.; Moharrami, M.; Inc, M. Hermite multiwavelets representation for the sparse solution of nonlinear Abel’s integral equation. Appl. Math. Comput. 2022, 427, 127171. [Google Scholar] [CrossRef]
  26. Chu, Y.-M.; Ullah, S.; Ali, M.; Tuzzahrah, G.F.; Munir, T. Numerical investigation of Volterra integral equations of second kind using optimal homotopy asymptotic method. Appl. Math. Comput. 2022, 430, 127304. [Google Scholar] [CrossRef]
  27. Chu, Y.-M.; Inc, M.; Hashemi, M.S.; Eshaghi, S. Analytical treatment of regularized Prabhakar fractional differential equations by invariant subspaces. Comput. Appl. Math. 2022, 41, 271. [Google Scholar] [CrossRef]
  28. Hadamard, J. Étude sur les propriétés des fonctions entières en particulier d’une fonction considérée par Riemann. J. Math. Pures Appl. 1893, 58, 171–215. [Google Scholar]
  29. Khan, M.B.; Santos-García, G.; Noor, M.A.; Soliman, M.S. New Class of Preinvex Fuzzy Mappings and Related Inequalities. Mathematics 2022, 10, 3753. [Google Scholar] [CrossRef]
  30. Khan, M.B.; Macías-Díaz, J.E.; Treanțǎ, S.; Soliman, M.S. Some Fejér-Type Inequalities for Generalized Interval-Valued Convex Functions. Mathematics 2022, 10, 3851. [Google Scholar] [CrossRef]
  31. Khan, M.B.; Santos-García, G.; Treanțǎ, S.; Soliman, M.S. New Class up and down Pre-Invex Fuzzy Number Valued Mappings and Related Inequalities via Fuzzy Riemann Integrals. Symmetry 2022, 14, 2322. [Google Scholar] [CrossRef]
  32. Khan, M.B.; Macías-Díaz, J.E.; Soliman, M.S.; Noor, M.A. Some New Integral Inequalities for Generalized Preinvex Functions in Interval-Valued Settings. Axioms 2022, 11, 622. [Google Scholar] [CrossRef]
  33. Khan, M.B.; Zaini, H.G.; Santos-García, G.; Noor, M.A.; Soliman, M.S. New Class up and down λ-Convex Fuzzy-Number Valued Mappings and Related Fuzzy Fractional Inequalities. Fractal Fract. 2022, 6, 679. [Google Scholar] [CrossRef]
  34. Khan, M.B.; Santos-García, G.; Treanțǎ, S.; Noor, M.A.; Soliman, M.S. Perturbed Mixed Variational-Like Inequalities and Auxiliary Principle Pertaining to a Fuzzy Environment. Symmetry 2022, 14, 2503. [Google Scholar] [CrossRef]
  35. Khan, M.B.; Zaini, H.G.; Macías-Díaz, J.E.; Soliman, M.S. Up and Down h-Pre-Invex Fuzzy-Number Valued Mappings and Some Certain Fuzzy Integral Inequalities. Axioms 2023, 12, 1. [Google Scholar] [CrossRef]
  36. Khan, M.B.; Othman, H.A.; Santos-García, G.; Noor, M.A.; Soliman, M.S. Some new concepts in fuzzy calculus for up and down λ-convex fuzzy-number valued mappings and related inequalities. AIMS Math. 2023, 8, 6777–6803. [Google Scholar] [CrossRef]
  37. Wang, M.-K.; Chu, Y.-M.; Qiu, Y.-F.; Qiu, S.-L. An optimal power mean inequality for the complete elliptic integrals. Appl. Math. Lett. 2011, 24, 887–890. [Google Scholar] [CrossRef]
  38. Wang, M.-K.; Chu, Y.-M.; Zhang, W. Monotonicity and inequalities involving zero-balanced hypergeometric function. Math. Inequal. Appl. 2019, 22, 601–617. [Google Scholar] [CrossRef]
  39. Wang, M.-K.; Chu, Y.-M.; Zhang, W. Precise estimates for the solution of Ramanujan’s generalized modular equation. Ramanujan J. 2019, 49, 653–668. [Google Scholar] [CrossRef]
  40. Wang, M.-K.; He, Z.-Y.; Chu, Y.-M. Sharp Power Mean Inequalities for the Generalized Elliptic Integral of the First Kind. Comput. Methods Funct. Theory 2020, 20, 111–124. [Google Scholar] [CrossRef]
  41. Abbas Baloch, I.; Chu, Y.-M. Petrovic-type inequalities for harmonic h-convex functions. J. Funct. Spaces 2020, 2020, 3075390. [Google Scholar] [CrossRef]
  42. Chu, Y.-M.; Long, B.-Y. Sharp inequalities between means. Math. Inequal. Appl. 2011, 14, 647–655. [Google Scholar] [CrossRef]
  43. Chu, Y.-M.; Qiu, Y.-F.; Wang, M.-K. Hölder mean inequalities for the complete elliptic integrals. Integral Transform. Spec. Funct. 2012, 23, 521–527. [Google Scholar] [CrossRef]
  44. Chu, Y.-M.; Wang, M.-K. Inequalities between arithmetic geometric, Gini, and Toader means. Abstr. Appl. Anal. 2012, 2012, 830585. [Google Scholar] [CrossRef]
  45. Sarikaya, M.Z.; Set, E.; Yaldiz, H.; Basak, N. Hermite–Hadamard’s inequalities for fractional integrals and related fractional inequalities. Math. Comput. Model. 2013, 57, 2403–2407. [Google Scholar] [CrossRef]
  46. Ramk, J. Inequality relation between fuzzy numbers and its use in fuzzy optimization. Fuzzy Sets Syst. 1985, 16, 123–138. [Google Scholar] [CrossRef]
  47. Costa, T. Jensen’s inequality type integral for fuzzy-interval-valued functions. Fuzzy Sets Syst. 2017, 327, 31–47. [Google Scholar] [CrossRef]
  48. Costa, T.M.; Román-Flores, H. Some integral inequalities for fuzzy-interval-valued functions. Inf. Sci. 2017, 420, 110–125. [Google Scholar] [CrossRef]
  49. Chu, Y.M.; Zhao, T.H. Concavity of the error function with respect to Hölder means. Math. Inequal. Appl. 2016, 19, 589–595. [Google Scholar] [CrossRef]
  50. Zhao, T.H.; Shi, L.; Chu, Y.M. Convexity and concavity of the modified Bessel functions of the first kind with respect to Hölder means. RACSAM Rev. R Acad. A 2020, 114, 1–14. [Google Scholar] [CrossRef]
  51. Zhao, T.H.; Zhou, B.C.; Wang, M.K.; Chu, Y.M. On approximating the quasi-arithmetic mean. J. Inequal. Appl. 2019, 2019, 42. [Google Scholar] [CrossRef]
  52. Zhao, T.H.; Wang, M.K.; Zhang, W.; Chu, Y.M. Quadratic transformation inequalities for Gaussian hyper geometric function. J. Inequal. Appl. 2018, 2018, 251. [Google Scholar] [CrossRef]
  53. Qian, W.M.; Chu, H.H.; Wang, M.K.; Chu, Y.M. Sharp inequalities for the Toader mean of order −1 in terms of other bivariate means. J. Math. Inequal. 2022, 16, 127–141. [Google Scholar] [CrossRef]
  54. Zhao, T.H.; Chu, H.H.; Chu, Y.M. Optimal Lehmer mean bounds for the nth power-type Toader mean of n = −1, 1, 3. J. Math. Inequal. 2022, 16, 157–168. [Google Scholar] [CrossRef]
  55. Wang, M.-K.; Chu, Y.-M. Refinements of transformation inequalities for zero-balanced hypergeometric functions. Acta Math. Sci. 2017, 37B, 607–622. [Google Scholar] [CrossRef]
  56. Wang, M.-K.; Chu, Y.-M. Landen inequalities for a class of hypergeometric functions with applications. Math. Inequal. Appl. 2018, 21, 521–537. [Google Scholar] [CrossRef]
  57. Wang, M.-K.; Chu, H.-H.; Chu, Y.-M. Precise bounds for the weighted Holder mean of the complete p-elliptic integrals. J. Math. Anal. Appl. 2019, 480, 123388. [Google Scholar] [CrossRef]
  58. Wang, M.-K.; Chu, Y.-M.; Jiang, Y.-P. Ramanujan’s cubic transformation inequalities for zero-balanced hypergeometric functions. Rocky Mt. J. Math. 2016, 46, 679–691. [Google Scholar] [CrossRef]
  59. Wang, M.-K.; Chu, H.-H.; Li, Y.-M.; Chu, Y.-M. Answers to three conjectures on convexity of three functions involving complete elliptic integrals of the first kind. Appl. Anal. Discret. Math. 2020, 14, 255–271. [Google Scholar] [CrossRef]
  60. Zhao, D.; An, T.; Ye, G.; Liu, W. New Jensen and Hermite-Hadamard type inequalities for h-convex interval-valued functions. J. Inequalities Appl. 2018, 2018, 302. [Google Scholar] [CrossRef]
  61. Liu, X.; Feng, F.; Yager, R.R.; Davvaz, B.; Khan, M. On modular inequalities of interval-valued fuzzy soft sets characterized by soft J-inclusions. J. Inequalities Appl. 2014, 2014, 360. [Google Scholar] [CrossRef]
  62. Yang, Y.; Saleem, M.S.; Nazeer, W.; Shah, A.F. New Hermite-Hadamard inequalities in fuzzy-interval fractional calculus via exponentially convex fuzzy interval-valued function. AIMS Math. 2021, 6, 12260–12278. [Google Scholar] [CrossRef]
  63. Chalco-Cano, Y.; Lodwick, W.A.; Condori-Equice, W. Ostrowski type inequalities and applications in numerical integration for interval-valued functions. Soft. Comput. 2015, 19, 3293–3300. [Google Scholar] [CrossRef]
  64. Osuna-Gomez, R.; Jimenez-Gamero, M.D.; Chalco-Cano, Y.; Rojas-Medar, M.A. Hadamard and Jensen inequalities for s-convex fuzzy processes. In Soft Methodology and Random Information Systems; Springer: Berlin/Heidelberg, Germany, 2004; pp. 645–652. [Google Scholar]
  65. Khan, M.B.; Noor, M.A.; Noor, K.I.; Chu, Y.M. New Hermite-Hadamard type inequalities for -convex fuzzy-interval-valued functions. Adv. Differ. Equ. 2021, 2021, 6–20. [Google Scholar] [CrossRef]
  66. Dragomir, S.S.; Pearce, C.E.M. Selected topics on Hermite–Hadamard inequalities and applications. In RGMIA Monographs; Victoria University: Footscray, Australia, 2000. [Google Scholar]
  67. Nanda, S.; Kar, K. Convex fuzzy mappings. Fuzzy Sets Syst. 1992, 48, 129–132. [Google Scholar] [CrossRef]
  68. Syau, Y.R. On convex and concave fuzzy mappings. Fuzzy Sets Syst. 1999, 103, 163–168. [Google Scholar] [CrossRef]
  69. Puri, M.L.; Ralescu, D.A. Fuzzy random variables. Math. Anal. Appl. 1986, 114, 409–422. [Google Scholar] [CrossRef]
  70. Goetschel, R., Jr.; Voxman, W. Elementary fuzzy calculus. Fuzzy Sets Syst. 1986, 18, 31–43. [Google Scholar] [CrossRef]
  71. Yan, H.; Xu, J. A class of convex fuzzy mappings. Fuzzy Sets Syst. 2002, 129, 47–56. [Google Scholar] [CrossRef]
  72. Romn-Flores, H.; Chalco-Cano, Y.; Lodwick, W. Some integral inequalities for interval-valued functions. Comput. Appl. Math. 2018, 37, 1306–1318. [Google Scholar] [CrossRef]
  73. Romn-Flores, H.; Chalco-Cano, Y.; Silva, G.N. A note on Gronwall type inequality for interval-valued functions. In Proceedings of the 2013 Joint IFSA World Congress and NAFIPS Annual Meeting (IFSA/NAFIPS), Edmonton, AB, Canada, 24–28 June 2013; pp. 1455–1458. [Google Scholar]
  74. Moore, R.E. Interval Analysis; Prentice Hall: Englewood Cliffs, NJ, USA, 1966. [Google Scholar]
  75. Kaleva, O. Fuzzy Differential Equations. Fuzzy Sets Syst. 1987, 24, 301–317. [Google Scholar] [CrossRef]
  76. Rainville, E.D. Special Functions; Chelsea Publ. Co.: Bronx, NY, USA, 1971. [Google Scholar]
  77. Khan, M.B.; Santos-García, G.; Noor, M.A.; Soliman, M.S. Some new concepts related to fuzzy fractional calculus for up and down convex fuzzy-number valued functions and inequalities. Chaos Solitons Fractals 2022, 164, 112692. [Google Scholar] [CrossRef]
  78. Diamond, P.; Kloeden, P. Metric Spaces of Fuzzy Sets: Theory and Applications; World Scientific: Singapore, 1994. [Google Scholar]
  79. Bede, B. Mathematics of Fuzzy Sets and Fuzzy Logic, Volume 295 of Studies in Fuzziness and Soft Computing; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
  80. Zhang, D.; Guo, C.; Chen, D.; Wang, G. Jensen’s inequalities for set-valued and fuzzy set-valued functions. Fuzzy Sets Syst. 2020, 404, 178–204. [Google Scholar] [CrossRef]
  81. Fang, Z.B.; Shi, R.J. On the (p, h)-convex function and some integral inequalities. J. Inequal. Appl. 2014, 45, 1–6. [Google Scholar] [CrossRef]
  82. Fejér, L. Über die Bestimmung des Sprunges der Funktion aus ihrer Fourierreihe. J. Reine Angew. Math. 1913, 142, 165–188. [Google Scholar] [CrossRef]
  83. An, Y.; Ye, G.; Zhao, D.; Liu, W. Hermite-Hadamard type inequalities for interval (h1; h2)-convex functions. Mathematics 2019, 7, 436. [Google Scholar] [CrossRef]
  84. Chandola, A.; Agarwal, R.; Pandey, M.R. Some new Hermite-Hadamard, Hermite-Hadamard Fejer and weighted Hardy type inequalities involving (k-p) Riemann-Liouville fractional integral operator. Appl. Math. Inf. Sci. 2022, 16, 287–297. [Google Scholar]
  85. Mubeen, S.; Habibullah, G. k-Fractional integrals and application. Int. J. Contemp. Math. Sci. 2012, 7, 89–94. [Google Scholar]
  86. Sarikaya, M.; Dahmani, Z.; Kiris, M.; Ahmed, F. (k; s)-Riemann-Liouville fractional integral and applications. Hacet. J. Math. Stat. 2016, 45, 77–89. [Google Scholar] [CrossRef]
  87. Srivastava, H.M.; Mehrez, S.; Sitnik, S.M. Hermite-Hadamard-type integral inequalities for convex functions and their applications. Mathematics 2022, 10, 3127. [Google Scholar] [CrossRef]
  88. Stojiljkovíc, V. Hermite Hadamard type inequalities involving (k-p) fractional operator with (α, h-m)-p convexity. Eur. J. Pure Appl. Math. 2023, 16, 503–522. [Google Scholar] [CrossRef]
  89. Stojiljkovíc, V.; Ramaswamy, R.; Abdelnaby, O.A.A.; Radenovic, S. Some novel inequalities for LR-(k,h-m)-p convex interval-valued functions by means of pseudo order relation. Fractal Fract. 2022, 6, 726. [Google Scholar] [CrossRef]
  90. Kunt, M.; İşcan, İ. Hermite–Hadamard–Fejer type inequalities for p-convex functions. Arab J. Math. Sci. 2017, 23, 215–230. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Alreshidi, N.A.; Khan, M.B.; Breaz, D.; Cotirla, L.-I. New Versions of Fuzzy-Valued Integral Inclusion over p-Convex Fuzzy Number-Valued Mappings and Related Fuzzy Aumman’s Integral Inequalities. Symmetry 2023, 15, 2123. https://doi.org/10.3390/sym15122123

AMA Style

Alreshidi NA, Khan MB, Breaz D, Cotirla L-I. New Versions of Fuzzy-Valued Integral Inclusion over p-Convex Fuzzy Number-Valued Mappings and Related Fuzzy Aumman’s Integral Inequalities. Symmetry. 2023; 15(12):2123. https://doi.org/10.3390/sym15122123

Chicago/Turabian Style

Alreshidi, Nasser Aedh, Muhammad Bilal Khan, Daniel Breaz, and Luminita-Ioana Cotirla. 2023. "New Versions of Fuzzy-Valued Integral Inclusion over p-Convex Fuzzy Number-Valued Mappings and Related Fuzzy Aumman’s Integral Inequalities" Symmetry 15, no. 12: 2123. https://doi.org/10.3390/sym15122123

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop