Analytic Invariants of Semidirect Products of Symmetric Groups on Banach Spaces
Abstract
:1. Introduction
2. Preliminary Results
3. Classes of Symmetric Polynomials
- (i)
- A function f on is separately -symmetric if and only if it is -symmetric.
- (ii)
- A function f on X is -symmetric if and only if it is -symmetric, where
- (iii)
- A function f on X is block -symmetric if and only if it is -symmetric, where is a trivial subgroup of consisting of the identity map.
4. Generators in Algebras of Double-Symmetric Polynomials
5. Algebras of Symmetric Analytic Functions and Their Spectra
6. Discussion and Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kraft, H.; Procesi, C. Classical Invariant Theory: A Primer; Lecture Notes; Indian Institute of Technology Bombay: Maharashtra, India, 1996; Available online: https://dmi.unibas.ch/fileadmin/user_upload/dmi/Personen/Kraft_Hanspeter/Classical_Invariant_Theory.pdf (accessed on 22 November 2023).
- Boumova, S.; Drensky, V.; Dzhundrekov, D.; Kasabov, M. Symmetric polynomials in free associative algebras. Turk. J. Math. 2022, 46, 1674–1690. [Google Scholar] [CrossRef]
- González, M.; Gonzalo, R.; Jaramillo, J.A. Symmetric polynomials on rearrangement-invariant function spaces. J. Lond. Math. Soc. 1999, 59, 681–697. [Google Scholar] [CrossRef]
- Nemirovskii, A.; Semenov, S. On polynomial approximation of functions on Hilbert space. Mat. USSR-Sb. 1973, 21, 255–277. [Google Scholar] [CrossRef]
- Aron, R.; Galindo, P.; Pinasco, D.; Zalduendo, I. Group-symmetric holomorphic functions on a Banach space. Bull. Lond. Math. Soc. 2016, 48, 779–796. [Google Scholar] [CrossRef]
- Aron, R.M.; Falcó, J.; Maestre, M. Separation theorems for group invariant polynomials. J. Geom. Anal. 2018, 28, 393–404. [Google Scholar] [CrossRef]
- Falcó, J.; García, D.; Jung, M.; Maestre, M. Group-invariant separating polynomials on a Banach space. Publ. Mat. 2022, 66, 207–233. [Google Scholar] [CrossRef]
- Alencar, R.; Aron, R.; Galindo, P.; Zagorodnyuk, A. Algebra of symmetric holomorphic functions on ℓp. Bull. Lond. Math. Soc. 2003, 35, 55–64. [Google Scholar] [CrossRef]
- Chernega, I.; Galindo, P.; Zagorodnyuk, A. Some algebras of symmetric analytic functions and their spectra. Proc. Edinb. Math. Soc. 2012, 55, 125–142. [Google Scholar] [CrossRef]
- Novosad, Z.; Vasylyshyn, S.; Zagorodnyuk, A. Countably Generated Algebras of Analytic Functions on Banach Spaces. Axioms 2023, 12, 798. [Google Scholar] [CrossRef]
- Vasylyshyn, T. Symmetric analytic functions on the Cartesian power of the complex Banach space of Lebesgue measurable essentially bounded functions on [0, 1]. J. Math. Anal. Appl. 2022, 509, 125977. [Google Scholar] [CrossRef]
- Vasylyshyn, T.; Zhyhallo, K. Entire Symmetric Functions on the Space of Essentially Bounded Integrable Functions on the Union of Lebesgue-Rohlin Spaces. Axioms 2022, 11, 460. [Google Scholar] [CrossRef]
- Vasylyshyn, T. Algebras of symmetric analytic functions on Cartesian powers of Lebesgue integrable in a power p∈[1, +∞) functions. Carpathian Math. Publ. 2021, 13, 340–351. [Google Scholar] [CrossRef]
- Halushchak, S. Spectra of Some Algebras of Entire Functions of Bounded Type, Generated by a Sequence of Polynomials. Carpathian Math. Publ. 2019, 11, 311–320. [Google Scholar] [CrossRef]
- Halushchak, S.I. Isomorphisms of some algebras of analytic functions of bounded type on Banach spaces. Mat. Stud. 2021, 56, 106–112. [Google Scholar] [CrossRef]
- Vasylyshyn, S. Spectra of Algebras of Analytic Functions, Generated by Sequences of Polynomials on Banach Spaces, and Operations on Spectra. Carpathian Math. Publ. 2023, 15, 104–119. [Google Scholar] [CrossRef]
- Dineen, S. Complex Analysis on Infinite Dimensional Spaces; Springer: Berlin/Heidelberg, Germany, 1999. [Google Scholar] [CrossRef]
- Mujica, J. Complex Analysis in Banach Spaces; North-Holland: Amsterdam, The Netherlands; New York, NY, USA; Oxford, UK, 1986. [Google Scholar]
- Ansemil, J.M.; Aron, R.M.; Ponte, S. Behavior of entire functions on balls in a Banach space. Indag. Math. 2009, 20, 483–489. [Google Scholar] [CrossRef]
- Aron, R.M.; Cole, B.J.; Gamelin, T.W. Spectra of algebras of analytic functions on a Banach space. J. Reine Angew. Math. 1991, 415, 51–93. [Google Scholar]
- Aron, R.M.; Cole, B.J.; Gamelin, T.W. Weak-star continuous analytic functions. Can. J. Math. 1995, 47, 673–683. [Google Scholar] [CrossRef]
- Aron, R.M.; Galindo, P.; Garcia, D.; Maestre, M. Regularity and algebras of analytic functions in infinite dimensions. Trans. Am. Math. Soc. 1996, 348, 543–559. [Google Scholar] [CrossRef]
- Carando, D.; García, D.; Maestre, M. Homomorphisms and composition operators on algebras of analytic functions of bounded type. Adv. Math. 2005, 197, 607–629. [Google Scholar] [CrossRef]
- Carando, D.G.; García, R.D.; Maestre, V.M.; Sevilla, P.P. On the spectra of algebras of analytic functions. Contemp. Math. 2012, 561, 165–198. [Google Scholar] [CrossRef]
- García, D.; Lourenço, M.L.; Maestre, M.; Moraes, L.A. The spectrum of analytic mappings of bounded type. J. Math. Anal. Appl. 2000, 245, 447–470. [Google Scholar] [CrossRef]
- García, D.; Lourenço, M.L.; Moraes, L.A.; Paques, O.W. The Spectra of some Algebras of Analytic Mappings. Indag. Math. 1999, 10, 393–406. [Google Scholar] [CrossRef]
- Vieira, D.M. Spectra of algebras of holomorphic functions of bounded type. Indag. Math. 2007, 18, 269–279. [Google Scholar] [CrossRef]
- Aron, R.M.; Berner, P.D. A Hahn-Banach extension theorem for analytic mappings. Bull. Soc. Math. Fr. 1978, 106, 3–24. [Google Scholar] [CrossRef]
- Vasylyshyn, T. Symmetric polynomials on the complex Banach space of all Lebesgue integrable essentially bounded functions on the union of Lebesgue-Rohlin spaces. AIP Conf. Proc. 2022, 2483, 030014. [Google Scholar] [CrossRef]
- Vasylyshyn, T. Symmetric analytic functions on Cartesian powers of complex Banach spaces of complex-valued Lebesgue integrable in a power p∈[0, +∞) functions on [0, 1] and [0, +∞). AIP Conf. Proc. 2022, 2483, 030015. [Google Scholar] [CrossRef]
- Burtnyak, I.V.; Chopyuk, Y.Y.; Vasylyshyn, S.I.; Vasylyshyn, T.V. Algebras of weakly symmetric functions on spaces of Lebesgue measurable functions. Carpathian Math. Publ. 2023, 15, 411–419. [Google Scholar] [CrossRef]
- Kravtsiv, V.; Vasylyshyn, T.; Zagorodnyuk, A. On algebraic basis of the algebra of symmetric polynomials on ℓp(Cn). J. Funct. Spaces 2017, 2017, 4947925. [Google Scholar] [CrossRef]
- Bandura, A.; Kravtsiv, V.; Vasylyshyn, T. Algebraic Basis of the Algebra of All Symmetric Continuous Polynomials on the Cartesian Product of ℓp-Spaces. Axioms 2022, 11, 41. [Google Scholar] [CrossRef]
- Kravtsiv, V.V. Analogues of the Newton formulas for the block-symmetric polynomials. Carpathian Math. Publ. 2020, 12, 17–22. [Google Scholar] [CrossRef]
- Kravtsiv, V.V.; Zagorodnyuk, A. Spectra of algebras of block-symmetric analytic functions of bounded type. Mat. Stud. 2022, 58, 69–81. [Google Scholar] [CrossRef]
- Jawad, F. Note on separately symmetric polynomials on the Cartesian product of ℓ1. Mat. Stud. 2018, 50, 204–210. [Google Scholar] [CrossRef]
- Kravtsiv, V.; Vitrykus, D. Generating Elements of the Algebra of Block-Symmetric Polynomials on the Product of Banach Spaces Cs. AIP Conf. Proc. 2022, 2483, 030010. [Google Scholar] [CrossRef]
- Chevalley, C. Invariants of finite groups generated by reflections. Am. J. Math. 1955, 77, 778–782. [Google Scholar] [CrossRef]
- Shephard, G.C.; Todd, J.A. Finite unitary reflection groups. Can. J. Math. 1954, 6, 274–304. [Google Scholar] [CrossRef]
- Chopyuk, Y.; Vasylyshyn, T.; Zagorodnyuk, A. Rings of Multisets and Integer Multinumbers. Mathematics 2022, 10, 778. [Google Scholar] [CrossRef]
- Zagorodnyuk, A.; Baziv, N.; Chopyuk, Y.; Vasylyshyn, T.; Burtnyak, I.; Kravtsiv, V. Symmetric and Supersymmetric Polynomials and Their Applications in the Blockchain Technology and Neural Networks. In Proceedings of the 2023 IEEE World Conference on Applied Intelligence and Computing (AIC), Sonbhadra, India, 29–30 July 2023; pp. 508–513. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baziv, N.; Zagorodnyuk, A. Analytic Invariants of Semidirect Products of Symmetric Groups on Banach Spaces. Symmetry 2023, 15, 2117. https://doi.org/10.3390/sym15122117
Baziv N, Zagorodnyuk A. Analytic Invariants of Semidirect Products of Symmetric Groups on Banach Spaces. Symmetry. 2023; 15(12):2117. https://doi.org/10.3390/sym15122117
Chicago/Turabian StyleBaziv, Nataliia, and Andriy Zagorodnyuk. 2023. "Analytic Invariants of Semidirect Products of Symmetric Groups on Banach Spaces" Symmetry 15, no. 12: 2117. https://doi.org/10.3390/sym15122117
APA StyleBaziv, N., & Zagorodnyuk, A. (2023). Analytic Invariants of Semidirect Products of Symmetric Groups on Banach Spaces. Symmetry, 15(12), 2117. https://doi.org/10.3390/sym15122117