An Application of Touchard Polynomials on Subclasses of Analytic Functions
Abstract
:1. Introduction
2. Main Results
3. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Duren, P.L. Univalent Functions; Springer: New York, NY, USA, 1983. [Google Scholar]
- Nasr, M.A.; Aouf, A.K. Bounded starlike functions of complex order. Proc. Indian Acad. Sci. (Math. Sci.) 1983, 92, 97–102. [Google Scholar] [CrossRef]
- Nasr, M.A.; Aouf, A.K. Starlike function of complex order. J. Natar Sci. Math. 1985, 25, 1–12. [Google Scholar]
- Nasr, M.A.; Aouf, A.K. On convex functions of complex order. Bull. Fac. Sci. Mansoura Univ. 1982, 9, 565–582. [Google Scholar]
- Wiatrowski, P. The sufficient of a certain family holomorphic functions. Zeszyty Naukowe Uniwesytetu Lodzkiego, Seria: Nauki Matematyzno-Przyrodnicze. J. Appl. Math. Phys. 1971, 39, 75–85. [Google Scholar]
- L-Hawary, T.A.; Amourah, A.; Aouf, M.K.; Frasin, B.A. Certain subclasses of analytic functions with complex order associated with generalized bessel functions, Bull. Transilvania Univer. Bras. Ser. III Math. Comput. Sci. 2023, 3, 27–40. [Google Scholar]
- Halim, A. On a class of functions of complex order. Tamkang J. Math. 1999, 30, 147–153. [Google Scholar] [CrossRef]
- Altintas, O.; Özkan, O.; Srivastava, H.M. Neighborhoods of a class of analytic functions with negative coefficients. Appl. Math. Lett. 2000, 13, 63–67. [Google Scholar] [CrossRef]
- Altintas, O. On a subclass of certain starlike functions with negative coefficients. Math. Soc. Jpn. 1991, 36, 489–495. [Google Scholar]
- Amer, A.A.; Darus, M. Some properties of the class of univalent functions with negative coefficients. Appl. Math. 2012, 3, 1851–1856. [Google Scholar] [CrossRef]
- Spaček, L. Prispevek k teorii funkei prostych. Casöpis. Pest. Mat. 1933, 62, 12–19. [Google Scholar]
- Robertson, M.S. On the theory of univalent functions. Ann. Math. 1936, 37, 374–408. [Google Scholar] [CrossRef]
- Libera, R.J. Univalent α-spiral functions. Can. J. Math. 1967, 19, 449–456. [Google Scholar] [CrossRef]
- Robertson, M.S. Univalent functions f(z) for which zf′(z) is spirallike. Mich. Math. J. 1969, 16, 97–101. [Google Scholar] [CrossRef]
- Ding, S.S.; Ling, Y.; Bao, G.J. Some properties of a class of analytic functions. J. Math. Anal. Appl. 1995, 195, 71–81. [Google Scholar] [CrossRef]
- MacGregor, T.H. Functions whose derivative have a positive real part. Trans. Am. Math. Soc. 1962, 104, 532–537. [Google Scholar] [CrossRef]
- Dixit, K.K.; Pal, S.K. On a class of univalent functions related to complex order. Indian J. Pure Appl. Math. 1995, 26, 889–896. [Google Scholar]
- Padmanabhan, K.S. On a certain class of functions whose derivatives have a positive real part in the unit disc. Ann. Polon. Math. 1970, 23, 73–81. [Google Scholar] [CrossRef]
- Ponnusamy, S.; Rønning, F. Starlikeness properties for convolutions involving hypergeometric series. Ann. Univ. Mariae Curie-Sklodowska Sect. A 1998, 52, 141–155. [Google Scholar]
- Touchard, J. Sur les cycles des substitutions. Acta Math. 1939, 70, 243–297. [Google Scholar] [CrossRef]
- Al-Shaqsi, K. On inclusion results of certain subclasses of analytic functions associated with generating function. Aip Conf. Proc. 2017, 1830, 070030. [Google Scholar] [CrossRef]
- Boyadzhiev, K.N. Exponential polynomials, Stirling numbers, and evaluation of some gamma integrals. Abstr. Appl. Anal. 2009, 2009, 168672. [Google Scholar] [CrossRef]
- Porwal, S.; Murugusundaramoorthy, G. Unified classes of starlike and convex functions associated with Touchard polynomials. Sci. Tech. Asia 2022, 27, 207–214. [Google Scholar]
- Murugusundaramoorthy, G.; Porwal, S. Univalent functions with positive coefficients involving Touchard polynomials. Al-Qadisiyah J. Pure Sci. 2020, 25, 1–8. [Google Scholar] [CrossRef]
- Lin, S.D.; Srivastava, H.M.; Yao, J.C. Some classes of generating relations associated with a family of the generalized Gauss type hypergeometric functions. Appl. Math. Inform. Sci. 2015, 9, 1731–1738. [Google Scholar]
- Porwal, S. An application of a Poisson distribution series on certain analytic functions. J. Complex Anal. 2014, 2014, 984135. [Google Scholar] [CrossRef]
- El-Ashwah, R.M.; Kota, W.Y. Some condition on a poisson distribution series to be in subclasses of univalent functions. Acta Univ. Apulensis 2017, 51, 89–103. [Google Scholar]
- El-Ashwah, R.M.; Kota, W.Y. Some application of a Poisson distribution series on subclasses of univalent functions. J. Fract. Calc. Appl. 2018, 9, 167–179. [Google Scholar]
- Porwal, S.; Bajpai, D. An application of Mittag-Leffler type Poisson distribution series on starlike and convex functions. Asian Pac. J. Math. 2020, 7, e08109. [Google Scholar]
- Bulboaca, T.; Murugusundaramoorthy, G. Univalent functions with positive coefficients involving Pascal distribution series. Commun. Korean Math. Soc. 2020, 35, 867–877. [Google Scholar]
- Kota, W.Y.; El-Ashwah, R.M. Sufficient and necessary conditions for the generalized distribution series to be in subclasses of univalent functions. Ukr. Math. J. 2023, 75, 1366–1376. [Google Scholar]
- Porwal, S. Generalized distribution and its geometric properties associated with univalent functions. J. Complex Anal. 2018, 2018, 8654506. [Google Scholar] [CrossRef]
- Nazeer, W.; Mehmood, Q.; Kang, S.M.; Haq, A.U. An application of Binomial distribution series on certain analytic functions. J. Comput. Anal. Appl. 2019, 26, 11–17. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ali, E.E.; Kota, W.Y.; El-Ashwah, R.M.; Albalahi, A.M.; Mansour, F.E.; Tahira, R.A. An Application of Touchard Polynomials on Subclasses of Analytic Functions. Symmetry 2023, 15, 2125. https://doi.org/10.3390/sym15122125
Ali EE, Kota WY, El-Ashwah RM, Albalahi AM, Mansour FE, Tahira RA. An Application of Touchard Polynomials on Subclasses of Analytic Functions. Symmetry. 2023; 15(12):2125. https://doi.org/10.3390/sym15122125
Chicago/Turabian StyleAli, Ekram E., Waffa Y. Kota, Rabha M. El-Ashwah, Abeer M. Albalahi, Fatma E. Mansour, and R. A. Tahira. 2023. "An Application of Touchard Polynomials on Subclasses of Analytic Functions" Symmetry 15, no. 12: 2125. https://doi.org/10.3390/sym15122125
APA StyleAli, E. E., Kota, W. Y., El-Ashwah, R. M., Albalahi, A. M., Mansour, F. E., & Tahira, R. A. (2023). An Application of Touchard Polynomials on Subclasses of Analytic Functions. Symmetry, 15(12), 2125. https://doi.org/10.3390/sym15122125