Next Article in Journal
The Crystal Chemistry of Voltaite-Group Minerals from Post-Volcanic and Anthropogenic Occurrences
Next Article in Special Issue
Binomial Series-Confluent Hypergeometric Distribution and Its Applications on Subclasses of Multivalent Functions
Previous Article in Journal
Covariant Cubic Interacting Vertices for Massless and Massive Integer Higher Spin Fields
Previous Article in Special Issue
New Versions of Fuzzy-Valued Integral Inclusion over p-Convex Fuzzy Number-Valued Mappings and Related Fuzzy Aumman’s Integral Inequalities
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

An Application of Touchard Polynomials on Subclasses of Analytic Functions

1
Department of Mathematics, College of Science, University of Ha’il, Ha’il 81451, Saudi Arabia
2
Department of Mathematics and Computer Science, Faculty of Science, Port Said University, Port Said 42521, Egypt
3
Department of Mathematics, Faculty of Science, Damietta University, New Damietta 34517, Egypt
4
Department of Physics, College of Science and Arts in Methneb, Qassim University, Methneb 51931, Saudi Arabia
5
Department of Mathematics, College of Science, Jazan University, Jazan 45142, Saudi Arabia
*
Author to whom correspondence should be addressed.
Symmetry 2023, 15(12), 2125; https://doi.org/10.3390/sym15122125
Submission received: 25 October 2023 / Revised: 21 November 2023 / Accepted: 27 November 2023 / Published: 29 November 2023
(This article belongs to the Special Issue Symmetry in Geometric Theory of Analytic Functions)

Abstract

:
The aim of this work is to discuss some conditions for Touchard polynomials to be in the classes  TB b ( ρ , σ )  and  TK b ( ρ , σ ) . Also, we obtain some connection between  R η ( D , E )  and  TK b ( ρ , σ ) . Also, we investigate several mapping properties involving these subclasses. Further, we discuss the geometric properties of an integral operator related to the Touchard polynomial. Additionally, briefly mentioned are specific instances of our primary results. Also, several particular examples are presented.

1. Introduction

We denote by  A  the class of functions of the following form:
f ( z ) = z + ı = 2 a ı z ı ( z D = { z C : | z | < 1 } ) .
Additionally, we let T denote the subclass of  A , which consists of functions f with the following power series expansion:
f ( z ) = z ı = 2 a ı z ı ( z D ; a ı > 0 ) .
For the function  f ( z )  involved in (1) and the function  g ( z )  given as follows:
g ( z ) = z + ı = 2 b ı z ı z D ,
the convolution (or, equivalently, the Hadamard product) of the functions  f ( z )  and  g ( z )  is defined below:
( f g ) ( z ) = z + ı = 2 a ı b ı z ı , ( z D )
and the integral convolution is (see [1])
( f g ) ( z ) = z + ı = 2 a ı b ı ı z ı = ( g f ) ( z ) , ( z D ) .
Definition 1
([2,3]). A function  f S b  if it satisfies:
Re 1 + 1 b z f ( z ) f ( z ) 1 > 0 ( z D ; b C = C { 0 } ; f ( z ) A ) ,
is called star-like of complex order b.
Definition 2
([4,5]). A function  f C b  if it satisfies:
Re 1 + 1 b z f ( z ) f ( z ) > 0 ( z D ; b C ; f ( z ) A ) ,
is called convex of complex order b.
Definition 3
([6,7]). A function  f K b  if it satisfies:
Re 1 + 1 b ( f ( z ) 1 ) > 0 ( z D ; b C ; f ( z ) A ) ,
is called close-to-convex of complex order b.
Definition 4
(with  n = 1  [8]). A function  f B b ( ρ , σ )  if it satisfies:
1 b z f 2 f ( z ) ( 1 ρ ) f ( z ) + ρ f ( z ) 1 < σ ( z D ; b C ; 0 ρ 1 ; 0 < σ 1 ; f ( z ) A ) .
Definition 5
(with  n = 1  [8]). A function  f K b ( ρ , σ )  if it satisfies:
1 b f ( z ) + ρ z f ( z ) 1 < σ ( z D ; b C ; 0 ρ 1 ; 0 < σ 1 ; f ( z ) A ) .
Further, we denote by
TB b ( ρ , σ ) B b ( ρ , σ ) T TK b ( ρ , σ ) K b ( ρ , σ ) T .
Note that:
(1)  TB 1 α ( ρ , 1 ) = T ( α , ρ ) ( 0 α < 1 ) , was investigated by Altintas [9] with  n = 1 ] (see also [10] [with  n = 1 ]);
(2)  B b ( 0 , 1 ) S b K b ( 0 , 1 ) K b  and  B b ( 1 , 1 ) C b  (see [2,4,6]);
(3)  B 1 ( 0 , 1 ) = S  (see [1]);
(4)  B e i θ cos θ ( 0 , 1 ) = S θ , where  S θ  is the class of spiral-like functions ( | θ | < π 2 ; θ  is the real value) (see [11]);
(5)  B 1 α ( 0 , 1 ) = S ( α ) ( 0 α < 1 )  (see [12]);
(6)  B ( 1 α ) e i θ cos θ ( 0 , 1 ) = S θ ( α ) ( 0 α < 1 ) , where  S θ ( α )  is the class of spiral-like functions of order  α  ( | θ | < π 2 ; θ  is the real value) (see [13]);
(7)  B 1 ( 1 , 1 ) = C  (see [1]);
(8)  B e i θ cos θ ( 1 , 1 ) = C θ , where  C θ  is the class of  θ Robertson-type functions ( | θ | < π 2 ; θ  is the real value) (see [14]);
(9)  B 1 α ( 1 , 1 ) = C ( α ) , ( 0 α < 1 )  (see [12]);
(10)  TB b ( 0 , σ ) = TS b ( σ ) = f T : 1 b z f ( z ) f ( z ) 1 < σ  (see [6]);
(11)  TB b ( 1 , σ ) = TC b ( σ ) = f T : 1 b z f ( z ) f ( z ) 1 < σ  (see [6]);
(12)  TK b ( 0 , σ ) = TK b ( σ ) = f T : 1 b f ( z ) 1 < σ  (see [6]);
(13)  TK 1 α ( 0 , 1 ) = TK ( α ) = f T : f ( z ) 1 < 1 α  (see [15]);
(14)  TK 1 ( 0 , 1 ) = TK = f T : f ( z ) 1 < 1  (see [16]).
Definition 6
([17]). A function  f R η ( D , E )  if it satisfies:
f ( z ) 1 ( D E ) η E ( f ( z ) 1 ) < 1 ( z D ; η C ; 1 E < D 1 ) .
Note that:
(1)  R 1 ( α , α ) = R ( α ) = f A : f ( z ) 1 f ( z ) + 1 < α ( z D ; 0 < α 1 )  (see [18]);
(2)  R e i θ cos θ ( 1 2 α , 1 ) = R θ ( α ) = { f A : Re ( e i θ ( f ( z ) α ) ) > 0 ( z D ; | θ | < π 2 ; 0 α < 1 )  (see [19]).
In 1939, Jacques Touchard [20] studied the Touchard polynomials, also called Bell polynomials [21,22,23], consisting of a binomial-type polynomial sequence defined by
T κ ( x ) = ı = 0 κ S ( κ , ı ) x ı = ı = 0 κ κ ı x ı ,
where  S ( κ , ı )  is a Stirling number of the second kind.
If X is a random variable with a Poisson distribution with an expected value  γ , then its  κ th moment is  E ( X κ ) = T κ ( γ ) , leading to the definition:
T κ ( γ ) = e γ ı = 0 γ ı ı κ ı ! ( γ > 0 ; κ 0 ) .
In order to study the different inventory problems of the permutations when the cycles have specific features, Jacques Touchard studied these polynomials and generalized the Bell polynomials. In addition, he developed and researched a class of related polynomials. This new approach can be used to solve integral equations, both linear and nonlinear. Since it is difficult to solve integral equations analytically, we must often find approximations for the solutions. In this situation, the linear Volterra integro-differential equation is solved using the Touchard polynomial approach. Both linear and nonlinear Volterra integral equations have been solved using the Touchard polynomial method.
Lately, Murugusundaramoorthy and Porwal [24] introduced and defined a function  T κ ( γ ; z )  as follows:
T κ ( γ ; z ) = z + e γ ı = 2 γ ı 1 ( ı 1 ) κ ( ı 1 ) ! z ı ( z D ; γ > 0 ; κ 0 ) .
The above series convergence is infinite according to the ratio test. Also, they introduced  F κ ( γ ; z )  as follows:
F κ ( γ ; z ) = 2 z T κ ( γ ; z ) = z e γ ı = 2 γ ı 1 ( ı 1 ) κ ( ı 1 ) ! z ı ( z D ; γ > 0 ; κ 0 ) .
Next, we define the convolution operator  TF κ ( γ ; z )  for functions f given by (2) as follows
TF κ ( γ ; z ) = F κ ( γ ; z ) f ( z ) = z e γ ı = 2 γ ı 1 ( ı 1 ) κ ( ı 1 ) ! a ı z ı ( z D ; γ > 0 ; κ 0 ) .
Also, we define the functions
Φ κ ( μ , γ ; z ) = ( 1 μ ) T κ ( γ ; z ) + μ z T κ ( γ ; z ) = z + e γ ı = 2 [ 1 + μ ( ı 1 ) ] γ ı 1 ( ı 1 ) κ ( ı 1 ) ! z ı ( μ 0 ) ,
and
Φ κ ( μ , γ ; z ) = 2 z Φ κ ( μ , γ ; z ) = z e γ ı = 2 [ 1 + μ ( ı 1 ) ] γ ı 1 ( ı 1 ) κ ( ı 1 ) ! z ı ( μ 0 ) .
Also, we define  P κ ( γ ; z ) : A A  by the convolution as
P κ ( γ ; z ) = F κ ( γ ; z ) f ( z ) = z e γ ı = 2 γ ı 1 ( ı 1 ) κ ( ı 1 ) ! a ı z ı .
and  R κ ( γ ; z ) : A A  by the integral convolution as
R κ ( γ ; z ) = F κ ( γ ; z ) f ( z ) = z e γ ı = 2 γ ı 1 ( ı 1 ) κ ( ı 1 ) ! a ı ı z ı .
Also, we define  Q κ ( μ , γ ; z ) : A A  by the convolution as
Q κ ( μ , γ ; z ) = Φ κ ( μ , γ ; z ) f ( z ) = z e γ ı = 2 [ 1 + μ ( ı 1 ) ] γ ı 1 ( ı 1 ) κ ( ı 1 ) ! a ı z ı ( μ 0 )
and  G κ ( μ , γ ; z ) : A A  by the integral convolution as
G κ ( μ , γ ; z ) = Φ κ ( μ , γ ; z ) f ( z ) = z e γ ı = 2 [ 1 + μ ( ı 1 ) ] γ ı 1 ( ı 1 ) κ ( ı 1 ) ! a ı ı z ı ( μ 0 ) .
Definition 7.
The  κ t h  moment of the Poisson distribution about the origin is
χ κ = e γ ı = 0 γ ı ı κ ı ! .
In our study, we will use the following lemmas.
Lemma 1
([8] with  n = 1 ). A function  f TB b ( ρ , σ )  is of the form (2) if and only if
ı = 2 [ ρ ( ı 1 ) + 1 ] [ ı + σ | b | 1 ] | a ı | σ | b | ( b C ; 0 ρ 1 ; 0 < σ 1 ) .
Lemma 2
([8] [with  n = 1 ). ] A function  f TK b ( ρ , σ )  is of the form (2) if and only if
ı = 2 ı [ ρ ( ı 1 ) + 1 ] | a ı | σ | b | ( b C ; 0 ρ 1 ; 0 < σ 1 ) .
Lemma 3
([17]). If  f R η ( D , E )  is of the form (1), then
| a ı | ( D E ) | η | ı ( ı 2 ; η C ; 1 E < D 1 ) .
The important area of study is the use of special functions in geometric function theory. It is applied in fields including physics, engineering, and mathematics. Several types of special functions, including generalized hypergeometric Gaussian functions [25] and references, are cited therein. In fact, after the appearance of Porwal [26], several researchers familiarized themselves with the the Poisson distribution series [27,28], Mittag-Leffler-type Poisson distribution series [29], Pascal distribution series [30], generalized distribution series [31,32], and binomial distribution series [33], and provide applications for certain classes of univalent functions. In 1939, Jacques Touchard [20] studied the Touchard polynomials. Volterra integral equations, both linear and nonlinear, have been solved using the Touchard polynomial approach. In 2022, Porwal and Murugusundaramoorthy [23] investigated some conditions for Touchard polynomials to be in the subclasses of analytic functions.
The aim of this work is to discuss some conditions for Touchard polynomials to be in the classes  TB b ( ρ , σ )  and  TK b ( ρ , σ ) . Also, we obtain some connection between  R η ( D , E )  and  TK b ( ρ , σ )  and investigate several mapping properties involving these subclasses. Further, we discuss the geometric properties of an integral operator related to the Touchard polynomial. In addition, briefly mentioned are specific instances of our primary results and several particular examples are presented.

2. Main Results

Unless mentioned, let  0 ρ 1 ,   0 < σ 1 , b C , η C , 1 E < D 1 , γ > 0 , κ 0 z D  and  χ j = e γ ı = 1 γ ı ı j ı ! , j = κ , κ + 1 , κ + 2 , κ + 3 .
Theorem 1.
The function  Φ κ ( μ , γ ; z ) TB b ( ρ , σ )  if and only if
μ ρ χ κ + 3 + [ μ + ρ ( 1 + μ σ | b | ) ] χ κ + 2 + [ 1 + σ | b | ( ρ + μ ) ] χ κ + 1 + σ | b | χ κ σ | b | ( κ 1 ) , e γ μ ρ γ 3 + [ μ + ρ + μ ρ ( 3 + σ | b | ) ] γ 2 + [ 1 + ( μ + ρ μ + ρ ) ( 1 + σ | b | ) ] γ σ | b | ( κ = 0 ) .
Proof. 
To prove that  Φ κ ( μ , γ ; z ) B b ( ρ , σ ) , from Lemma 1 and (6), we have to prove that
ı = 2 [ ρ ( ı 1 ) + 1 ] [ ı + σ | b | 1 ] [ 1 + μ ( ı 1 ) ] γ ı 1 ( ı 1 ) κ ( ı 1 ) ! e γ = e γ ı = 2 μ ρ ( ı 1 ) 3 + [ μ + ρ ( 1 + μ σ | b | ) ] ( ı 1 ) 2 + [ 1 + σ | b | ( ρ + μ ) ] ( ı 1 ) + σ | b | γ ı 1 ( ı 1 ) κ ( ı 1 ) ! = e γ μ ρ ı = 2 γ ı 1 ( ı 1 ) κ + 3 ( ı 1 ) ! + [ μ + ρ ( 1 + μ σ | b | ) ] ı = 2 γ ı 1 ( ı 1 ) κ + 2 ( ı 1 ) ! + [ 1 + σ | b | ( ρ + μ ) ] ı = 2 γ ı 1 ( ı 1 ) κ + 1 ( ı 1 ) ! + σ | b | ı = 2 γ ı 1 ( ı 1 ) κ ( ı 1 ) ! = e γ μ ρ ı = 1 γ ı ı κ + 3 ı ! + [ μ + ρ ( 1 + μ σ | b | ) ] ı = 1 γ ı ı κ + 2 ı ! + [ 1 + σ | b | ( ρ + μ ) ] ı = 1 γ ı ı κ + 1 ı ! + σ | b | ı = 1 γ ı ı κ ı !
= μ ρ χ κ + 3 + [ μ + ρ ( 1 + μ σ | b | ) ] χ κ + 2 + [ 1 + σ | b | ( ρ + μ ) ] χ κ + 1 + σ | b | χ κ σ | b | ( κ 1 ) , e γ μ ρ γ 3 + [ μ + ρ + μ ρ ( 3 + σ | b | ) ] γ 2 + [ 1 + ( μ + ρ μ + ρ ) ( 1 + σ | b | ) ] γ σ | b | ( κ = 0 ) .
Corollary 1.
Let  μ = 0  in Theorem 1, then  TF κ ( γ ; z ) TB b ( ρ , σ )  if and only if
ρ χ κ + 2 + [ 1 + ρ σ | b | ] χ κ + 1 + σ | b | χ κ σ | b | ( κ 1 ) , e γ ρ γ 2 + [ 1 + ρ ( 1 + σ | b | ) ] γ σ | b | ( κ = 0 ) .
Remark 1.
Putting  b = 1 α ( 0 α < 1 )  and  σ = 1  in Corollary 1, we improve the result due to Porwal and Murugusundaramoorthy [23] [Theorem 2.2]
Corollary 2.
Let  ρ = 0  in Theorem 1, then  Φ κ ( μ , γ ; z ) TS b ( σ )  if and only if
μ χ κ + 2 + [ 1 + μ σ | b | ] χ κ + 1 + σ | b | χ κ σ | b | ( κ 1 ) , e γ μ γ 2 + [ 1 + μ ( 1 + σ | b | ) ] γ σ | b | ( κ = 0 ) .
Corollary 3.
Let  ρ = 0  and  μ = 0  in Theorem 1, then  TF κ ( γ ; z ) TS b ( σ )  if and only if
χ κ + 1 + σ | b | χ κ σ | b | ( κ 1 ) , e γ γ σ | b | ( κ = 0 ) .
Example 1.
(1) Let  b = 1 α ( 0 α < 1 )  and  σ = 1  in Corollary 3, then  TF κ ( γ ; z ) S ( α )  if and only if
χ κ + 1 + ( 1 α ) χ κ 1 α ( κ 1 ) , e γ γ 1 α ( κ = 0 ) .
(2) Let  b = 1  and  σ = 1  in Corollary 3, then  TF κ ( γ ; z ) S  if
χ κ + 1 + χ κ 1 ( κ 1 ) , e γ γ 1 ( κ = 0 ) .
Corollary 4.
Let  ρ = 1  in Theorem 1, then  Φ κ ( μ , γ ; z ) TC b ( σ )  if and only if
μ χ κ + 3 + [ 1 + μ ( 1 + σ | b | ) ] χ κ + 2 + [ 1 + σ | b | ( 1 + μ ) ] χ κ + 1 + σ | b | χ κ σ | b | ( κ 1 ) , e γ μ γ 3 + [ μ + 1 + μ ( 3 + σ | b | ) ] γ 2 + [ 1 + ( 2 μ + 1 ) ( 1 + σ | b | ) ] γ σ | b | ( κ = 0 ) .
Corollary 5.
Let  ρ = 1  and  μ = 0  in Theorem 1, then  TF κ ( γ ; z ) TC b ( σ )  if and only if
χ κ + 2 + [ 1 + σ | b | ] χ κ + 1 + σ | b | χ κ σ | b | ( κ 1 ) , e γ γ 2 + [ 2 + σ | b | ] γ σ | b | ( κ = 0 ) .
Example 2.
(1) Let  b = 1 α ( 0 α < 1 )  and  σ = 1  in Corollary 5, then  TF κ ( γ ; z ) C ( α )  if and only if
χ κ + 2 + [ 2 α ] χ κ + 1 + ( 1 α ) χ κ 1 α ( κ 1 ) , e γ γ 2 + [ 3 α ] γ 1 α ( κ = 0 ) .
(2) Let  b = 1  and  σ = 1  in Corollary 5, then  TF κ ( γ ; z ) C  if
χ κ + 2 + 2 χ κ + 1 + χ κ 1 ( κ 1 ) , e γ γ 2 + 3 γ 1 ( κ = 0 ) .
Theorem 2.
The function  Φ κ ( μ , γ ; z ) TK b ( ρ , σ )  if and only if
μ ρ χ κ + 3 + [ μ + ρ ( 1 + μ ) ] χ κ + 2 + [ 1 + ρ + μ ] χ κ + 1 + χ κ σ | b | ( κ 1 ) , μ ρ γ 3 + [ 4 μ ρ + μ + ρ ] γ 2 + [ 1 + 2 ( μ + ρ ( μ + 1 ) ) ] γ + ( 1 e γ ) σ | b | ( κ = 0 ) .
Proof. 
To prove that  Φ κ ( μ , γ ; z ) TK b ( ρ , σ ) , from Lemma 2 and (6), we have to prove that
ı = 2 ı [ ρ ( ı 1 ) + 1 ] [ 1 + μ ( ı 1 ) ] γ ı 1 ( ı 1 ) κ ( ı 1 ) ! e γ = e γ ı = 2 μ ρ ( ı 1 ) 3 + [ μ + ρ ( 1 + μ ) ] ( ı 1 ) 2 + [ 1 + ρ + μ ] ( ı 1 ) + 1 γ ı 1 ( ı 1 ) κ ( ı 1 ) ! = e γ μ ρ ı = 2 γ ı 1 ( ı 1 ) κ + 3 ( ı 1 ) ! + [ μ + ρ ( 1 + μ ) ] ı = 2 γ ı 1 ( ı 1 ) κ + 2 ( ı 1 ) ! + [ 1 + ρ + μ ] ı = 2 γ ı 1 ( ı 1 ) κ + 1 ( ı 1 ) ! + ı = 2 γ ı 1 ( ı 1 ) κ ( ı 1 ) ! = e γ μ ρ ı = 1 γ ı ı κ + 3 ı ! + [ μ + ρ ( 1 + μ ) ] ı = 1 γ ı ı κ + 2 ı ! + [ 1 + ρ + μ ] ı = 1 γ ı ı κ + 1 ı ! + ı = 1 γ ı ı κ ı ! = μ ρ χ κ + 3 + [ μ + ρ ( 1 + μ ) ] χ κ + 2 + [ 1 + ρ + μ ] χ κ + 1 + χ κ σ | b | ( κ 1 ) , μ ρ γ 3 + [ 4 μ ρ + μ + ρ ] γ 2 + [ 1 + 2 ( μ + ρ ( μ + 1 ) ) ] γ + ( 1 e γ ) σ | b | ( κ = 0 ) .
Corollary 6.
Let  μ = 0  in Theorem 2, then  TF κ ( γ ; z ) TK b ( ρ , σ )  if and only if
ρ χ κ + 2 + [ 1 + ρ ] χ κ + 1 + χ κ σ | b | ( κ 1 ) , ρ γ 2 + [ 1 + 2 ρ ] γ + ( 1 e γ ) σ | b | ( κ = 0 ) .
Corollary 7.
Let  ρ = 0  in Theorem 2, then  Φ κ ( μ , γ ; z ) TK b ( σ )  if and only if
μ χ κ + 2 + [ 1 + μ ] χ κ + 1 + χ κ σ | b | ( κ 1 ) , μ γ 2 + [ 1 + 2 μ ] γ + ( 1 e γ ) σ | b | ( κ = 0 ) .
Corollary 8.
Let  ρ = 0  and  μ = 0  in Theorem 2, then  TF κ ( γ ; z ) TK b ( σ )  if and only if
χ κ + 1 + χ κ σ | b | ( κ 1 ) , γ + ( 1 e γ ) σ | b | ( κ = 0 ) .
Example 3.
(1) Let  b = 1 α  and  σ = 1 , ( 0 α < 1 )  in Corollary 8, then  TF κ ( γ ; z ) TK ( α )  if and only if
χ κ + 1 + χ κ 1 α ( κ 1 ) , γ + ( 1 e γ ) 1 α ( κ = 0 ) .
(2) Let  b = 1  and  σ = 1  in Corollary 8, then  TF κ ( γ ; z ) TK  if and only if
χ κ + 1 + χ κ 1 ( κ 1 ) , γ + ( 1 e γ ) 1 ( κ = 0 ) .
Theorem 3.
Let  f R η ( D , E ) , Q κ ( μ , γ ; z )  defined by (7) be in  TK b ( ρ , σ )  if and only if
( D E ) | η | μ ρ χ κ + 2 + [ μ + ρ ] χ κ + 1 + χ κ σ | b | ( κ 1 ) , ( D E ) | η | μ ρ γ 2 + [ μ ρ + μ + ρ ] γ + ( 1 e γ ) σ | b | ( κ = 0 ) .
Proof. 
From Lemmas 2, 3, and (7), we have to prove that
ı = 2 ı [ ρ ( ı 1 ) + 1 ] [ 1 + μ ( ı 1 ) ] ( D E ) | η | ı γ ı 1 ( ı 1 ) κ ( ı 1 ) ! e γ = ( D E ) | η | e γ ı = 2 μ ρ ( ı 1 ) 2 + [ μ + ρ ] ( ı 1 ) + 1 γ ı 1 ( ı 1 ) κ ( ı 1 ) ! = ( D E ) | η | e γ μ ρ ı = 2 γ ı 1 ( ı 1 ) κ + 2 ( ı 1 ) ! + [ μ + ρ ] ı = 2 γ ı 1 ( ı 1 ) κ + 1 ( ı 1 ) ! + ı = 2 γ ı 1 ( ı 1 ) κ ( ı 1 ) ! = ( D E ) | η | e γ μ ρ ı = 1 γ ı ı κ + 2 ı ! + [ μ + ρ ] ı = 1 γ ı ı κ + 1 ı ! + ı = 1 γ ı ı κ ı ! = ( D E ) | η | μ ρ χ κ + 2 + [ μ + ρ ] χ κ + 1 + χ κ σ | b | ( κ 1 ) , ( D E ) | η | μ ρ γ 2 + [ μ ρ + μ + ρ ] γ + ( 1 e γ ) σ | b | ( κ = 0 ) .
Corollary 9.
Let  μ = 0  in Theorem 3 and  f R η ( D , E ) , then  P κ ( γ ; z )  is in  TK b ( ρ , σ )  if and only if
( D E ) | η | ρ χ κ + 1 + χ κ σ | b | ( κ 1 ) , ( D E ) | η | ρ γ + ( 1 e γ ) σ | b | ( κ = 0 ) .
Corollary 10.
Let  ρ = 0  in Theorem 3 and  f R η ( D , E ) , then  Q κ ( μ , γ ; z )  be in  TK b ( σ )  if and only if
( D E ) | η | μ χ κ + 1 + χ κ σ | b | ( κ 1 ) , ( D E ) | η | μ γ + ( 1 e γ ) σ | b | ( κ = 0 ) .
Corollary 11.
Let  ρ = 0  and  μ = 0  in Theorem 3 and  f R η ( D , E ) , then  P κ ( γ ; z )  is in  TK b ( σ )  if and only if
( D E ) | η | χ κ σ | b | ( κ 1 ) , ( D E ) | η | 1 e γ σ | b | ( κ = 0 ) .
Theorem 4.
The function  Q κ ( μ , γ ; z )  maps  f ( z ) S  to  TB b ( ρ , σ )  if and only if
μ ρ χ κ + 4 + [ ρ μ ( 1 + σ | b | ) + μ + ρ ] χ κ + 3 + [ 1 + σ | b | ( ρ μ + ρ + μ ) + ρ + μ ] χ κ + 2 + [ 1 + σ | b | ( ρ + μ + 1 ) ] χ κ + 1 + σ | b | χ κ σ | b | ( κ 1 ) , e γ [ μ ρ γ 4 + [ ρ μ ( 7 + σ | b | ) + μ + ρ ] γ 3 + [ ρ μ ( 10 + 4 σ | b | ) + ( ρ + μ ) ( 4 + σ | b | ) + 1 ] γ 2 + [ 2 ρ μ ( 1 + σ | b | ) + 2 ( μ + ρ ) ( 1 + σ | b | ) + 2 + σ | b | ] γ ] σ | b | ( κ = 0 ) .
Proof. 
From Lemma 1 and (7), we have to prove that
ı = 2 [ ρ ( ı 1 ) + 1 ] [ ı + σ | b | 1 ] [ 1 + μ ( ı 1 ) ] γ ı 1 ( ı 1 ) κ ( ı 1 ) ! | a ı | e γ σ | b |
Since  f ( z ) S , then  | a ı | ı .  So
ı = 2 [ ρ ( ı 1 ) + 1 ] [ ı + σ | b | 1 ] [ 1 + μ ( ı 1 ) ] γ ı 1 ( ı 1 ) κ ( ı 1 ) ! | a ı | e γ
ı = 2 ı [ ρ ( ı 1 ) + 1 ] [ ı + σ | b | 1 ] [ 1 + μ ( ı 1 ) ] γ ı 1 ( ı 1 ) κ ( ı 1 ) ! e γ e γ ı = 2 μ ρ ( ı 1 ) 4 + [ ρ μ ( 1 + σ | b | ) + μ + ρ ] ( ı 1 ) 3 + [ 1 + σ | b | ( ρ μ + ρ + μ ) + ρ + μ ] ( ı 1 ) 2 + [ 1 + σ | b | ( ρ + μ + 1 ) ] ( ı 1 ) + σ | b | γ ı 1 ( ı 1 ) κ ( ı 1 ) ! e γ μ ρ ı = 2 ( ı 1 ) 4 γ ı 1 ( ı 1 ) κ ( ı 1 ) ! + [ ρ μ ( 1 + σ | b | ) + μ + ρ ] ı = 2 ( ı 1 ) 3 γ ı 1 ( ı 1 ) κ ( ı 1 ) ! + [ 1 + σ | b | ( ρ μ + ρ + μ ) + ρ + μ ] ı = 2 ( ı 1 ) 2 γ ı 1 ( ı 1 ) κ ( ı 1 ) ! + [ 1 + σ | b | ( ρ + μ + 1 ) ] ı = 2 ( ı 1 ) γ ı 1 ( ı 1 ) κ ( ı 1 ) ! + σ | b | ı = 2 γ ı 1 ( ı 1 ) κ ( ı 1 ) !
e γ μ ρ ı = 2 γ ı 1 ( ı 1 ) κ + 4 ( ı 1 ) ! + [ ρ μ ( 1 + σ | b | ) + μ + ρ ] ı = 2 γ ı 1 ( ı 1 ) κ + 3 ( ı 1 ) ! + [ 1 + σ | b | ( ρ μ + ρ + μ ) + ρ + μ ] ı = 2 γ ı 1 ( ı 1 ) κ + 2 ( ı 1 ) ! + [ 1 + σ | b | ( ρ + μ + 1 ) ] ı = 2 γ ı 1 ( ı 1 ) κ + 1 ( ı 1 ) ! + σ | b | ı = 2 γ ı 1 ( ı 1 ) κ ( ı 1 ) ! e γ μ ρ ı = 1 γ ı ı κ + 4 ı ! + [ ρ μ ( 1 + σ | b | ) + μ + ρ ] ı = 1 γ ı ı κ + 3 ı ! + [ 1 + σ | b | ( ρ μ + ρ + μ ) + ρ + μ ] ı = 1 γ ı ı κ + 2 ı ! + [ 1 + σ | b | ( ρ + μ + 1 ) ] ı = 1 γ ı ı κ + 1 ı ! + σ | b | ı = 1 γ ı ı κ ı !
μ ρ χ κ + 4 + [ ρ μ ( 1 + σ | b | ) + μ + ρ ] χ κ + 3 + [ 1 + σ | b | ( ρ μ + ρ + μ ) + ρ + μ ] χ κ + 2 + [ 1 + σ | b | ( ρ + μ + 1 ) ] χ κ + 1 + σ | b | χ κ σ | b | ( κ 1 ) , e γ [ μ ρ γ 4 + [ ρ μ ( 7 + σ | b | ) + μ + ρ ] γ 3 + [ ρ μ ( 10 + 4 σ | b | ) + ( ρ + μ ) ( 4 + σ | b | ) + 1 ] γ 2 + [ 2 ρ μ ( 1 + σ | b | ) + 2 ( μ + ρ ) ( 1 + σ | b | ) + 2 + σ | b | ] γ ] σ | b | ( κ = 0 ) .
Corollary 12.
Let  μ = 0  in Theorem 4, then  P κ ( γ ; z )  maps  f ( z ) S  to  TB b ( ρ , σ )  if and only if
ρ χ κ + 3 + [ 1 + ρ ( 1 + σ | b | ) ] χ κ + 2 + [ 1 + σ | b | ( ρ + 1 ) ] χ κ + 1 + σ | b | χ κ σ | b | ( κ 1 ) , e γ ρ γ 3 + [ ρ ( 4 + σ | b | ) + 1 ] γ 2 + [ 2 ρ ( 1 + σ | b | ) + 2 + σ | b | ] γ σ | b | ( κ = 0 ) .
Corollary 13.
Let  ρ = 0  in Theorem 4, then  Q κ ( μ , γ ; z )  maps  f ( z ) S  to  TS b ( σ )  if and only if
μ χ κ + 3 + [ 1 + μ σ | b | + μ ] χ κ + 2 + [ 1 + σ | b | ( μ + 1 ) ] χ κ + 1 + σ | b | χ κ σ | b | ( κ 1 ) , e γ μ γ 3 + [ μ ( 4 + σ | b | ) + 1 ] γ 2 + [ 2 μ ( 1 + σ | b | ) + 2 + σ | b | ] γ σ | b | ( κ = 0 ) .
Corollary 14.
Let  ρ = 0  and  μ = 0  in Theorem 4, then  P κ ( γ ; z )  maps  f ( z ) S  to  TS b ( σ )  if and only if
χ κ + 2 + [ 1 + σ | b | ] χ κ + 1 + σ | b | χ κ σ | b | ( κ 1 ) , e γ [ γ 2 + [ 2 + σ | b | ] γ ] σ | b | ( κ = 0 ) .
Corollary 15.
Let  ρ = 1  in Theorem 4, then  Q κ ( μ , γ ; z )  maps  f ( z ) S  to  TC b ( σ )  if and only if
μ χ κ + 4 + [ μ ( 2 + σ | b | ) + 1 ] χ κ + 3 + [ 2 + σ | b | ( 2 μ + 1 ) + μ ] χ κ + 2 + [ 1 + σ | b | ( 2 + μ ) ] χ κ + 1 + σ | b | χ κ σ | b | ( κ 1 ) , e γ [ μ γ 4 + [ μ ( 8 + σ | b | ) + 1 ] γ 3 + [ μ ( 10 + 4 σ | b | ) + ( 1 + μ ) ( 4 + σ | b | ) + 1 ] γ 2 + [ 2 μ ( 1 + σ | b | ) + 2 ( 1 + μ ) ( 1 + σ | b | ) + 2 + σ | b | ] γ ] σ | b | ( κ = 0 ) .
Corollary 16.
Let  ρ = 1  and  μ = 0  in Theorem 4, then  P κ ( γ ; z )  maps  f ( z ) S  to  TC b ( σ )  if and only if
χ κ + 3 + [ 2 + σ | b | ] χ κ + 2 + [ 1 + 2 σ | b | ] χ κ + 1 + σ | b | χ κ σ | b | ( κ 1 ) , e γ [ γ 3 + [ 5 + σ | b | ] γ 2 + [ 4 + 3 σ | b | ] γ ] σ | b | ( κ = 0 ) .
Theorem 5.
The function  Q κ ( μ , γ ; z )  maps  f ( z ) S  to  TK b ( ρ , σ )  if and only if
μ ρ χ κ + 4 + [ μ + ρ ( 1 + 2 μ ) ] χ κ + 3 + [ 1 + 2 ( ρ + μ ) + ρ μ ] χ κ + 2 + [ ρ + μ + 2 ] χ κ + 1 + χ κ σ | b | ( κ 1 ) , μ ρ γ 4 + [ μ + ρ ( 1 + 8 μ ) ] γ 3 + [ 1 + 5 ( ρ + μ ) + 14 ρ μ ] γ 2 + [ 4 ( μ ρ + ρ + μ ) + 3 ] γ + ( 1 e γ ) σ | b | ( κ = 0 ) .
Proof. 
From Lemma 2 and (7), we have to prove that
ı = 2 ı [ ρ ( ı 1 ) + 1 ] [ 1 + μ ( ı 1 ) ] γ ı 1 ( ı 1 ) κ ( ı 1 ) ! | a ı | e γ σ | b |
Since  f ( z ) S , then  | a ı | ı . So
ı = 2 ı [ ρ ( ı 1 ) + 1 ] [ 1 + μ ( ı 1 ) ] γ ı 1 ( ı 1 ) κ ( ı 1 ) ! | a ı | e γ ı = 2 ı 2 [ ρ ( ı 1 ) + 1 ] [ 1 + μ ( ı 1 ) ] γ ı 1 ( ı 1 ) κ ( ı 1 ) ! e γ e γ ı = 2 μ ρ ( ı 1 ) 4 + [ μ + ρ ( 1 + 2 μ ) ] ( ı 1 ) 3 + [ 1 + 2 ( ρ + μ ) + ρ μ ] ( ı 1 ) 2 + [ ρ + μ + 2 ] ( ı 1 ) + 1 γ ı 1 ( ı 1 ) κ ( ı 1 ) !
e γ μ ρ ı = 2 ( ı 1 ) 4 γ ı 1 ( ı 1 ) κ ( ı 1 ) ! + [ μ + ρ ( 1 + 2 μ ) ] ı = 2 ( ı 1 ) 3 γ ı 1 ( ı 1 ) κ ( ı 1 ) ! + [ 1 + 2 ( ρ + μ ) + ρ μ ] ı = 2 ( ı 1 ) 2 γ ı 1 ( ı 1 ) κ ( ı 1 ) ! + [ ρ + μ + 2 ] ı = 2 ( ı 1 ) γ ı 1 ( ı 1 ) κ ( ı 1 ) ! + ı = 2 γ ı 1 ( ı 1 ) κ ( ı 1 ) ! e γ μ ρ ı = 2 γ ı 1 ( ı 1 ) κ + 4 ( ı 1 ) ! + [ μ + ρ ( 1 + 2 μ ) ] ı = 2 γ ı 1 ( ı 1 ) κ + 3 ( ı 1 ) ! + [ 1 + 2 ( ρ + μ ) + ρ μ ] ı = 2 γ ı 1 ( ı 1 ) κ + 2 ( ı 1 ) ! + [ ρ + μ + 2 ] ı = 2 γ ı 1 ( ı 1 ) κ + 1 ( ı 1 ) ! + ı = 2 γ ı 1 ( ı 1 ) κ ( ı 1 ) ! e γ μ ρ ı = 1 γ ı ı κ + 4 ı ! + [ μ + ρ ( 1 + 2 μ ) ] ı = 1 γ ı ı κ + 3 ı ! + [ 1 + 2 ( ρ + μ ) + ρ μ ] ı = 1 γ ı ı κ + 2 ı ! + [ ρ + μ + 2 ] ı = 1 γ ı ı κ + 1 ı ! + ı = 1 γ ı ı κ ı !
μ ρ χ κ + 4 + [ μ + ρ ( 1 + 2 μ ) ] χ κ + 3 + [ 1 + 2 ( ρ + μ ) + ρ μ ] χ κ + 2 + [ ρ + μ + 2 ] χ κ + 1 + χ κ σ | b | ( κ 1 ) , μ ρ γ 4 + [ μ + ρ ( 1 + 8 μ ) ] γ 3 + [ 1 + 5 ( ρ + μ ) + 14 ρ μ ] γ 2 + [ 4 ( μ ρ + ρ + μ ) + 3 ] γ + ( 1 e γ ) σ | b | ( κ = 0 ) .
Corollary 17.
Let  μ = 0  in Theorem 5, then  P κ ( γ ; z )  maps  f ( z ) S  to  TK b ( ρ , σ )  if and only if
ρ χ κ + 3 + [ 1 + 2 ρ ] χ κ + 2 + [ ρ + 2 ] χ κ + 1 + χ κ σ | b | ( κ 1 ) , ρ γ 3 + [ 1 + 5 ρ ] γ 2 + [ 4 ρ + 3 ] γ + ( 1 e γ ) σ | b | ( κ = 0 ) .
Corollary 18.
Let  ρ = 0  in Theorem 5, then  Q κ ( μ , γ ; z )  maps  f ( z ) S  to  TK b ( σ )  if and only if
μ χ κ + 3 + ( 1 + 2 μ ) χ κ + 2 + [ μ + 2 ] χ κ + 1 + χ κ σ | b | ( κ 1 ) , μ γ 3 + [ 1 + 5 μ ] γ 2 + [ 4 μ + 3 ] γ + ( 1 e γ ) σ | b | ( κ = 0 ) .
Corollary 19.
Let  ρ = 0  and  μ = 0  in Theorem 5, then  P κ ( γ ; z )  maps  f ( z ) S  to  TK b ( σ )  if and only if
χ κ + 2 + 2 χ κ + 1 + χ κ σ | b | ( κ 1 ) , γ 2 + 3 γ + ( 1 e γ ) σ | b | ( κ = 0 ) .
Theorem 6.
The inequality (11) satisfies if and only if
(i) the function  Q κ ( μ , γ ; z )  maps  f ( z ) C  to  T K b ( ρ , σ ) ;
(ii) the function  G κ ( μ , γ ; z )  maps  f ( z ) S  to  T K b ( ρ , σ ) .
Proof. 
(i) From Lemma 2 and (7), we have to prove that
ı = 2 ı [ ρ ( ı 1 ) + 1 ] [ 1 + μ ( ı 1 ) ] γ ı 1 ( ı 1 ) κ ( ı 1 ) ! | a ı | e γ σ | b | .
Since  f ( z ) C , then  | a ı | 1 . The proof of Theorem 6 is similar to Theorem 2, so we omit it.
(ii) The proof is similar to Theorem 2, using  | a ı | ı  and (8), so we omit it. □
Corollary 20.
Let  μ = 0  in Theorem 6, then
(i) the function  P κ ( γ ; z )  maps  f ( z ) C  to  T K b ( ρ , σ ) ;
(ii) the function  R κ ( γ ; z )  maps  f ( z ) S  to  T K b ( ρ , σ ) ,
if the inequality (12) holds.
Corollary 21.
Let  ρ = 0  in Theorem 6, then
(i) the function  Q κ ( μ , γ ; z )  maps  f ( z ) C  to  T K b ( σ ) ;
(ii) the function  G κ ( μ , γ ; z )  maps  f ( z ) S  to  T K b ( σ ) .
if the inequality (13) holds.
Corollary 22.
Let  ρ = 0  and  μ = 0  in Theorem 6, then
(i) the function  P κ ( γ ; z )  maps  f ( z ) C  to  T K b ( σ ) ;
(ii) the function  R κ ( γ ; z )  maps  f ( z ) S  to  T K b ( σ ) .
if the inequality (14) holds.
Theorem 7.
The function  G κ ( μ , γ ; z )  maps  f ( z ) C  to  TK b ( ρ , σ )  if and only if
μ ρ χ κ + 2 + [ μ + ρ ] χ κ + 1 + χ κ σ | b | ( κ 1 ) , μ ρ γ 2 + [ ρ μ + μ + ρ ] γ + ( 1 e γ ) σ | b | ( κ = 0 ) .
Proof. 
From Lemma 2 and (8), we have to prove that
ı = 2 ı [ ρ ( ı 1 ) + 1 ] [ 1 + μ ( ı 1 ) ] γ ı 1 ( ı 1 ) κ ( ı 1 ) ! | a ı | ı σ | b | . e γ
Since  f ( z ) C , then  | a ı | 1 . So
ı = 2 [ ρ ( ı 1 ) + 1 ] [ 1 + μ ( ı 1 ) ] γ ı 1 ( ı 1 ) κ ( ı 1 ) ! e γ e γ ı = 2 μ ρ ( ı 1 ) 2 + [ μ + ρ ] ( ı 1 ) + 1 γ ı 1 ( ı 1 ) κ ( ı 1 ) ! e γ μ ρ ı = 2 ( ı 1 ) 2 γ ı 1 ( ı 1 ) κ ( ı 1 ) ! + [ μ + ρ ] ı = 2 ( ı 1 ) γ ı 1 ( ı 1 ) κ ( ı 1 ) ! + ı = 2 γ ı 1 ( ı 1 ) κ ( ı 1 ) ! e γ μ ρ ı = 2 γ ı 1 ( ı 1 ) κ + 2 ( ı 1 ) ! + [ μ + ρ ] ı = 2 γ ı 1 ( ı 1 ) κ + 1 ( ı 1 ) ! + ı = 2 γ ı 1 ( ı 1 ) κ ( ı 1 ) ! e γ μ ρ ı = 1 γ ı ı κ + 2 ı ! + [ μ + ρ ] ı = 1 γ ı ı κ + 1 ı ! + ı = 1 γ ı ı κ ı !
μ ρ χ κ + 2 + [ μ + ρ ] χ κ + 1 + χ κ σ | b | ( κ 1 ) , μ ρ γ 2 + [ μ ρ + μ + ρ ] γ + ( 1 e γ ) σ | b | ( κ = 0 ) .
Corollary 23.
Let  μ = 0  in Theorem 7, then  R κ ( γ ; z )  maps  f ( z ) C  to  TK b ( ρ , σ )  if and only if
ρ χ κ + 1 + χ κ σ | b | ( κ 1 ) , ρ γ + ( 1 e γ ) σ | b | ( κ = 0 ) .
Corollary 24.
Let  ρ = 0  in Theorem 7, then  G κ ( μ , γ ; z )  maps  f ( z ) C  to  TK b ( σ )  if and only if
μ χ κ + 1 + χ κ σ | b | ( κ 1 ) , μ γ + ( 1 e γ ) σ | b | ( κ = 0 ) .
Corollary 25.
Let  ρ = 0  and  μ = 0  in Theorem 7, then  R κ ( γ ; z )  maps  f ( z ) C  to  TK b ( σ )  if and only if
χ κ σ | b | ( κ 1 ) , ( 1 e γ ) σ | b | ( κ = 0 ) .
Theorem 8.
The function  L κ ( γ ; z ) = 0 z 2 T κ ( γ , s ) s d s  is in  TK b ( ρ , σ )  if and only if (18) holds.
Proof. 
It is easy to see that
L κ ( γ ; z ) = z ı = 2 γ ı 1 ( ı 1 ) κ ı ! e γ z ı .
Using Lemma 2, we only need to show that
ı = 2 ı [ ρ ( ı 1 ) + 1 ] γ ı 1 ( ı 1 ) κ ı ! e γ σ | b | .
The proof is similar to Theorem 7, so we omit it. □

3. Conclusions

Several applications of analytic functions have been studied by several authors. In our study, we apply some applications to investigate some conditions of a power series associated with Touchard polynomials belonging to classes of analytic functions of complex order b, such as  TB b ( ρ , σ )  and  TK b ( ρ , σ ) . Next, we obtain some inclusion relations between the classes  R η ( D , E )  and  TK b ( ρ , σ ) . Also, we investigate several mapping properties involving these subclasses. Further, we discuss the geometric properties of an integral operator related to the Touchard polynomial. Additionally, briefly mentioned are specific instances of our primary results. Also, several particular examples are presented. In the future, we can study Touchard polynomials with several subclasses of analytic functions.

Author Contributions

Conceptualization, E.E.A., W.Y.K., R.M.E.-A., A.M.A., F.E.M. and R.A.T.; methodology, E.E.A., W.Y.K., R.M.E.-A., A.M.A., F.E.M. and R.A.T.; validation, E.E.A., W.Y.K., R.M.E.-A., A.M.A., F.E.M., and R.A.T.; investigation, E.E.A., W.Y.K., R.M.E.-A., A.M.A., F.E.M. and R.A.T.; resources, E.E.A., W.Y.K., R.M.E.-A., A.M.A., F.E.M. and R.A.T.; writing—original draft preparation, E.E.A., W.Y.K., R.M.E.-A., A.M.A., F.E.M. and R.A.T.; writing—review and editing, E.E.A., W.Y.K., R.M.E.-A., A.M.A., F.E.M. and R.A.T.; supervision, E.E.A., W.Y.K., R.M.E.-A., A.M.A., F.E.M. and R.A.T.; project administration, E.E.A. and A.M.A. All authors have read and agreed to the published version of the manuscript.

Funding

This research has been funded by Scientific Research Deanship at University of Ha’il—Saudi Arabia through project number RG-23 033.

Data Availability Statement

Data are contained within the article.

Acknowledgments

This research has been funded by Scientific Research Deanship at University of Ha’il—Saudi Arabia through project number RG-23 033.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Duren, P.L. Univalent Functions; Springer: New York, NY, USA, 1983. [Google Scholar]
  2. Nasr, M.A.; Aouf, A.K. Bounded starlike functions of complex order. Proc. Indian Acad. Sci. (Math. Sci.) 1983, 92, 97–102. [Google Scholar] [CrossRef]
  3. Nasr, M.A.; Aouf, A.K. Starlike function of complex order. J. Natar Sci. Math. 1985, 25, 1–12. [Google Scholar]
  4. Nasr, M.A.; Aouf, A.K. On convex functions of complex order. Bull. Fac. Sci. Mansoura Univ. 1982, 9, 565–582. [Google Scholar]
  5. Wiatrowski, P. The sufficient of a certain family holomorphic functions. Zeszyty Naukowe Uniwesytetu Lodzkiego, Seria: Nauki Matematyzno-Przyrodnicze. J. Appl. Math. Phys. 1971, 39, 75–85. [Google Scholar]
  6. L-Hawary, T.A.; Amourah, A.; Aouf, M.K.; Frasin, B.A. Certain subclasses of analytic functions with complex order associated with generalized bessel functions, Bull. Transilvania Univer. Bras. Ser. III Math. Comput. Sci. 2023, 3, 27–40. [Google Scholar]
  7. Halim, A. On a class of functions of complex order. Tamkang J. Math. 1999, 30, 147–153. [Google Scholar] [CrossRef]
  8. Altintas, O.; Özkan, O.; Srivastava, H.M. Neighborhoods of a class of analytic functions with negative coefficients. Appl. Math. Lett. 2000, 13, 63–67. [Google Scholar] [CrossRef]
  9. Altintas, O. On a subclass of certain starlike functions with negative coefficients. Math. Soc. Jpn. 1991, 36, 489–495. [Google Scholar]
  10. Amer, A.A.; Darus, M. Some properties of the class of univalent functions with negative coefficients. Appl. Math. 2012, 3, 1851–1856. [Google Scholar] [CrossRef]
  11. Spaček, L. Prispevek k teorii funkei prostych. Casöpis. Pest. Mat. 1933, 62, 12–19. [Google Scholar]
  12. Robertson, M.S. On the theory of univalent functions. Ann. Math. 1936, 37, 374–408. [Google Scholar] [CrossRef]
  13. Libera, R.J. Univalent α-spiral functions. Can. J. Math. 1967, 19, 449–456. [Google Scholar] [CrossRef]
  14. Robertson, M.S. Univalent functions f(z) for which zf(z) is spirallike. Mich. Math. J. 1969, 16, 97–101. [Google Scholar] [CrossRef]
  15. Ding, S.S.; Ling, Y.; Bao, G.J. Some properties of a class of analytic functions. J. Math. Anal. Appl. 1995, 195, 71–81. [Google Scholar] [CrossRef]
  16. MacGregor, T.H. Functions whose derivative have a positive real part. Trans. Am. Math. Soc. 1962, 104, 532–537. [Google Scholar] [CrossRef]
  17. Dixit, K.K.; Pal, S.K. On a class of univalent functions related to complex order. Indian J. Pure Appl. Math. 1995, 26, 889–896. [Google Scholar]
  18. Padmanabhan, K.S. On a certain class of functions whose derivatives have a positive real part in the unit disc. Ann. Polon. Math. 1970, 23, 73–81. [Google Scholar] [CrossRef]
  19. Ponnusamy, S.; Rønning, F. Starlikeness properties for convolutions involving hypergeometric series. Ann. Univ. Mariae Curie-Sklodowska Sect. A 1998, 52, 141–155. [Google Scholar]
  20. Touchard, J. Sur les cycles des substitutions. Acta Math. 1939, 70, 243–297. [Google Scholar] [CrossRef]
  21. Al-Shaqsi, K. On inclusion results of certain subclasses of analytic functions associated with generating function. Aip Conf. Proc. 2017, 1830, 070030. [Google Scholar] [CrossRef]
  22. Boyadzhiev, K.N. Exponential polynomials, Stirling numbers, and evaluation of some gamma integrals. Abstr. Appl. Anal. 2009, 2009, 168672. [Google Scholar] [CrossRef]
  23. Porwal, S.; Murugusundaramoorthy, G. Unified classes of starlike and convex functions associated with Touchard polynomials. Sci. Tech. Asia 2022, 27, 207–214. [Google Scholar]
  24. Murugusundaramoorthy, G.; Porwal, S. Univalent functions with positive coefficients involving Touchard polynomials. Al-Qadisiyah J. Pure Sci. 2020, 25, 1–8. [Google Scholar] [CrossRef]
  25. Lin, S.D.; Srivastava, H.M.; Yao, J.C. Some classes of generating relations associated with a family of the generalized Gauss type hypergeometric functions. Appl. Math. Inform. Sci. 2015, 9, 1731–1738. [Google Scholar]
  26. Porwal, S. An application of a Poisson distribution series on certain analytic functions. J. Complex Anal. 2014, 2014, 984135. [Google Scholar] [CrossRef]
  27. El-Ashwah, R.M.; Kota, W.Y. Some condition on a poisson distribution series to be in subclasses of univalent functions. Acta Univ. Apulensis 2017, 51, 89–103. [Google Scholar]
  28. El-Ashwah, R.M.; Kota, W.Y. Some application of a Poisson distribution series on subclasses of univalent functions. J. Fract. Calc. Appl. 2018, 9, 167–179. [Google Scholar]
  29. Porwal, S.; Bajpai, D. An application of Mittag-Leffler type Poisson distribution series on starlike and convex functions. Asian Pac. J. Math. 2020, 7, e08109. [Google Scholar]
  30. Bulboaca, T.; Murugusundaramoorthy, G. Univalent functions with positive coefficients involving Pascal distribution series. Commun. Korean Math. Soc. 2020, 35, 867–877. [Google Scholar]
  31. Kota, W.Y.; El-Ashwah, R.M. Sufficient and necessary conditions for the generalized distribution series to be in subclasses of univalent functions. Ukr. Math. J. 2023, 75, 1366–1376. [Google Scholar]
  32. Porwal, S. Generalized distribution and its geometric properties associated with univalent functions. J. Complex Anal. 2018, 2018, 8654506. [Google Scholar] [CrossRef]
  33. Nazeer, W.; Mehmood, Q.; Kang, S.M.; Haq, A.U. An application of Binomial distribution series on certain analytic functions. J. Comput. Anal. Appl. 2019, 26, 11–17. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Ali, E.E.; Kota, W.Y.; El-Ashwah, R.M.; Albalahi, A.M.; Mansour, F.E.; Tahira, R.A. An Application of Touchard Polynomials on Subclasses of Analytic Functions. Symmetry 2023, 15, 2125. https://doi.org/10.3390/sym15122125

AMA Style

Ali EE, Kota WY, El-Ashwah RM, Albalahi AM, Mansour FE, Tahira RA. An Application of Touchard Polynomials on Subclasses of Analytic Functions. Symmetry. 2023; 15(12):2125. https://doi.org/10.3390/sym15122125

Chicago/Turabian Style

Ali, Ekram E., Waffa Y. Kota, Rabha M. El-Ashwah, Abeer M. Albalahi, Fatma E. Mansour, and R. A. Tahira. 2023. "An Application of Touchard Polynomials on Subclasses of Analytic Functions" Symmetry 15, no. 12: 2125. https://doi.org/10.3390/sym15122125

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop