Next Article in Journal
Geometric Classification of Warped Products Isometrically Immersed into Conformal Sasakian Space Froms
Next Article in Special Issue
q1q2-Ostrowski-Type Integral Inequalities Involving Property of Generalized Higher-Order Strongly n-Polynomial Preinvexity
Previous Article in Journal
Coupled Fixed Points for Hardy–Rogers Type of Maps and Their Applications in the Investigations of Market Equilibrium in Duopoly Markets for Non-Differentiable, Nonlinear Response Functions
Previous Article in Special Issue
New Simpson’s Type Estimates for Two Newly Defined Quantum Integrals
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Multi-Parameter Quantum Integral Identity Involving Raina’s Function and Corresponding q-Integral Inequalities with Applications

1
Escuela de Ciencias Físicas y Mátematicas, Facultad de Ciencias Exactas y Naturales, Pontificia Universidad Católica del Ecuador, Av. 12 de Octubre 1076, Apartado, Quito 17-01-2184, Ecuador
2
Department of Mathematics, Government College University, Faisalabad 38000, Pakistan
3
Department of Mathematics, Faculty of Technical Science, University “Ismail Qemali”, 9400 Vlora, Albania
4
Department of Mathematics, COMSATS University Islamabad, Islamabad 45550, Pakistan
*
Author to whom correspondence should be addressed.
Symmetry 2022, 14(3), 606; https://doi.org/10.3390/sym14030606
Submission received: 29 January 2022 / Revised: 16 February 2022 / Accepted: 19 February 2022 / Published: 18 March 2022
(This article belongs to the Special Issue Symmetry in Quantum Calculus)

Abstract

:
Convexity performs its due role in the theoretical field of inequalities according to the nature and conduct of the properties it displays. A correlation connectivity, which is visible between the two variables symmetry and convexity, enhances its importance. In this paper, we derive a new multi-parameter quantum integral identity involving Raina’s function. Applying this generic identity as an auxiliary result, we establish some new generalized quantum estimates of certain integral inequalities pertaining to the class of R s -convex functions. Moreover, we give quantum integral inequalities for the product of R s 1 - and R s 2 -convex functions as well as another quantum result for a function that satisfies a special condition. In order to demonstrate the efficiency of our main results, we offer many important special cases for suitable choices of parameters and finally for R s -convex functions that are absolute-value bounded.
JEL Classification:
05A30; 26A33; 26A51; 34A08; 26D07; 26D10; 26D15

1. Introduction and Preliminaries

In recent years, the classical concept of convexity has been extended and generalized in different directions using novel and innovative ideas. Cortez et al. [1] presented a new generalization of convexity classes as follows:
Definition 1
([1]). Let ρ , λ > 0 and σ = ( σ ( 0 ) , , σ ( k ) , ) be a bounded sequence of positive real numbers. A non-empty set I is said to be generalized convex if
υ 1 + τ R ρ , λ , σ ( υ 2 υ 1 ) I , υ 1 , υ 2 I , τ [ 0 , 1 ] .
Here, R ρ , λ , σ ( · ) is Raina’s function, which is defined as follows:
R ρ , λ , σ ( z ) = R ρ , λ σ ( 0 ) , σ ( 1 ) , ( z ) = k = 0 σ ( k ) Γ ( ρ k + λ ) z k ,
where | z | < R and Γ ( · ) is the well-known Gamma function. For more details, see [2].
Definition 2
([1]). Let ρ , λ > 0 and σ = ( σ ( 0 ) , , σ ( k ) , ) be a bounded sequence of positive real numbers. A function Ψ : I R is said to be generalized convex if
Ψ ( υ 1 + τ R ρ , λ , σ ( υ 2 υ 1 ) ) ( 1 τ ) Ψ ( υ 1 ) + τ Ψ ( υ 2 ) , υ 1 , υ 2 I , τ [ 0 , 1 ] .
In addition to its many applications, another fascinating aspect of convexity is its close relation with theories of inequalities. We can obtain several classical and new inequalities using convexity and its generalization (see, e.g., [3,4,5] and references therein). The most studied results pertaining to the convexity properties of functions are Hermite–Hadamard’s inequality, Ostrowski’s inequality and Simpson’s inequality. For more details, see [6].
Cortez et al. [1] derived a new version of Hermite–Hadamard’s inequality using the class of generalized convex functions. This result reads as follows:
Theorem 1.
Let Ψ : [ c 1 , c 1 + R ρ , λ , σ ( c 2 c 1 ) ] R be a generalized convex function. Then,
Ψ 2 c 1 + R ρ , λ , σ ( c 2 c 1 ) 2 1 R ρ , λ , σ ( c 2 c 1 ) c 1 c 1 + R ρ , λ , σ ( c 2 c 1 ) Ψ ( x ) d x Ψ ( c 1 ) + Ψ ( c 2 ) 2 .
Note that if we take R ρ , λ , σ ( c 2 c 1 ) = c 2 c 1 , then we can recapture the classical Hermite–Hadamard inequality from the above inequality for convex functions, which reads as follows:
Theorem 2.
Let Ψ : [ c 1 , c 2 ] R be a convex function. Then,
Ψ c 1 + c 2 2 1 c 2 c 1 c 1 c 2 Ψ ( x ) d x Ψ ( c 1 ) + Ψ ( c 2 ) 2 .
We now recall the following two basic concepts regarding quantum calculus that are helpful to us in obtaining the main results of the paper.
Definition 3
([7,8]). Let Ψ : [ c 1 , c 2 ] R be an arbitrary function. Then, the q-derivative of Ψ on [ c 1 , c 2 ] at τ is defined as
c 1 D q Ψ τ = Ψ τ Ψ q τ + 1 q c 1 1 q τ c 1 , τ c 1 and D q Ψ c 1 = lim τ c 1 c 1 D q Ψ τ ,
where 0 < q < 1 is a constant.
Definition 4
([7,8]). Let Ψ : [ c 1 , c 2 ] R be an arbitrary function. Then, the q-integral of Ψ on [ c 1 , c 2 ] is defined as
c 1 x Ψ ( τ ) c 1 d q τ = ( 1 q ) ( x c 1 ) n = 0 q n Ψ ( q n x + ( 1 q n ) c 1 ) ,
for all x [ c 1 , c 2 ] , where 0 < q < 1 is a constant.
Recently, Tariboon and Ntouyas [7,8] utilized the concepts of quantum calculus in obtaining the quantum analogues of inequalities involving convexity. These ideas and techniques of Tariboon and his coauthor attracted many researchers, particulary those working in the field of inequalities involving convexity and its generalizations. Since then, numerous new quantum analogues of classical inequalities have been obtained in the literature. For example, Noor et al. [9] and Sudsutad et al. [10] obtained q-analogues of Hermite–Hadamard’s inequality using the class of convex functions. Noor et al. [11] obtained q-Hermite–Hadamard inequalities using the class of pre-invex functions. Alp et al. [12] gave a refined q-analogue of Hermite–Hadamard’s inequality. Zhang et al. [13] obtained a generalized quantum integral identity and obtained several new q-analogues of certain integral inequalities. Very recently, Du et al. [14] obtained another fascinating q-integral identity and obtained various q-analogues of certain integral inequalities. For more information about quantum calculus and its applications, see [15,16,17,18,19,20,21,22,23,24,25,26].
Before we move towards our main results, we first define the class of R s -convex functions.
Definition 5.
Let ρ , λ > 0 and σ = ( σ ( 0 ) , , σ ( k ) , ) be a bounded sequence of positive real numbers. A function Ψ : I R is said to be R s -convex if
Ψ ( υ 1 + τ R ρ , λ , σ ( υ 2 υ 1 ) ) ( 1 τ ) s Ψ ( υ 1 ) + τ s Ψ ( υ 2 ) , υ 1 , υ 2 I , τ [ 0 , 1 ] , s ( 0 , 1 ] .
Note that we can recapture Definition 2 by taking s = 1 in Definition 5 above.
Inspired by the above results and literature, in Section 2, we derive a new multi-parameter quantum integral identity. Using this generic identity as an auxiliary result, we obtain some new generalized quantum estimates of certain integral inequalities pertaining to the class of R s -convex functions. In Section 3, we give quantum integral inequalities for the product of R s 1 - and R s 2 -convex functions as well as another quantum result for a function that satisfies a special condition. As for applications, in Section 4, we discuss several important special cases of the established results for suitable choices of parameters and also for R s -convex functions that are absolute-value bounded. In Section 5, some conclusions and future research are given.

2. Main Results

In this section, we first present the following multi-parameter quantum integral identity, which will be a main tool to derive our main results. For brevity, we denote B : = [ c 1 , c 1 + R ρ , λ , σ ( c 2 c 1 ) ] , where B is the interior set and δ , ε R .
Lemma 1.
Let Ψ : B R be a q-differentiable function on B with R ρ , λ , σ ( c 2 c 1 ) > 0 . If c 1 D q Ψ is integrable on B and 0 < q < 1 , then
M ( Ψ ; R ) : = ε Ψ ( c 1 ) + ( δ ε ) Ψ 2 c 1 + R ρ , λ , σ ( c 2 c 1 ) 2 + ( 1 δ ) Ψ ( c 1 + R ρ , λ , σ ( c 2 c 1 ) ) 1 R ρ , λ , σ ( c 2 c 1 ) c 1 c 1 + R ρ , λ , σ ( c 2 c 1 ) Ψ ( x ) c 1 d q x = R ρ , λ , σ ( c 2 c 1 ) 0 1 2 ( q τ ε ) c 1 D q Ψ ( c 1 + τ R ρ , λ , σ ( c 2 c 1 ) ) 0 d q τ + 1 2 1 ( q τ δ ) c 1 D q Ψ ( c 1 + τ R ρ , λ , σ ( c 2 c 1 ) ) 0 d q τ .
Proof. 
Let
S 1 : = 0 1 2 q τ ε c 1 D q Ψ ( c 1 + τ R ρ , λ , σ ( c 2 c 1 ) ) 0 d q τ , S 2 : = 1 2 1 q τ δ c 1 D q Ψ ( c 1 + τ R ρ , λ , σ ( c 2 c 1 ) ) 0 d q τ .
A direct computation gives
S 1 = 0 1 2 q Ψ ( c 1 + τ R ρ , λ , σ ( c 2 c 1 ) ) Ψ ( c 1 + q τ R ρ , λ , σ ( c 2 c 1 ) ) ( 1 q ) R ρ , λ , σ ( c 2 c 1 ) 0 d q τ ε 0 1 2 Ψ ( c 1 + τ R ρ , λ , σ ( c 2 c 1 ) ) Ψ ( c 1 + q τ R ρ , λ , σ ( c 2 c 1 ) ) τ ( 1 q ) R ρ , λ , σ ( c 2 c 1 ) 0 d q τ = 1 2 n = 0 q n + 1 Ψ c 1 + 1 2 q n R ρ , λ , σ ( c 2 c 1 ) Ψ c 1 + 1 2 q n + 1 R ρ , λ , σ ( c 2 c 1 ) R ρ , λ , σ ( c 2 c 1 ) ε n = 0 Ψ c 1 + 1 2 q n R ρ , λ , σ ( c 2 c 1 ) Ψ c 1 + 1 2 q n + 1 R ρ , λ , σ ( c 2 c 1 ) R ρ , λ , σ ( c 2 c 1 ) = q n = 0 q n Ψ c 1 + 1 2 q n R ρ , λ , σ ( c 2 c 1 ) n = 1 q n Ψ c 1 + 1 2 q n R ρ , λ , σ ( c 2 c 1 ) 2 R ρ , λ , σ ( c 2 c 1 ) ε n = 0 Ψ c 1 + 1 2 q n R ρ , λ , σ ( c 2 c 1 ) n = 1 Ψ c 1 + 1 2 q n R ρ , λ , σ ( c 2 c 1 ) R ρ , λ , σ ( c 2 c 1 ) = 1 2 Ψ 2 c 1 + R ρ , λ , σ ( c 2 c 1 ) 2 R ρ , λ , σ ( c 2 c 1 ) ( 1 q ) n = 0 q n Ψ c 1 + 1 2 q n R ρ , λ , σ ( c 2 c 1 ) R ρ , λ , σ ( c 2 c 1 ) ε · Ψ 2 c 1 + R ρ , λ , σ ( c 2 c 1 ) 2 Ψ ( c 1 ) R ρ , λ , σ ( c 2 c 1 ) = 1 2 ε Ψ 2 c 1 + R ρ , λ , σ ( c 2 c 1 ) 2 R ρ , λ , σ ( c 2 c 1 ) + ε R ρ , λ , σ ( c 2 c 1 ) Ψ ( c 1 ) 1 2 ( 1 q ) n = 0 q n Ψ c 1 + 1 2 q n R ρ , λ , σ ( c 2 c 1 ) R ρ , λ , σ ( c 2 c 1 ) = 1 2 ε Ψ 2 c 1 + R ρ , λ , σ ( c 2 c 1 ) 2 R ρ , λ , σ ( c 2 c 1 ) + ε R ρ , λ , σ ( c 2 c 1 ) Ψ ( c 1 ) 1 R ρ , λ , σ 2 ( c 2 c 1 ) c 1 c 1 + 1 2 R ρ , λ , σ ( c 2 c 1 ) Ψ ( x ) 0 d q x .
On the other hand, one has
S 2 = 1 2 1 q τ c 1 D q Ψ ( c 1 + τ R ρ , λ , σ ( c 2 c 1 ) ) 0 d q τ δ 1 2 1 c 1 D q Ψ ( c 1 + τ R ρ , λ , σ ( c 2 c 1 ) ) 0 d q τ = 0 1 q τ c 1 D q Ψ ( c 1 + τ R ρ , λ , σ ( c 2 c 1 ) ) 0 d q τ δ 0 1 c 1 D q Ψ ( c 1 + τ R ρ , λ , σ ( c 2 c 1 ) ) 0 d q τ 0 1 2 q τ c 1 D q Ψ ( c 1 + τ R ρ , λ , σ ( c 2 c 1 ) ) 0 d q τ δ 0 1 2 c 1 D q Ψ ( c 1 + τ R ρ , λ , σ ( c 2 c 1 ) ) 0 d q τ .
Since
0 1 q τ c 1 D q Ψ ( c 1 + τ R ρ , λ , σ ( c 2 c 1 ) ) 0 d q τ δ 0 1 c 1 D q Ψ ( c 1 + τ R ρ , λ , σ ( c 2 c 1 ) ) 0 d q τ = 0 1 q Ψ ( c 1 + τ R ρ , λ , σ ( c 2 c 1 ) ) Ψ ( c 1 + q τ R ρ , λ , σ ( c 2 c 1 ) ) ( 1 q ) R ρ , λ , σ ( c 2 c 1 ) 0 d q τ δ 0 1 Ψ ( c 1 + τ R ρ , λ , σ ( c 2 c 1 ) ) Ψ ( c 1 + q τ R ρ , λ , σ ( c 2 c 1 ) ) τ ( 1 q ) R ρ , λ , σ ( c 2 c 1 ) 0 d q τ = n = 0 q n + 1 Ψ c 1 + q n R ρ , λ , σ ( c 2 c 1 ) Ψ c 1 + q n + 1 R ρ , λ , σ ( c 2 c 1 ) R ρ , λ , σ ( c 2 c 1 ) δ n = 0 Ψ c 1 + q n R ρ , λ , σ ( c 2 c 1 ) Ψ c 1 + q n + 1 R ρ , λ , σ ( c 2 c 1 ) R ρ , λ , σ ( c 2 c 1 ) = q n = 0 q n Ψ c 1 + q n R ρ , λ , σ ( c 2 c 1 ) n = 1 q n Ψ c 1 + q n R ρ , λ , σ ( c 2 c 1 ) R ρ , λ , σ ( c 2 c 1 ) δ n = 0 Ψ c 1 + q n R ρ , λ , σ ( c 2 c 1 ) n = 0 Ψ c 1 + q n R ρ , λ , σ ( c 2 c 1 ) R ρ , λ , σ ( c 2 c 1 ) = Ψ c 1 + R ρ , λ , σ ( c 2 c 1 ) R ρ , λ , σ ( c 2 c 1 ) n = 0 ( 1 q ) q n Ψ c 1 + q n R ρ , λ , σ ( c 2 c 1 ) R ρ , λ , σ ( c 2 c 1 ) δ · Ψ c 1 + R ρ , λ , σ ( c 2 c 1 ) Ψ ( c 1 ) R ρ , λ , σ ( c 2 c 1 ) = ( 1 δ ) R ρ , λ , σ ( c 2 c 1 ) · Ψ c 1 + R ρ , λ , σ ( c 2 c 1 ) + δ R ρ , λ , σ ( c 2 c 1 ) Ψ ( c 1 ) n = 0 ( 1 q ) q n Ψ c 1 + q n R ρ , λ , σ ( c 2 c 1 ) R ρ , λ , σ ( c 2 c 1 ) = ( 1 δ ) R ρ , λ , σ ( c 2 c 1 ) Ψ c 1 + R ρ , λ , σ ( c 2 c 1 ) + δ R ρ , λ , σ ( c 2 c 1 ) Ψ ( c 1 ) 1 R ρ , λ , σ 2 ( c 2 c 1 ) c 1 c 1 + R ρ , λ , σ ( c 2 c 1 ) Ψ ( x ) 0 d q x ,
and
0 1 2 q τ c 1 D q Ψ ( c 1 + τ R ρ , λ , σ ( c 2 c 1 ) ) 0 d q τ δ 0 1 2 c 1 D q Ψ ( c 1 + τ R ρ , λ , σ ( c 2 c 1 ) ) 0 d q τ = 1 2 Ψ 2 c 1 + R ρ , λ , σ ( c 2 c 1 ) 2 R ρ , λ , σ ( c 2 c 1 ) ( 1 q ) n = 0 q n Ψ c 1 + q n R ρ , λ , σ ( c 2 c 1 ) R ρ , λ , σ ( c 2 c 1 ) δ · Ψ 2 c 1 + R ρ , λ , σ ( c 2 c 1 ) 2 Ψ ( c 1 ) R ρ , λ , σ ( c 2 c 1 ) = 1 2 δ · Ψ 2 c 1 + R ρ , λ , σ ( c 2 c 1 ) 2 R ρ , λ , σ ( c 2 c 1 ) + δ R ρ , λ , σ ( c 2 c 1 ) Ψ ( c 1 ) 1 R ρ , λ , σ 2 ( c 2 c 1 ) c 1 c 1 + 1 2 R ρ , λ , σ ( c 2 c 1 ) Ψ ( x ) 0 d q x ,
we obtain
S 2 = ( 1 δ ) R ρ , λ , σ ( c 2 c 1 ) Ψ c 1 + R ρ , λ , σ ( c 2 c 1 ) 1 2 δ · Ψ 2 c 1 + R ρ , λ , σ ( c 2 c 1 ) 2 R ρ , λ , σ ( c 2 c 1 ) 1 R ρ , λ , σ 2 ( c 2 c 1 ) c 1 c 1 + R ρ , λ , σ ( c 2 c 1 ) Ψ ( x ) 0 d q x + 1 R ρ , λ , σ 2 ( c 2 c 1 ) c 1 c 1 + 1 2 R ρ , λ , σ ( c 2 c 1 ) Ψ ( x ) 0 d q x .
This completes the proof. □
Corollary 1.
In Lemma 1, taking ε = 1 6 and δ = 5 6 , we have
Ψ ( c 1 ) 6 + 2 Ψ 2 c 1 + R ρ , λ , σ ( c 2 c 1 ) 2 3 + Ψ ( c 1 + R ρ , λ , σ ( c 2 c 1 ) ) 6 1 R ρ , λ , σ ( c 2 c 1 ) c 1 c 1 + R ρ , λ , σ ( c 2 c 1 ) Ψ ( x ) c 1 d q x = R ρ , λ , σ ( c 2 c 1 ) 0 1 2 q τ 1 6 c 1 D q Ψ ( c 1 + τ R ρ , λ , σ ( c 2 c 1 ) ) 0 d q τ + 1 2 1 q τ 5 6 c 1 D q Ψ ( c 1 + τ R ρ , λ , σ ( c 2 c 1 ) ) 0 d q τ .
Corollary 2.
In Lemma 1, choosing ε = δ = q 1 + q , we obtain
q 1 + q Ψ ( c 1 ) + 1 1 + q Ψ ( c 1 + R ρ , λ , σ ( c 2 c 1 ) ) 1 R ρ , λ , σ ( c 2 c 1 ) c 1 c 1 + R ρ , λ , σ ( c 2 c 1 ) Ψ ( x ) c 1 d q x = q R ρ , λ , σ ( c 2 c 1 ) 0 1 τ 1 1 + q c 1 D q Ψ ( c 1 + τ R ρ , λ , σ ( c 2 c 1 ) ) 0 d q τ .
Corollary 3.
In Lemma 1, taking ε = 1 4 and δ = 3 4 , we obtain
Ψ ( c 1 ) 4 + Ψ 2 c 1 + R ρ , λ , σ ( c 2 c 1 ) 2 2 + Ψ ( c 1 + R ρ , λ , σ ( c 2 c 1 ) ) 2 1 R ρ , λ , σ ( c 2 c 1 ) c 1 c 1 + R ρ , λ , σ ( c 2 c 1 ) Ψ ( x ) c 1 d q x = R ρ , λ , σ ( c 2 c 1 ) 0 1 2 q τ 1 4 c 1 D q Ψ ( c 1 + τ R ρ , λ , σ ( c 2 c 1 ) ) 0 d q τ + 1 2 1 q τ 3 4 c 1 D q Ψ ( c 1 + τ R ρ , λ , σ ( c 2 c 1 ) ) 0 d q τ .
Using Lemma 1, we can obtain our main results.
Theorem 3.
Let Ψ : B R be a q-differentiable function on B with R ρ , λ , σ ( c 2 c 1 ) > 0 . If | c 1 D q Ψ | is an integrable R s -convex function with s ( 0 , 1 ] and 0 < q < 1 , then
M ( Ψ ; R ) R ρ , λ , σ ( c 2 c 1 ) [ | c 1 D q Ψ ( c 1 ) | 2 1 s ( A 1 ( ε ; q ) + A 2 ( δ ; q ) ) ( A 3 ( s , ε ; q ) + A 4 ( s , δ ; q ) ) + | c 1 D q Ψ ( c 2 ) | ( A 3 ( s , ε ; q ) + A 4 ( s , δ ; q ) ) ] ,
where
A 1 ( ε ; q ) : = 0 1 2 | q τ ε | 0 d q τ = 8 ε 2 2 ε ( 1 + q ) + q 4 ( 1 + q ) , 0 ε q 1 2 , 2 ε ( 1 + q ) q 4 ( 1 + q ) , 1 2 < ε q ,
A 2 ( δ ; q ) : = 1 2 1 | q τ δ | 0 d q τ = 3 q 2 δ ( 1 + q ) 4 ( 1 + q ) , 0 δ q 1 2 , 8 δ 2 6 δ ( 1 + q ) + 5 q 4 ( 1 + q ) , 1 2 < δ q 1 , 2 δ ( 1 + q ) 3 q 4 ( 1 + q ) , 1 < δ q ,
A 3 ( s , ε ; q ) : = 0 1 2 τ s q τ ε 0 d q τ = 2 ε s + 2 ( 1 q ) 2 ( 1 q s + 1 ) ( 1 q s + 2 ) + ( 1 q ) ( q ε ) + ( q 1 ) ( 1 ε ) q s + 2 2 s + 2 ( 1 q s + 1 ) ( 1 q s + 2 ) , , 0 ε q 1 2 , ( 1 q ) ( q ε ) + ( q 1 ) ( 1 ε ) q s + 2 2 s + 2 ( 1 q s + 1 ) ( 1 q s + 2 ) , 1 2 < ε q ,
and
A 4 ( s , δ ; q ) : = 1 2 1 τ s q τ δ 0 d q τ = δ ( 1 q ) ( 1 2 s + 1 ) 2 s + 1 ( 1 q s + 1 ) + q ( 1 q ) ( 2 s + 2 1 ) 2 s + 2 ( 1 q s + 2 ) , 0 δ q 1 2 , δ ( 1 q ) ( 1 + 2 s + 1 ) 2 s + 1 ( 1 q s + 1 ) + q ( 1 q ) ( 1 + 2 s + 2 ) 2 s + 2 ( 1 q s + 2 ) + 2 δ s + 2 ( 1 q ) 2 ( 1 q s + 1 ) ( 1 q s + 2 ) , 1 2 < δ q 1 , δ ( 1 q ) ( 1 2 s + 1 ) 2 s + 1 ( 1 q s + 1 ) + q ( 1 q ) ( 2 s + 2 1 ) 2 s + 2 ( 1 q s + 2 ) , 1 < δ q .
Proof. 
Using Lemma 1 and R s -convexity of | c 1 D q Ψ | and applying inequality ( 1 τ ) s 2 1 s τ s , for τ ( 0 , 1 ) , we have
M ( Ψ ; R ) = R ρ , λ , σ ( c 2 c 1 ) 0 1 2 q τ ε c 1 D q Ψ ( c 1 + τ R ρ , λ , σ ( c 2 c 1 ) ) 0 d q τ + 1 2 1 q τ δ c 1 D q Ψ ( c 1 + τ R ρ , λ , σ ( c 2 c 1 ) ) 0 d q τ R ρ , λ , σ ( c 2 c 1 ) [ 0 1 2 q τ ε | c 1 D q Ψ ( c 1 + τ R ρ , λ , σ ( c 2 c 1 ) ) | 0 d q τ + 1 2 1 q τ δ | c 1 D q Ψ ( c 1 + τ R ρ , λ , σ ( c 2 c 1 ) ) | 0 d q τ ] R ρ , λ , σ ( c 2 c 1 ) [ 0 1 2 q τ ε ( 1 τ ) s | c 1 D q Ψ ( c 1 ) | + τ s | c 1 D q Ψ ( c 2 ) | 0 d q τ + 1 2 1 q τ δ ( 1 τ ) s | c 1 D q Ψ ( c 1 ) | + τ s | c 1 D q Ψ ( c 2 ) | 0 d q τ ] = R ρ , λ , σ ( c 2 c 1 ) [ | c 1 D q Ψ ( c 1 ) | 0 1 2 ( 1 τ ) s q τ ε 0 d q τ + 1 2 1 ( 1 τ ) s q τ δ 0 d q τ + | c 1 D q Ψ ( c 2 ) | 0 1 2 τ s q τ ε 0 d q τ + 1 2 1 τ s q τ δ 0 d q τ ] R ρ , λ , σ ( c 2 c 1 ) [ | c 1 D q Ψ ( c 1 ) | 0 1 2 ( 2 1 s τ s ) q τ ε 0 d q τ + 1 2 1 ( 2 1 s τ s ) q τ δ 0 d q τ + | c 1 D q Ψ ( c 2 ) | 0 1 2 τ s q τ ε 0 d q τ + 1 2 1 τ s q τ δ 0 d q τ ] = R ρ , λ , σ ( c 2 c 1 ) [ | c 1 D q Ψ ( c 1 ) | 2 1 s ( A 1 ( ε ; q ) + A 2 ( δ ; q ) ) ( A 3 ( s , ε ; q ) + A 4 ( s , δ ; q ) ) + | c 1 D q Ψ ( c 2 ) | A 3 ( s , ε ; q ) + A 4 ( s , δ ; q ) ] .
This completes the proof. □
Theorem 4.
Let Ψ : B R be a q-differentiable function on B with R ρ , λ , σ ( c 2 c 1 ) > 0 . If | c 1 D q Ψ | r is an integrable R s -convex function with s ( 0 , 1 ] and 0 < q < 1 , then for r > 1 and p 1 + r 1 = 1 , we have
M ( Ψ , R ) R ρ , λ , σ ( c 2 c 1 ) K 1 1 p ( ε , q ; p ) | c 1 D q Ψ ( c 1 ) | r ( 2 s K 2 ( s ; q ) ) + | c 1 D q Ψ ( c 2 ) | r K 2 ( s ; q ) 1 r + K 3 1 p ( δ , q ; p ) | c 1 D q Ψ ( c 1 ) | r ( 2 s K 4 ( s ; q ) ) + | c 1 D q Ψ ( c 2 ) | r K 4 ( s ; q ) 1 r ,
where
K 1 ( ε , q ; p ) : = 0 1 2 | q τ ε | p 0 d q τ = 1 q 2 n = 0 q n q n + 1 2 ε p + 2 ( 1 q ) ε p + 1 q n = 0 q n 1 q n p , 0 ε q 1 2 , 1 q 2 n = 0 q n q n + 1 2 ε p , 1 2 < ε q .
K 3 ( δ , q ; p ) : = 1 2 1 | q τ δ | p 0 d q τ = ( 1 q ) n = 0 q n q n + 1 δ p 1 q 2 n = 0 q n q n + 1 2 δ p , 0 δ q 1 2 , 2 ( 1 q ) δ p + 1 q n = 0 q n 1 q n p + ( 1 q ) n = 0 q n q n + 1 δ p + 1 q 2 n = 0 q n q n + 1 2 δ p , 1 2 < δ q 1 , ( 1 q ) n = 0 q n q n + 1 δ p + 1 q 2 n = 0 q n q n + 1 2 δ p , 1 < δ q ,
K 2 ( s ; q ) : = 0 1 2 τ s 0 d q τ = 1 q 2 s + 1 ( 1 q s + 1 ) ,
and
K 4 ( s ; q ) : = 1 2 1 τ s 0 d q τ = ( 1 q ) ( 2 s + 1 1 ) 2 s + 1 ( 1 q s + 1 ) .
Proof. 
Using Lemma 1, Hölder’s inequality and R s -convexity of | c 1 D q Ψ | r and applying inequality ( 1 τ ) s 2 1 s τ s , for τ ( 0 , 1 ) , we have
M ( Ψ ; R ) = R ρ , λ , σ ( c 2 c 1 ) 0 1 2 q τ ε c 1 D q Ψ ( c 1 + τ R ρ , λ , σ ( c 2 c 1 ) ) 0 d q τ + 1 2 1 q τ δ c 1 D q Ψ ( c 1 + τ R ρ , λ , σ ( c 2 c 1 ) ) 0 d q τ R ρ , λ , σ ( c 2 c 1 ) [ 0 1 2 q τ ε | c 1 D q Ψ ( c 1 + τ R ρ , λ , σ ( c 2 c 1 ) ) | 0 d q τ + 1 2 1 q τ δ | c 1 D q Ψ ( c 1 + τ R ρ , λ , σ ( c 2 c 1 ) ) | 0 d q τ ] R ρ , λ , σ ( c 2 c 1 ) [ 0 1 2 q τ ε p 0 d q τ 1 p 0 1 2 | c 1 D q Ψ ( c 1 + τ R ρ , λ , σ ( c 2 c 1 ) ) | r 0 d q τ 1 r + 1 2 1 q τ δ p 0 d q τ 1 p 1 2 1 | c 1 D q Ψ ( c 1 + τ R ρ , λ , σ ( c 2 c 1 ) ) | r 0 d q τ 1 r ] R ρ , λ , σ ( c 2 c 1 ) [ K 1 1 p ( ε , q ; p ) | c 1 D q Ψ ( c 1 ) | r 0 1 2 ( 1 τ ) s 0 d q τ + | c 1 D q Ψ ( c 2 ) | r 0 1 2 τ s 0 d q τ 1 r + K 3 1 p ( δ , q ; p ) | c 1 D q Ψ ( c 1 ) | r 1 2 1 ( 1 τ ) s 0 d q τ + | c 1 D q Ψ ( c 2 ) | r 1 2 1 τ s 0 d q τ 1 r ] R ρ , λ , σ ( c 2 c 1 ) [ K 1 1 p ( ε , q ; p ) | c 1 D q Ψ ( c 1 ) | r 0 1 2 ( 2 1 s τ s ) 0 d q τ + | c 1 D q Ψ ( c 2 ) | r 0 1 2 τ s 0 d q τ 1 r + K 3 1 p ( δ , q ; p ) | c 1 D q Ψ ( c 1 ) | r 1 2 1 ( 2 1 s τ s ) 0 d q τ + | c 1 D q Ψ ( c 2 ) | r 1 2 1 τ s 0 d q τ 1 r ] = R ρ , λ , σ ( c 2 c 1 ) [ K 1 1 p ( ε , q ; p ) | c 1 D q Ψ ( c 1 ) | r ( 2 s K 2 ( s ; q ) ) + | c 1 D q Ψ ( c 2 ) | r K 2 ( s ; q ) 1 r + K 3 1 p ( δ , q ; p ) | c 1 D q Ψ ( c 1 ) | r ( 2 s K 4 ( s ; q ) ) + | c 1 D q Ψ ( c 2 ) | r K 4 ( s ; q ) 1 r ] .
This completes the proof. □
Remark 1.
Using Lemma 1, many new and interesting results via Hölder–İşcan, Chebyshev, Markov, Young and Minkowski inequalities using different classes of convex functions can be established. We omit their proofs here and the details are left to the interested reader.

3. Further Results

Our next results are given below.
Theorem 5.
Let Ψ , g : B R be continuous and non-negative functions on B . If Ψ and g are respectively R s 1 - and R s 2 -convex functions on B , then for s ( 0 , 1 ] and 0 < q < 1 , we have
1 R ρ , λ , σ ( c 2 c 1 ) c 1 c 1 + R ρ , λ , σ ( c 2 c 1 ) Ψ ( x ) g ( x ) c 1 d q x Ψ ( c 1 ) g ( c 1 ) 2 1 s 1 s 2 1 q 1 q s 1 + s 2 + 1 + Ψ ( c 1 ) g ( c 2 ) 2 1 s 1 1 q 1 q s 2 + 1 1 q 1 q s 1 + s 2 + 1 + Ψ ( c 2 ) g ( c 1 ) 2 1 s 2 1 q 1 q s 1 + 1 1 q 1 q s 1 + s 2 + 1 + Ψ ( c 2 ) g ( c 2 ) 1 q 1 q s 1 + s 2 + 1 .
Proof. 
Since Ψ and g are respectively R s 1 - and R s 2 -convex functions, we have
Ψ ( c 1 + τ R ρ , λ , σ ( c 2 c 1 ) ) ( 1 τ ) s 1 Ψ ( c 1 ) + τ s 1 Ψ ( c 2 )
g ( c 1 + τ R ρ , λ , σ ( c 2 c 1 ) ) ( 1 τ ) s 2 g ( c 1 ) + τ s 2 g ( c 2 ) .
Multiplying both sides of (5) and (6), we obtain
Ψ ( c 1 + τ R ρ , λ , σ ( c 2 c 1 ) ) g ( c 1 + τ R ρ , λ , σ ( c 2 c 1 ) ) ( 1 τ ) s 1 + s 2 Ψ ( c 1 ) g ( c 1 ) + τ s 2 ( 1 τ ) s 1 Ψ ( c 1 ) g ( c 2 ) + τ s 1 ( 1 τ ) s 2 Ψ ( c 2 ) g ( c 1 ) + τ s 1 + s 2 Ψ ( c 2 ) g ( c 2 ) .
Taking the q-integral for (7) with respect to τ and using the inequality ( 1 τ ) s 2 1 s τ s , for τ ( 0 , 1 ) , we obtain
0 1 Ψ ( c 1 + τ R ρ , λ , σ ( c 2 c 1 ) ) g ( c 1 + τ R ρ , λ , σ ( c 2 c 1 ) ) 0 d q τ Ψ ( c 1 ) g ( c 1 ) 0 1 ( 1 τ ) s 1 + s 2 d p , q τ + Ψ ( c 1 ) g ( c 2 ) 0 1 τ s 2 ( 1 τ ) s 1 c 1 d q τ + Ψ ( c 2 ) g ( c 1 ) 0 1 τ s 1 ( 1 τ ) s 2 0 d q τ + Ψ ( c 2 ) g ( c 2 ) 0 1 τ s 1 + s 2 c 1 d q τ Ψ ( c 1 ) g ( c 1 ) 0 1 ( 2 1 s 1 s 2 τ s 1 + s 2 ) 0 d q τ + Ψ ( c 1 ) g ( c 2 ) 0 1 τ s 2 ( 2 1 s 1 τ s 1 ) 0 d q τ + Ψ ( c 2 ) g ( c 1 ) 0 1 τ s 1 ( 2 1 s 2 τ s 2 ) 0 d q τ + Ψ ( c 2 ) g ( c 2 ) 0 1 τ s 1 + s 2 0 d q τ = Ψ ( c 1 ) g ( c 1 ) 2 1 s 1 s 2 1 q 1 q s 1 + s 2 + 1 + Ψ ( c 1 ) g ( c 2 ) 2 1 s 1 1 q 1 q s 2 + 1 1 q 1 q s 1 + s 2 + 1 + Ψ ( c 2 ) g ( c 1 ) 2 1 s 2 1 q 1 q s 1 + 1 1 q 1 q s 1 + s 2 + 1 + Ψ ( c 2 ) g ( c 2 ) 1 q 1 q s 1 + s 2 + 1 .
In addition,
0 1 Ψ ( c 1 + τ R ρ , λ , σ ( c 2 c 1 ) ) g ( c 1 + τ R ρ , λ , σ ( c 2 c 1 ) ) 0 d q τ = 1 R ρ , λ , σ ( c 2 c 1 ) c 1 c 1 + R ρ , λ , σ ( c 2 c 1 ) Ψ ( x ) g ( x ) c 1 d q x .
This completes the proof. □
Before we present our next result, let us recall Condition 1, which was introduced by Noor and Noor [27].
Condition 1.
Assume that the function R ρ , λ , σ ( · ) satisfies the following condition:
R ρ , λ , σ ( θ R ρ , λ , σ ( v u ) ) = θ R ρ , λ , σ ( v u ) , θ R .
Theorem 6.
Let Ψ : B R be an R s -convex function. If h : B R is a non-negative and integrable function on B and symmetric about 2 c 1 + R ρ , λ , σ ( c 2 c 1 ) 2 , where R ρ , λ , σ ( · ) satisfies Condition 1, then for s ( 0 , 1 ] and 0 < q < 1 , we have
Ψ 2 c 1 + R ρ , λ , σ ( c 2 c 1 ) 2 c 1 c 1 + R ρ , λ , σ ( c 2 c 1 ) h ( x ) c 1 d q x 2 1 s c 1 c 1 + R ρ , λ , σ ( c 2 c 1 ) Ψ ( x ) h ( x ) c 1 d q x .
Proof. 
Using R s -convexity of Ψ , for every x = c 1 + 1 + τ 2 R ρ , λ , σ ( c 2 c 1 ) and y = c 1 + 1 τ 2 R ρ , λ , σ ( c 2 c 1 ) with τ = [ 1 , 1 ] , we have
Ψ x + R ( y x ) 2 2 s Ψ ( x ) + ( 1 2 1 ) s Ψ ( y ) .
Using Condition 1, we obtain
Ψ c 1 + 1 + τ 2 R ρ , λ , σ ( c 2 c 1 ) + R ρ , λ , σ ( c 1 + 1 τ 2 R ρ , λ , σ ( c 2 c 1 ) c 1 1 + τ 2 R ρ , λ , σ ( c 2 c 1 ) ) 2 = Ψ c 1 + 1 + τ 2 R ρ , λ , σ ( c 2 c 1 ) τ R ρ , λ , σ ( c 2 c 1 ) 2 = Ψ 2 c 1 + R ρ , λ , σ ( c 2 c 1 ) 2 2 s Ψ c 1 + 1 + τ 2 R ρ , λ , σ ( c 2 c 1 ) + ( 1 2 1 ) s Ψ c 1 + 1 + τ 2 R ρ , λ , σ ( c 2 c 1 ) .
Multiplying both sides of the above inequality by h c 1 + 1 + τ 2 R ρ , λ , σ ( c 2 c 1 ) and integrating with respect to τ on [ 1 , 1 ] , we obtain
Ψ 2 c 1 + R ρ , λ , σ ( c 2 c 1 ) 2 1 1 h c 1 + 1 + τ 2 R ρ , λ , σ ( c 2 c 1 ) c 1 d q τ 2 s 1 1 Ψ c 1 + 1 + τ 2 R ρ , λ , σ ( c 2 c 1 ) h c 1 + 1 + τ 2 R ρ , λ , σ ( c 2 c 1 ) c 1 d q τ + ( 2 1 s 2 s ) 1 1 Ψ c 1 + 1 + τ 2 R ρ , λ , σ ( c 2 c 1 ) h c 1 + 1 + τ 2 R ρ , λ , σ ( c 2 c 1 ) c 1 d q τ .
Since h is symmetric about 2 c 1 + R ρ , λ , σ ( c 2 c 1 ) 2 , we have
Ψ 2 c 1 + R ρ , λ , σ ( c 2 c 1 ) 2 2 R ρ , λ , σ ( c 2 c 1 ) c 1 c 1 + R ρ , λ , σ ( c 2 c 1 ) h ( x ) c 1 d q x 2 s 2 R ρ , λ , σ ( c 2 c 1 ) c 1 c 1 + R ρ , λ , σ ( c 2 c 1 ) Ψ ( x ) h ( x ) c 1 d q x + ( 2 1 s 2 s ) 2 R ρ , λ , σ ( c 2 c 1 ) c 1 c 1 + R ρ , λ , σ ( c 2 c 1 ) Ψ ( x ) h c 1 + R ρ , λ , σ ( c 2 c 1 ) x c 1 d q x = 2 s 2 R ρ , λ , σ ( c 2 c 1 ) c 1 c 1 + R ρ , λ , σ ( c 2 c 1 ) Ψ ( x ) h ( x ) c 1 d q x + ( 2 1 s 2 s ) 2 R ρ , λ , σ ( c 2 c 1 ) c 1 c 1 + R ρ , λ , σ ( c 2 c 1 ) Ψ ( x ) h ( x ) c 1 d q x = 2 2 1 s R ρ , λ , σ ( c 2 c 1 ) c 1 c 1 + R ρ , λ , σ ( c 2 c 1 ) Ψ ( x ) h ( x ) c 1 d q x .
This completes the proof. □
Corollary 4.
Taking h ( x ) 1 and letting q 1 , we have the left-hand side of Hermite–Hadamard’s inequality for R s -convex functions.
Remark 2.
Taking s = 1 in our results, we obtain quantum integral inequalities via generalized convex functions. Moreover, choosing R ρ , λ , σ ( c 2 c 1 ) = c 2 c 1 , we obtain quantum integral inequalities via s-convex functions. We omit their proofs here and the details are left to the interested reader.

4. Applications

We now discuss some important special cases as applications of our main results.
Corollary 5.
In Theorem 3, taking ε = 1 6 and δ = 5 6 , we have
Ψ ( c 1 ) 6 + 2 Ψ 2 c 1 + R ρ , λ , σ ( c 2 c 1 ) 2 3 + Ψ ( c 1 + R ρ , λ , σ ( c 2 c 1 ) ) 6 1 R ρ , λ , σ ( c 2 c 1 ) c 1 c 1 + R ρ , λ , σ ( c 2 c 1 ) Ψ ( x ) c 1 d q x R ρ , λ , σ ( c 2 c 1 ) [ | c 1 D q Ψ ( c 1 ) | 2 1 s B 1 1 6 ; q + B 2 5 6 ; q B 3 s , 1 6 ; q + B 4 s , 5 6 ; q + | c 1 D q Ψ ( c 2 ) | B 3 s , 1 6 ; q + B 4 s , 5 6 ; q ] ,
where
B 1 1 6 ; q : = 0 1 2 q τ 1 6 0 d q τ = 6 q 1 36 ( 1 + q ) , 0 1 6 q 1 2 , 1 2 q 12 ( 1 + q ) , 1 2 < 1 6 q ,
B 2 5 6 ; q : = 1 2 1 q τ 5 6 0 d q τ = 4 q 5 12 ( 1 + q ) , 0 5 6 q 1 2 , 5 36 ( 1 + q ) , 1 2 < 5 6 q 1 , 5 q 12 ( 1 + q ) , 1 < 5 6 q ,
B 3 s , 1 6 ; q : = 0 1 2 τ s q τ 1 6 0 d q τ = 2 ( 1 q ) 2 6 s + 2 ( 1 q s + 1 ) ( 1 q s + 2 ) + ( 1 q ) ( 6 q 1 ) + 5 ( q 1 ) q s + 2 6 . 2 s + 2 ( 1 q s + 1 ) ( 1 q s + 2 ) , , 0 1 6 q 1 2 , ( 1 q ) ( 6 q 1 ) + 5 ( q 1 ) q s + 2 6 . 2 s + 2 ( 1 q s + 1 ) ( 1 q s + 2 ) , 1 2 < 1 6 q ,
B 4 s , 5 6 ; q : = 1 2 1 τ s q τ 5 6 0 d q τ = 5 ( 1 q ) ( 1 2 s + 1 ) 6 . 2 s + 1 ( 1 q s + 1 ) + q ( 1 q ) ( 2 s + 2 1 ) 2 s + 2 ( 1 q s + 2 ) , 0 5 6 q 1 2 , 5 ( 1 q ) ( 1 + 2 s + 1 ) 6 . 2 s + 1 ( 1 q s + 1 ) + q ( 1 q ) ( 1 + 2 s + 2 ) 2 s + 2 ( 1 q s + 2 ) + 25 s + 2 ( 1 q ) 2 6 s + 2 ( 1 q s + 1 ) ( 1 q s + 2 ) , 1 2 < 5 6 q 1 , 5 ( 1 q ) ( 1 2 s + 1 ) 6 . 2 s + 1 ( 1 q s + 1 ) + q ( 1 q ) ( 2 s + 2 1 ) 2 s + 2 ( 1 q s + 2 ) , 1 < 5 6 q .
Corollary 6.
In Theorem 3, choosing ε = δ = q 1 + q , we obtain
q 1 + q Ψ ( c 1 ) + 1 1 + q Ψ ( c 1 + R ρ , λ , σ ( c 2 c 1 ) ) 1 R ρ , λ , σ ( c 2 c 1 ) c 1 c 1 + R ρ , λ , σ ( c 2 c 1 ) Ψ ( x ) c 1 d q x R ρ , λ , σ ( c 2 c 1 ) [ | c 1 D q Ψ ( c 1 ) | 2 1 s C 1 q + C 2 q C 3 s ; q + C 4 s ; q + | c 1 D q Ψ ( c 2 ) | C 3 s ; q + C 4 s ; q ] ,
where
C 1 ( q ) : = 0 1 2 q τ q 1 + q 0 d q τ = 8 q 2 q ( 1 + q ) 2 4 ( 1 + q ) 3 , 0 1 1 + q 1 2 , q 4 ( 1 + q ) , 1 2 < 1 1 + q ,
C 2 ( q ) : = 1 2 1 q τ q 1 + q 0 d q τ = q 4 ( 1 + q ) , 0 1 1 + q 1 2 , 5 q 3 + 12 q 2 q 4 ( 1 + q ) 3 , 1 2 < 1 1 + q 1 , q 4 ( 1 + q ) , 1 < 1 1 + q ,
C 3 ( s ; q ) : = 0 1 2 τ s q τ q 1 + q 0 d q τ = 2 q s + 2 ( 1 q ) 2 ( 1 + q ) s + 2 ( 1 q s + 1 ) ( 1 q s + 2 ) + q 2 ( 1 q ) + q ( q 1 ) q s + 2 2 s + 2 ( 1 + q ) ( 1 q s + 1 ) ( 1 q s + 2 ) , , 0 1 1 + q 1 2 , q 2 ( 1 q ) + ( q 1 ) q s + 3 2 s + 2 ( 1 + q ) ( 1 q s + 1 ) ( 1 q s + 2 ) , 1 2 < 1 1 + q .
C 4 ( s ; q ) : = 1 2 1 τ s q τ q 1 + q 0 d q τ = q ( 1 q ) ( 1 2 s + 1 ) 2 s + 1 ( 1 + q ) ( 1 q s + 1 ) + q ( 1 q ) ( 2 s + 2 1 ) 2 s + 2 ( 1 q s + 2 ) , 0 1 1 + q 1 2 , q ( 1 q ) ( 1 + 2 s + 1 ) 2 s + 1 ( 1 + q ) ( 1 q s + 1 ) + q ( 1 q ) ( 1 + 2 s + 2 ) 2 s + 2 ( 1 q s + 2 ) + 2 q s + 2 ( 1 q ) 2 ( 1 + q ) s + 2 ( 1 q s + 1 ) ( 1 q s + 2 ) , 1 2 < 1 1 + q 1 , q ( 1 q ) ( 1 2 s + 1 ) 2 s + 1 ( 1 + q ) ( 1 q s + 1 ) + q ( 1 q ) ( 2 s + 2 1 ) 2 s + 2 ( 1 q s + 2 ) , 1 < 1 1 + q .
Corollary 7.
In Theorem 3, taking ε = 1 4 and δ = 3 4 , we obtain
Ψ ( c 1 ) 4 + Ψ 2 c 1 + R ρ , λ , σ ( c 2 c 1 ) 2 2 + Ψ ( c 1 + R ρ , λ , σ ( c 2 c 1 ) ) 2 1 R ρ , λ , σ ( c 2 c 1 ) c 1 c 1 + R ρ , λ , σ ( c 2 c 1 ) Ψ ( x ) c 1 d q x R ρ , λ , σ ( c 2 c 1 ) [ | c 1 D q Ψ ( c 1 ) | ( 2 1 s L 1 1 4 ; q + L 2 3 4 ; q L 3 s , 1 4 ; q ) + L 4 s , 3 4 ; q + | c 1 D q Ψ ( c 2 ) | L 3 s , 1 4 ; q + L 4 s , 3 4 ; q ] ,
where
L 1 1 4 ; q : = 0 1 2 q τ 1 4 0 d q τ = q 8 ( 1 + q ) , 0 1 4 q 1 2 , 1 q 8 ( 1 + q ) , 1 2 < 1 4 q ,
L 2 3 4 ; q : = 1 2 1 q τ 3 4 0 d q τ = 5 q 3 8 ( 1 + q ) , 0 3 4 q 1 2 , q 8 ( 1 + q ) , 1 2 < 3 4 q 1 , 3 3 q 8 ( 1 + q ) , 1 < 3 4 q ,
L 3 s , 1 4 ; q : = 0 1 2 τ s q τ 1 4 0 d q τ = ( 1 q ) 2 2 2 s + 3 ( 1 q s + 1 ) ( 1 q s + 2 ) + ( 1 q ) + 3 ( q 1 ) q s + 2 2 s + 4 ( 1 q s + 1 ) ( 1 q s + 2 ) , , 0 1 4 q 1 2 , ( 1 q ) + 3 ( q 1 ) q s + 2 2 s + 4 ( 1 q s + 1 ) ( 1 q s + 2 ) , 1 2 < 1 4 q ,
L 4 s , 3 4 ; q : = 1 2 1 τ s q τ 3 4 0 d q τ = 3 ( 1 q ) ( 1 2 s + 1 ) 2 s + 3 ( 1 q s + 1 ) + q ( 1 q ) ( 2 s + 2 1 ) 2 s + 2 ( 1 q s + 2 ) , 0 3 4 q 1 2 , 3 ( 1 q ) ( 1 + 2 s + 1 ) 2 s + 3 ( 1 q s + 1 ) + q ( 1 q ) ( 1 + 2 s + 2 ) 2 s + 2 ( 1 q s + 2 ) + 3 s + 2 ( 1 q ) 2 2 2 s + 3 ( 1 q s + 1 ) ( 1 q s + 2 ) , 1 2 < 3 4 q 1 , 3 ( 1 q ) ( 1 2 s + 1 ) 2 s + 3 ( 1 q s + 1 ) + q ( 1 q ) ( 2 s + 2 1 ) 2 s + 2 ( 1 q s + 2 ) , 1 < 3 4 q .
Corollary 8.
In Theorem 4, choosing ε = 1 6 and δ = 5 6 , we have
Ψ ( c 1 ) 6 + 2 Ψ 2 c 1 + R ρ , λ , σ ( c 2 c 1 ) 2 3 + Ψ ( c 1 + R ρ , λ , σ ( c 2 c 1 ) ) 6 1 R ρ , λ , σ ( c 2 c 1 ) c 1 c 1 + R ρ , λ , σ ( c 2 c 1 ) Ψ ( x ) c 1 d q x R ρ , λ , σ ( c 2 c 1 ) K 1 1 p 1 6 , q ; p | c 1 D q Ψ ( c 1 ) | r ( 2 s K 2 ( s ; q ) ) + | c 1 D q Ψ ( c 2 ) | r K 2 ( s ; q ) 1 r + K 3 1 p 5 6 , q ; p | c 1 D q Ψ ( c 1 ) | r ( 2 s K 4 ( s ; q ) ) + | c 1 D q Ψ ( c 2 ) | r K 4 ( s ; q ) 1 r .
Corollary 9.
In Theorem 4, taking ε = δ = q 1 + q , we obtain
q 1 + q Ψ ( c 1 ) + 1 1 + q Ψ ( c 1 + R ρ , λ , σ ( c 2 c 1 ) ) 1 R ρ , λ , σ ( c 2 c 1 ) c 1 c 1 + R ρ , λ , σ ( c 2 c 1 ) Ψ ( x ) c 1 d q x R ρ , λ , σ ( c 2 c 1 ) K 1 1 p ( q ; p ) | c 1 D q Ψ ( c 1 ) | r ( 2 s K 2 ( s ; q ) ) + | c 1 D q Ψ ( c 2 ) | r K 2 ( s ; q ) 1 r + K 3 1 p ( q ; p ) | c 1 D q Ψ ( c 1 ) | r ( 2 s K 4 ( s ; q ) ) + | c 1 D q Ψ ( c 2 ) | r K 4 ( s ; q ) 1 r .
Corollary 10.
In Theorem 4, choosing ε = 1 4 and δ = 3 4 , we obtain
Ψ ( c 1 ) 4 + Ψ 2 c 1 + R ρ , λ , σ ( c 2 c 1 ) 2 2 + Ψ ( c 1 + R ρ , λ , σ ( c 2 c 1 ) ) 2 1 R ρ , λ , σ ( c 2 c 1 ) c 1 c 1 + R ρ , λ , σ ( c 2 c 1 ) Ψ ( x ) c 1 d q x R ρ , λ , σ ( c 2 c 1 ) K 1 1 p 1 4 , q ; p | c 1 D q Ψ ( c 1 ) | r ( 2 s K 2 ( s ; q ) ) + | c 1 D q Ψ ( c 2 ) | r K 2 ( s ; q ) 1 r + K 3 1 p 3 4 , q ; p | c 1 D q Ψ ( c 1 ) | r ( 2 s K 4 ( s ; q ) ) + | c 1 D q Ψ ( c 2 ) | r K 4 ( s ; q ) 1 r .
We now discuss applications regarding absolute-value bounded functions of the results obtained from our main results. We suppose that the following condition is satisfied:
| c 1 D q Ψ | Δ ,
and 0 < q < 1 is a constant.
Applying the above condition, we have the following results.
Corollary 11.
Under the assumptions of Theorem 3, the following inequality holds:
ε Ψ ( c 1 ) + ( δ ε ) Ψ 2 c 1 + R ρ , λ , σ ( c 2 c 1 ) 2 + ( 1 δ ) Ψ ( c 1 + R ρ , λ , σ ( c 2 c 1 ) ) 1 R ρ , λ , σ ( c 2 c 1 ) c 1 c 1 + R ρ , λ , σ ( c 2 c 1 ) Ψ ( x ) c 1 d q x 2 1 s R ρ , λ , σ ( c 2 c 1 ) Δ A 1 ( ε ; q ) + A 2 ( δ ; q ) .
Corollary 12.
Under the assumptions of Theorem 4, the following inequality holds:
ε Ψ ( c 1 ) + ( δ ε ) Ψ 2 c 1 + R ρ , λ , σ ( c 2 c 1 ) 2 + ( 1 δ ) Ψ ( c 1 + R ρ , λ , σ ( c 2 c 1 ) ) 1 R ρ , λ , σ ( c 2 c 1 ) c 1 c 1 + R ρ , λ , σ ( c 2 c 1 ) Ψ ( x ) c 1 d q x 2 s r R ρ , λ , σ ( c 2 c 1 ) Δ K 1 1 p ( ε , q ; p ) + K 3 1 p ( δ , q ; p ) .

5. Conclusions

In this paper, we derive a new multi-parameter quantum integral identity. Applying this generic identity as an auxiliary result, we establish some new generalized quantum estimates of certain integral inequalities pertaining to the class of R s -convex functions. Furthermore, we obtain quantum integral inequalities for the product of R s 1 - and R s 2 -convex functions as well as another new quantum result for a function that satisfies Condition M. We also offer some applications of the obtained results for suitable choices of parameters included in the identity found. Finally, two results for R s -convex functions that are absolute-value bounded are given. In any case, we hope that these results continue to sharpen our understanding of the nature of quantum calculus and its huge applications in different fields. For future developments, we will derive several new and interesting inequalities via the Hölder–İşcan, Chebyshev, Markov, Young and Minkowski inequalities using quantum calculus for different classes of convex functions.

Author Contributions

Investigation, M.V.-C., M.U.A., S.T., A.K. and M.A.N. All authors have read and agreed to the published version of the manuscript.

Funding

This research was funded by Dirección de Investigación from Pontificia Universidad Católica del Ecuador in the research project entitled, “Some integrals inequalities and generalized convexity” (Algunas desigualdades integrales para funciones con algún tipo de convexidad generalizada y aplicaciones).

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

No data were used to support this study.

Acknowledgments

The authors are thankful to the editor and the anonymous reviewers for their valuable comments and suggestions.

Conflicts of Interest

The authors declare that they have no competing interests.

References

  1. Cortez, M.V.J.; Liko, R.; Kashuri, A.; Hernández, J.E.H. New quantum estimates of trapezium-type inequalities for generalized φ-convex functions. Mathematics 2019, 7, 1047. [Google Scholar] [CrossRef] [Green Version]
  2. Raina, R.K. On generalized Wright’s hypergeometric functions and fractional calculus operators. East Asian Math. J. 2015, 21, 191–203. [Google Scholar]
  3. Goodrich, C.S.; Ragusa, M.A.; Scapellato, A. Partial regularity of solutions to p(x)-laplacian PDEs with discontinuous coefficients. J. Differ. Equ. 2020, 268, 5440–5468. [Google Scholar] [CrossRef]
  4. Goodrich, C.S.; Scapellato, A. Partial regularity of minimizers of asymptotically convex functionals with p(x)-growth. Stud. Math. 2022, 1–32. [Google Scholar] [CrossRef]
  5. Rashid, S.; Butt, S.I.; Kanwal, S.; Ahmad, H.; Wang, M.K. Quantum integral inequalities with respect to Raina’s function via coordinated generalized ψ-convex functions with applications. J. Funct. Spaces 2021, 2021, 6631474. [Google Scholar] [CrossRef]
  6. Dragomir, S.S.; Pearce, C.E.M. Selected Topics on Hermite–Hadamard Inequality and Applications; Victoria University: Melbourne, Australia, 2000. [Google Scholar]
  7. Tariboon, J.; Ntouyas, S.K. Quantum calculus on finite intervals and applications to impulsive difference equations. Adv. Differ. Equ. 2013, 2013, 282. [Google Scholar] [CrossRef] [Green Version]
  8. Tariboon, J.; Ntouyas, S.K. Quantum integral inequalities on finite intervals. J. Inequal. Appl. 2014, 2014, 121. [Google Scholar] [CrossRef] [Green Version]
  9. Noor, M.A.; Noor, K.I.; Awan, M.U. Some quantum estimates for Hermite–Hadamard inequalities. Appl. Math. Comput. 2015, 251, 675–679. [Google Scholar] [CrossRef]
  10. Sudsutad, W.; Ntouyas, S.K.; Tariboon, J. Quantum integral inequalities for convex functions. J. Math. Inequal. 2015, 9, 781–793. [Google Scholar] [CrossRef] [Green Version]
  11. Noor, M.A.; Noor, K.I.; Awan, M.U. Some quantum integral inequalities via preinvex functions. Appl. Math. Comput. 2015, 269, 242–251. [Google Scholar] [CrossRef]
  12. Alp, N.; Sarikaya, M.Z.; Kunt, M.; İşcan, İ. q-Hermite–Hadamard inequalities and quantum estimates for midpoint type inequalities via convex and quasi-convex functions. J. King Saud Univ. Sci. 2018, 30, 193–203. [Google Scholar] [CrossRef] [Green Version]
  13. Zhang, Y.; Du, T.S.; Wang, H.; Shen, Y.J. Different types of quantum integral inequalities via (α,m)- convexity. J. Inequal. Appl. 2018, 2018, 264. [Google Scholar] [CrossRef]
  14. Du, T.S.; Luo, C.; Yu, B. Certain quantum estimates on the parameterized integral inequalities and their applications. J. Math. Inequal. 2021, 15, 201–228. [Google Scholar] [CrossRef]
  15. Sofonea, D.F. Some properties in q-calculus. Gen. Math. 2008, 16, 47–54. [Google Scholar]
  16. Sofonea, D.F. Numerical analysis and q-calculus. I. Octogon 2003, 11, 151–156. [Google Scholar]
  17. Srivastava, H.M. Some generalizations and basic (or q-) extensions of the Bernoulli, Euler and Genocchi polynomials. Appl. Math. Inf. Sci. 2011, 5, 390–444. [Google Scholar]
  18. Srivastava, H.M.; Choi, J. Zeta and q-Zeta Functions and Associated Series and Integrals; Elsevier: Amsterdam, The Netherlands, 2012. [Google Scholar]
  19. Erden, S.; Iftikhar, S.; Delavar, R.M.; Kumam, P.; Thounthong, P.; Kumam, W. On generalizations of some inequalities for convex functions via quantum integrals. Rev. Real Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. 2020, 114, 110. [Google Scholar] [CrossRef]
  20. Jhanthanam, S.; Jessada, T.; Sotiris, N.; Kamsing, N. On q-Hermite–Hadamard inequalities for differentiable convex functions. Mathematics 2019, 7, 632. [Google Scholar] [CrossRef] [Green Version]
  21. Liu, W.J.; Zhuang, H.F. Some quantum estimates of Hermite–Hadamard inequalities for convex functions. J. Appl. Anal. Comput. 2017, 7, 501–522. [Google Scholar]
  22. Nwaeze, E.R.; Tameru, A.M. New parameterized quantum integral inequalities via η-quasiconvexity. Adv. Differ. Equ. 2019, 2019, 425. [Google Scholar] [CrossRef] [Green Version]
  23. Zhuang, H.; Liu, W.; Park, J. Some quantum estimates of Hermite–Hadmard inequalities for quasi-convex functions. Mathematics 2019, 7, 152. [Google Scholar] [CrossRef] [Green Version]
  24. Budak, H.; Erden, S.; Ali, M.A. Simpson and Newton type inequalities for convex functions via newly defined quantum integrals. Math. Methods Appl. Sci. 2020, 44, 378–390. [Google Scholar] [CrossRef]
  25. Cortez, M.V.J.; Ali, M.A.; Kashuri, A.; Sial, I.B.; Zhang, Z. Some new Newton’s type integral inequalities for coordinated convex functions in quantum calculus. Symmetry 2020, 12, 1476. [Google Scholar] [CrossRef]
  26. Cortez, M.V.J.; Kashuri, A.; Liko, R.; Hernández, J.E.H. Some inequalities using generalized convex functions in quantum analysis. Symmetry 2019, 11, 1402. [Google Scholar] [CrossRef] [Green Version]
  27. Noor, M.A.; Noor, K.I. Higher order strongly exponentially biconvex functions and bivariational inequalities. J. Math. Anal. 2021, 12, 23–43. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Share and Cite

MDPI and ACS Style

Vivas-Cortez, M.; Awan, M.U.; Talib, S.; Kashuri, A.; Noor, M.A. Multi-Parameter Quantum Integral Identity Involving Raina’s Function and Corresponding q-Integral Inequalities with Applications. Symmetry 2022, 14, 606. https://doi.org/10.3390/sym14030606

AMA Style

Vivas-Cortez M, Awan MU, Talib S, Kashuri A, Noor MA. Multi-Parameter Quantum Integral Identity Involving Raina’s Function and Corresponding q-Integral Inequalities with Applications. Symmetry. 2022; 14(3):606. https://doi.org/10.3390/sym14030606

Chicago/Turabian Style

Vivas-Cortez, Miguel, Muhammad Uzair Awan, Sadia Talib, Artion Kashuri, and Muhammad Aslam Noor. 2022. "Multi-Parameter Quantum Integral Identity Involving Raina’s Function and Corresponding q-Integral Inequalities with Applications" Symmetry 14, no. 3: 606. https://doi.org/10.3390/sym14030606

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop