Next Article in Journal
Determination of Vertical Accelerations in a Symmetrically Loaded Flat Car with Longitudinal Elastic-Frictional Beams
Next Article in Special Issue
Applications of the Atangana–Baleanu Fractional Integral Operator
Previous Article in Journal
A Novel Co-Evolution Model Based on Evolutionary Game about Social Network
Previous Article in Special Issue
On Third-Order Differential Subordination and Superordination Properties of Analytic Functions Defined by a Generalized Operator
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Coefficient Estimates for a Family of Starlike Functions Endowed with Quasi Subordination on Conic Domain

by
Arzu Akgül
1,* and
Luminita-Ioana Cotîrlă
2
1
Department of Mathematics, Faculty of Arts and Science, Umuttepe Campus, Kocaeli University, 41001 Kocaeli, Turkey
2
Department of Mathematics, Technical University of Cluj-Napoca, 400114 Cluj-Napoca, Romania
*
Author to whom correspondence should be addressed.
Symmetry 2022, 14(3), 582; https://doi.org/10.3390/sym14030582
Submission received: 23 February 2022 / Revised: 3 March 2022 / Accepted: 10 March 2022 / Published: 16 March 2022
(This article belongs to the Special Issue Symmetry in Pure Mathematics and Real and Complex Analysis)

Abstract

:
In 1999, for ( 0 k < ) , the concept of conic domain by defining k-uniform convex functions were introduced by Kanas and Wisniowska and then in 2000, they defined related k-starlike functions denoted by k U C V and k S T respectively. Motivated by their studies, in our work, we define the class of k-parabolic starlike functions, denoted k S H m , q , by using quasi-subordination for m-fold symmetric analytic functions, making use of conic domain Ω k . We determine the coefficient bounds and estimate Fekete–Szegö functional by the help of m-th root transform and quasi subordination for functions belonging the class k S H m , q .

1. Introduction

Assume that A is the family of functions given by:
f ( z ) = z + n = 2 a n z n ,
which are normalized analytic functions with:
f ( 0 ) = f ( 0 ) 1 = 0
in the open unit disc Λ = z : z < 1 and let H = f A : f is univalent in Λ . For the function Ψ H if:
Ψ ( 0 ) = 0 and Ψ ( z ) < 1 , z Λ
then Ψ is said to be a Schwarz function which is self-mapping of the unit disc Λ .
For the functions f , g H , it is said that the function f is subordinate to g in Λ , and write:
f ( z ) g ( z ) z Λ ,
if there exists a Schwarz function Ψ , such that:
f ( z ) = g Ψ ( z ) z Λ .
It is well known that if f ( z ) g ( z ) , then f ( 0 ) = g ( 0 ) and f ( Λ ) g ( Λ ) , z Λ . Moreover, if the function g is univalent in Λ , then we get:
f ( z ) g ( z ) f ( 0 ) = g ( 0 ) and f ( Λ ) g ( Λ ) , z Λ .
In 1970, Robertson [1] developed the notions of quasi-subordination and majorization as follows:
For functions f and g, analytic in Λ , the function f is quasi-subordinate to g, writen as follows:
f ( z ) q g ( z ) , z Λ
if there exist analytic functions Φ and Ψ ,
| Φ ( z ) | 1 , Ψ ( 0 ) = 0 and | Ψ ( z ) | < 1 ,
such that:
f ( z ) = Φ ( z ) g ( Ψ ( z ) ) z Λ .
If we choose the function Φ as Φ ( z ) 1 , then f ( z ) = g Ψ ( z ) , so that f ( z ) g ( z ) in Λ . Moreover, by taking the Schwarz function Ψ as Ψ ( z ) = z , then:
f ( z ) = Φ ( z ) g ( z ) z Λ
and it is said that f is majorized by g and denoted:
f ( z ) g ( z ) z Λ .
Thus, it is clear that quasi-subordination is a generalization of subordination besides majorization. For a brief history and brilliant examples of univalent functions endowed with quasi-subordination, in conjunction with several other features, see [2] and references therein (see also [3,4,5,6,7,8,9,10]).
The fact that the n-th coefficient of a univalent function f is bounded by n is well known (see [11]). The bounds for the coefficient provide knowledge the about numerous geometric features of the function. In Geometric Function Theory, the Fekete-Szegö functional for normalized univalent functions represented by the Equation (1), is well known for its rich history. The Fekete–Szegö problem is the problem of maximizing the value of the nonlinear functional a 2 a 4 μ a 3 2 [12]. The equality is valid for the Koebe function. The sharp upper bound for Fekete-Szegö functional was found by Keogh and Merkes [13] for some subclasses of univalent function classes. Indeed, very recently, the Fekete-Szegö problem has gained importance thanks to the work of Srivastava et al. [14] (see also [15,16]). Several other authors have examined the bounds for the Fekete-Szegö functional for functions in numerous subclasses of H . Related studies can be found in [17,18,19,20,21,22].
Let m be a positive integer and D be a domain. If a rotation of D about the origin through an angle 2 π m carries D to itself then it is said that D is a m-fold symmetric domain. A function f ( z ) is said to be m-fold symmetric in Λ , if for every z Λ following equality holds:
f e 2 π i m z = e 2 π i m f ( z ) .
We show by H m the class of m-fold symmetric univalent functions in Λ , which are normalized by the series expansion (1). Actually, the functions in the class H are one-fold symmetric.
In 1916, Gronwall presented that f ( z ) has a power series expansion given by:
f ( z ) = b 1 z + b m + 1 z m + 1 + b 2 m + 1 z 2 m + 1 + = n = 0 b n m + 1 z n m + 1 .
on the condition that it is regular and m-fold symmetric in Λ .
On the contrary, if f ( z ) is expressed by (2), then f ( z ) is m-fold symmetric inside the circle of convergence of the series. For a univalent function f ( z ) given by (1), the m-th root transformation is presented with:
F ( z ) = f ( z m ) 1 m = z + n = 1 b m n + 1 z m n + 1 .
The concepts of k S P and k U C V were introduced by Kanas and Wisniowska [23,24] as follows:
k S P = f : f H , R e z f z ) f ( z ) > k z f z ) f ( z ) 1 , z Λ , 0 k , k U C V = f : f H , R e 1 + z f z ) f ( z ) > k z f z ) f ( z ) , z Λ , 0 k .
This is a fascinating association of the notion of univalent convex functions [25] and uniformily convex functions [26]. Kanas and Wiśniowska [27] considered the geometric definition of k U C V and its relations with the conic domains. The class k S P was studied in [23]. The class k S P , composing of k-parabolic starlike functions, is defined from k U C V by means of the well-known Alexandar’s transforms [24]. That is,
f k U C V z f ( z ) k S P , z Λ .
According to the one variable characterization theorem [23] of the class k U C V , f k U C V (in turn f k S P ) if the values of p ( z ) = 1 + z f ( z ) f ( z ) (in turn p ( z ) = z f ( z ) f ( z ) ) lie in the conic region Ω k in the w plane, where:
Ω k = w = u + i v C : u 2 > k 2 u 1 2 + k 2 v 2 , u > 0 , 0 k < .
This property allows us to obviously determine the domain Ω k , as a convex domain contained in the right half-plane. Moreover, if we specify the parameter k, then Ω k denotes certain interesting domain regions. We know that for Ω k , if 0 < k < 1 then it is an hyperbolic, if k > 1 then it is elliptic, if k = 1 then it is parabolic region, and after all Ω 0 is the whole right half-plane.
Assume that B = Ψ H : Ψ ( 0 ) = 0 and Ψ ( 1 ) < 1 . In sequel, we will use the next lemmas to obtain our results.
Lemma 1
([13]). Let Ψ B is given by:
Ψ ( z ) = Ψ 1 z + Ψ 2 z 2 + , z Λ .
Then for every t C ,
Ψ 2 s Ψ 1 2 max 1 , s , s C .
Lemma 2
([28]). If Ψ B and:
Ψ ( z ) = Ψ 1 z + Ψ 2 z 2 + , z Λ ,
then:
Ψ 2 s Ψ 1 2 s , s 1 1 , 1 s 1 s , s 1 .
Lemma 3
([29]). If Ψ B and:
Ψ ( z ) = Ψ 1 z + Ψ 2 z 2 + , z Λ ,
then:
Ψ 2 s Ψ 1 2 1 + s 1 Ψ 1 2 , s C .
Lemma 4
([30]). Let 0 k be fixed and R k ( z ) be the Riemann map of Λ on to Ω k fulfilling R k ( 0 ) = 1 , R k ( 0 ) > 0 . If:
R k ( z ) = 1 + R 1 ( k ) z + R 2 ( k ) z 2 + R 3 ( k ) z 3 + , z Λ
then:
R 1 = R 1 ( k ) = 2 T 2 1 k 2 , 0 k < 1 8 π 2 , k = 1 π 2 4 K 2 ( r ) ( k 2 1 ) ( 1 r ) r , k > 1
R 2 = R 2 ( k ) = D ( k ) R 1 ( k )
where:
R 1 = R 1 ( k ) = 2 + T 2 3 , 0 k < 1 2 3 , k = 1 4 K 2 ( r ) ( r 2 + 6 r + 1 ) π 2 24 K 2 ( r ) ( 1 + r ) r , k > 1
T = 2 π arccos k ,
K ( r ) is complex elliptc integral of first kind (see [31,32,33]).
Very recently, Çağlar et al. [34] presented the coefficient estimate by m throot transform for a family defined by Hohlov operator using quasi-subordination for conic domains. In this study, motivated by works of Kanas and Wisniowska [26,27] and Çağlar et al. [34] as well as earlier studies mentioned above, we define the class of k-parabolic starlike functions via m fold symmetric functions, denoted k S H m , q . We use the concepts of quasi-subordination and majorization to define our new classes. Moreover, coefficient bounds and Fekete–Szegö inequality are examined.
Definition 1.
For f A defined by (1), f is said to be in the class k S H m , q if it provides the quasi-subordination:
z f z ) f ( z ) 1 q R k ( z ) 1 , z Λ .
We consider throughout this study that Φ ( z ) = c 0 + c 1 z + c 2 z 2 + c 3 z 3 + and c n 1 .
Additionally, we will assume that F is the m -th root transform of f presented by (2) in next theorems and corrollaries.

2. Main Results

Theorem 1.
If f k S H m , q , then:
b m + 1 R 1 m , b 2 m + 1 1 2 m R 1 + max { R 1 , m 1 m + 1 R 1 2 + R 2 } , b 2 m + 1 μ b m + 1 2 1 2 m R 1 + max R 1 , 2 μ + m 1 m + 1 R 1 2 + R 2
Proof. 
Let f k k S H m , q . Then, there are two analytic functions Φ and Ψ with Φ ( z ) 1 , Ψ ( 0 ) = 0 and Ψ ( z ) < 1 such that:
z f z ) f ( z ) 1 = Φ ( z ) R k Ψ ( z ) 1 ,
Φ ( z ) R k Ψ ( z ) 1 = R 1 c 0 Ψ 1 z + R 1 c 1 Ψ 1 + c 0 R 1 Ψ 2 + R 2 Ψ 1 2 z 2 +
By using (7) in (6), we have:
a 2 = R 1 c 0 Ψ 1
2 a 3 a 2 2 = R 1 c 1 Ψ 1 + c 0 R 1 Ψ 2 + R 2 Ψ 1 2 a 3 = 2 R 1 c 1 Ψ 1 + R 1 c 0 Ψ 2 + R 1 2 c 0 2 + R 2 c 0 Ψ 1 2 .
For f given by (1), we can easily compute that:
F ( z ) = f ( z m ) 1 m = z + 1 m a 2 z m + 1 + 1 m a 3 1 2 m 1 m 2 a 2 2 z 2 m + 1 + .
Upon equating the coefficients of z m + 1 and z 2 m + 1 in view of (2) and (10), we have:
b m + 1 = 1 m a 2
and:
b 2 m + 1 = 1 m a 3 1 2 m 1 m 2 a 2 2 .
From (8), (9), (11) and (12), we obtain:
b m + 1 = R 1 c 0 Ψ 1 m
and by using c n 1 , Ψ n ( z ) < 1 in (13),
b m + 1 R 1 m ,
b 2 m + 1 = 1 m a 3 m 1 2 m 2 a 2 2 = 1 2 m R 1 c 1 Ψ 1 + c 0 R 1 Ψ 2 + R 1 2 c 0 2 + c 0 R 2 Ψ 1 2 m 1 2 m 2 R 1 2 c 0 2 Ψ 1 2 = R 1 2 m c 1 Ψ 1 + c 0 Ψ 2 m 1 m R 1 c 0 R 1 c 0 R 2 R 1 Ψ 1 2 = R 1 2 m c 1 Ψ 1 + c 0 Ψ 2 s Ψ 1 2 .
Due to the fact that D = R 2 R 1 , we can write:
s = m 1 m R 1 c 0 R 1 c 0 D .
Additionally, by using c n 1 , Ψ n ( z ) < 1 we obtain:
s = m 1 m R 1 c 0 R 1 c 0 D m 1 m + 1 R 1 + D .
By taking taking the modulus of both sides of the Equation (15) and applying Lema 1 to the Ψ 2 s Ψ 1 2 , we have:
b 2 m + 1 R 1 2 m 1 + max { 1 , s } 1 2 m R 1 + max { R 1 , m 1 m + 1 R 1 2 + R 2 } .
Therefore, for any μ C ,
b 2 m + 1 μ b m + 1 2 = R 1 2 m c 1 Ψ 1 + c 0 Ψ 2 m 1 m R 1 c 0 R 1 c 0 D Ψ 1 2 μ R 1 2 c 0 2 Ψ 1 2 m 2 = R 1 2 m c 1 Ψ 1 + c 0 Ψ 2 s + 2 μ R 1 c 0 m Ψ 1 2 = R 1 2 m c 1 Ψ 1 + c 0 Ψ 2 l Ψ 1 2
where s is given by (16) and:
l = s + 2 μ R 1 c 0 m .
Using inequalities c n 1 , Ψ n ( z ) < 1 and applying Lemma 1 to Ψ 2 l Ψ 1 2 , we obtain:
b 2 m + 1 μ b m + 1 2 R 1 2 m 1 + Ψ 2 l Ψ 1 2 R 1 2 m 1 + max 1 , l .
Further, because of:
l = s + 2 μ R 1 c 0 m = ( m 1 ) m R 1 c 0 R 1 c 0 D + 2 μ R 1 c 0 m 2 μ + m 1 m R 1 + R 1 + D ,
we conclude that:
b 2 m + 1 μ b m + 1 2 1 2 m R 1 + max R 1 , 2 μ + m 1 m + 1 R 1 2 + R 2
Letting m = 1 in Theorem 1, we obtain next: □
Corollary 1.
If f k S H m , q , then:
b 3 μ b 2 2 1 2 R 1 + max R 1 , 2 μ + 1 R 1 2 + R 2 .
Taking values of R 1 = R 1 ( k ) and D = D ( k ) also k in Theorem 1, we obtain next:
Corollary 2.
If f k S H m , q , ( 0 k < ) and 0 k < 1 , then:
b m + 1 1 m 2 T 2 1 k 2 ,
b 2 m + 1 1 2 m 2 T 2 1 k 2 + max 2 T 2 1 k 2 , m 1 m + 1 2 T 2 1 k 2 2 + 2 T 2 1 k 2 T 2 + 2 3 ,
and for any μ C :
b 2 m + 1 μ b m + 1 2 1 2 m 2 T 2 1 k 2 + max 2 T 2 1 k 2 , 2 μ + m 1 m + 1 2 T 2 1 k 2 2 + 2 T 2 1 k 2 T 2 + 2 3 .
Corollary 3.
If f k S H m , q , ( 0 k < ) and k = 1 , then:
b m + 1 8 m π 2 ,
b 2 m + 1 1 2 m 8 π 2 + max 8 π 2 , m 1 m + 1 8 π 2 2 + 16 3 π 2 ,
and for any μ C :
b 2 m + 1 μ b m + 1 2 1 2 m 8 π 2 + max 8 π 2 , 2 μ + m 1 m + 1 64 π 4 + 16 3 π 2
Corollary 4.
If f k S H m , q , ( 0 k < ) and k > 1 , then:
b m + 1 1 m B 1 ,
b 2 m + 1 1 2 m B 1 + max B 1 , B 2 + B 3
and for any μ C :
b 2 m + 1 μ b m + 1 2 1 2 m B 1 + max B 1 , B 4 + B 3 ,
where:
B 1 = R 1 = π 2 4 k 2 ( r ) ( k 2 1 ) ( 1 r ) r , B 2 = m 1 m + 1 R 1 2 = m 1 m + 1 π 2 4 k 2 ( r ) ( k 2 1 ) ( 1 r ) r 2 , B 3 = R 2 = 4 π 2 k 2 ( r ) ( r 2 + 6 r + 1 ) π 2 96 k 4 ( r ) ( k 2 1 ) ( 1 r 2 ) r , B 4 = 2 μ + m 1 m + 1 R 1 2
Theorem 2.
If f A fulfilles:
z f z ) f ( z ) 1 R k ( z ) 1 ,
then the following inequailies hold:
b m + 1 R 1 m , b 2 m + 1 1 2 m R 1 + R 2 + 1 m R 1 2 .
and for any μ C :
b 2 m + 1 μ b m + 1 2 1 2 m R 1 + R 2 + 1 + 2 μ + m 1 m R 1 2
Proof. 
By choosing Ψ ( z ) = z in Theorem 1, we obtain the desired result. □
Letting Φ ( z ) = 1 and m = 1 in Theorem 2, we then obtain:
Corollary 5.
If f A fulfilles (20) and Φ ( z ) = 1 , we obtain:
b m + 1 R 1 m b 2 m + 1 1 2 m R 2 + 1 m R 1 2
and for any μ C :
b 2 m + 1 μ b m + 1 2 1 2 m R 1 + R 2 + 2 μ + 1 m R 1 2 .
Further, by letting m = 1 , in last inequalities, we conclude that:
b 2 R 1 b 3 R 2 + R 1 2
and for any μ C :
b 3 μ b 2 2 1 2 R 1 + R 2 + 2 μ + 1 R 1 2 .
Theorem 3.
If f k S H m , q , then:
b 2 m + 1 μ b m + 1 2 R 1 2 m 1 + R 1 c 0 + D 2 μ + m 1 m R 1 c 0 , μ ζ 1 R 1 m , ζ 1 μ ζ 2 R 1 2 m 1 R 1 c 0 D + 2 μ + m 1 m R 1 c 0 , μ ζ 2 ,
where:
ζ 1 = m 2 R 1 c 0 ( D + R 1 c 0 m 1 m R 1 c 0 1 ) ζ 2 = m 2 R 1 c 0 ( D + R 1 c 0 m 1 m R 1 c 0 + 1 ) .
Proof. 
From the equality (18), we have:
b 2 m + 1 μ b m + 1 2 = R 1 2 m c 1 Ψ 1 + R 1 2 m c 0 Ψ 2 s + 2 μ m R 1 c 0 Ψ 1 2
Using the inequalities c n 1 , Ψ n ( z ) < 1 , we have:
b 2 m + 1 μ b m + 1 2 R 1 2 m c 1 + c 0 Ψ 2 s + 2 μ m R 1 c 0 Ψ 1 2 R 1 2 m 1 + Ψ 2 l Ψ 1 2
where l is presened by (19). For μ C , according to Lemma 3, there are three situations:
Case 1: If:
μ 1 2 R 1 c 0 ( D + R 1 c 0 m 1 m R 1 c 0 1 ) = ζ 1 .
which implies l 1 , we have:
b 2 m + 1 μ b m + 1 2 R 1 2 m 1 + Ψ 2 l Ψ 1 2 R 1 2 m 1 l = R 1 2 m 1 + R 1 c 0 + D 2 μ + m 1 m R 1 c 0 .
Case 2: If:
μ 1 2 R 1 c 0 ( D + R 1 c 0 m 1 m R 1 c 0 + 1 ) = ζ 2 ,
which implies that l 1 , thus:
b 2 m + 1 μ b m + 1 2 R 1 2 m 1 + Ψ 2 l Ψ 1 2 R 1 2 m 1 + l = R 1 2 m 1 R 1 c 0 D + 2 μ + m 1 m R 1 c 0 .
Case 3: If:
ζ 1 μ ζ 2 ,
which implies 1 l 1 , thus:
b 2 m + 1 μ b m + 1 2 R 1 2 m 1 + Ψ 2 l Ψ 1 2 R 1 m .
Letting Φ ( z ) = 1 and m = 1 in Theorem 3, we then obtain: □
Corollary 6.
if f k S H m , q , and Φ ( z ) = 1 , then:
b 2 m + 1 μ b m + 1 2 R 1 2 m 1 + D + R 1 2 μ m + 1 m R 1 , μ ζ 1 R 1 m , ζ 1 μ ζ 2 R 1 2 m 1 D R 1 + 2 μ m + 1 m R 1 , μ ζ 2 ,
where:
ζ 1 = m 2 R 1 ( D + 1 m R 1 1 ) ζ 2 = m 2 R 1 ( D + 1 m R 1 + 1 ) .
Moreover, letting m = 1 in the last three inequalities, we obtain:
b 3 μ b 2 2 R 1 2 1 + D + 1 2 μ R 1 , μ ζ 1 R 1 , ζ 1 μ ζ 2 R 1 2 m 1 D 1 2 μ R 1 , μ ζ 2 ,
where:
ζ 1 = 1 R 1 ( D + R 1 1 ) ζ 2 = 1 2 R 1 ( D + R 1 + 1 ) .
Theorem 4.
If f k S H m , q , then:
b 2 m + 1 μ b m + 1 2 R 1 2 m 1 2 μ + m 1 m R 1 c 0 + D + R 1 c 0 , μ α 2 R 1 m , α 2 μ α 1 R 1 2 m 1 + 2 μ + m 1 m R 1 c 0 D R 1 c 0 , μ α 1 ,
where:
α 1 = m 2 R 1 c 0 D + R 1 c 0 m 1 m R 1 c 0 + 1 , α 2 = m 2 R 1 c 0 D + R 1 c 0 m 1 m R 1 c 0 1 .
Proof. 
From the equality (18), we have:
b 2 m + 1 μ b m + 1 2 = R 1 2 m c 1 Ψ 1 + R 1 2 m c 0 Ψ 2 s + μ m 2 R 1 2 c 0 Ψ 1 2 = R 1 2 m c 1 Ψ 1 + R 1 2 m c 0 Ψ 2 _ Ψ 1 2 s + μ m 2 R 1 2 c 0 1 Ψ 1 2 = R 1 2 m c 1 Ψ 1 + R 1 2 m c 0 Ψ 2 _ Ψ 1 2 + 1 s μ m 2 R 1 2 c 0 Ψ 1 2
Where s is given by (16). Using the inequalities c n 1 ,   Ψ n ( z ) < 1 , we have:
b 2 m + 1 μ b m + 1 2 R 1 2 m + R 1 2 m Ψ 2 _ Ψ 1 2 + 1 s 2 μ m R 1 c 0 Ψ 1 2
Case 1: Choosing the representation of second pharantezis on the right hand side of (21):
s μ m R 1 c 0 = 2 μ + m ( m 1 ) m R 1 c 0 D R 1 c 0 1
then we obtain:
μ m 2 R 1 c 0 ( D + R 1 c 0 m 1 2 m R 1 c 0 + 1 ) = α 1 .
Let μ α 1 . According the Lemma 2 we can write that:
Ψ 2 _ Ψ 1 2 1
Utilizing (23), Lemmas 2 and 3 and putting expression of s = ( m 1 ) 2 m R 1 c 0 R 1 c 0 R 2 R 1 , given in (16), in (22) we obtain:
b 2 m + 1 μ b m + 1 2 R 1 2 m + R 1 2 m 1 + 2 μ + m 1 m R 1 c 0 D R 1 c 0 1 Ψ 1 2 R 1 2 m 1 + 2 μ + m 1 m R 1 c 0 D R 1 c 0 .
Case 2: Choosing the expression of second pharantezis on the right hand side of (21):
s μ m R 1 c 0 = 2 μ + m 1 m R 1 c 0 D R 1 c 0 1
then we obtain:
μ m 2 R 1 c 0 ( D + R 1 c 0 m 1 m R 1 c 0 1 ) = α 2 .
Let μ α 2 . Then, from (22) we can write that:
b 2 m + 1 μ b m + 1 2 R 1 2 m + R 1 2 m 1 + 1 s 2 μ m R 1 c 0 Ψ 1 2 .
According to Lemma 3 we obtain:
Ψ 2 1 Ψ 1 2 and Ψ 1 1 ,
If we apply to (24) inequalities above, also putting:
s μ m 2 R 1 2 c 0 = 2 μ + m 1 m R 1 c 0 D R 1 c 0
in (24), we have:
b 2 m + 1 μ b m + 1 2 R 1 2 m + R 1 2 m 1 Ψ 1 2 + D + R 1 c 0 2 μ + m 1 m R 1 c 0 Ψ 1 2 .
This implies that:
b 2 m + 1 μ b m + 1 2 R 1 2 m 1 2 μ + m 1 m R 1 c 0 + D + R 1 c 0 .
Case 3: Choosing the representation in second pharanthezis on the right hand side of (21):
1 s μ m 2 R 1 c 0 = 2 μ + m 1 m R 1 c 0 D R 1 c 0 1 ,
we get α 2 μ α 1 . Under this condition,
b 2 m + 1 μ b m + 1 2 R 1 2 m + R 1 2 m = R 1 m .
By choosing m = 1 in Theorem 4, we get next: □
b 3 μ b 2 2 R 1 2 D + 1 2 μ R 1 c 0 , μ α 2 R 1 , α 2 μ α 1 R 1 2 D 1 2 μ R 1 c 0 , μ α 1 ,
where:
α 1 = 1 2 R 1 c 0 ( D + R 1 c 0 + 1 ) α 2 = 1 2 R 1 c 0 ( D + R 1 c 0 1 ) .
Letting Φ ( z ) = 1 and m = 1 in Theorem 4, we get next:
Corollary 7.
If f k S H m , q and Φ ( z ) = 1 , then we have:
b 2 m + 1 μ b m + 1 2 R 1 2 m D + 1 2 μ + m 1 m R 1 + 1 , μ α 2 R 1 m , α 2 μ α 1 R 1 2 m D 1 2 μ + m 1 m R 1 + 1 , μ α 1 ,
where:
α 1 = m 2 R 1 D + 1 m 1 m R 1 c 0 + 1 , α 2 = m 2 R 1 c 0 D + 1 m 1 m R 1 c 0 1 .
Furthermore, choosing m = 1 , we get:
b 3 μ b 2 2 R 1 2 D + 1 2 μ R 1 + 1 , μ α 2 R 1 m , α 2 μ α 1 R 1 2 m D 1 2 μ R 1 + 1 , μ α 1 ,
where:
α 1 = 1 2 R 1 D + R 1 c 0 + 1 , α 2 = 1 2 R 1 c 0 D + R 1 c 0 1 .
Putting the values of R 1 = R 1 ( k ) , R 2 = R 2 ( k ) = D ( k ) R 1 ( k ) and k from Lemma 4, we obtain some new results of Theorem 4:
Corollary 8.
Let f k S H m , q and 0 k < 1 . Then:
b 2 m + 1 μ b m + 1 2
T 2 m 1 k 2 2 + T 2 3 2 μ + m 1 m 1 2 T 2 1 k 2 c 0 + 1 , μ β 2 2 T 2 m 1 k 2 , β 2 μ β 1 T 2 m 1 k 2 2 μ + m 1 m 1 2 T 2 1 k 2 c 0 2 + T 2 3 + 1 , μ β 1 ,
where:
β 1 = m 1 k 2 4 T 2 c 0 2 + T 2 3 + 2 T 2 m 1 k 2 c 0 + 1 , β 2 = m 1 k 2 4 T 2 c 0 2 + T 2 3 + 2 T 2 m 1 k 2 c 0 1 .
Moreover, taking m = 1 in Corollary 8, we obtain:
b 3 μ b 2 2 2 T 2 2 1 k 2 1 + 2 + T 2 3 + 1 + 2 μ 2 T 2 1 k 2 c 0 , μ β 2 2 T 2 m 1 k 2 , β 2 μ β 1 2 T 2 2 1 k 2 1 2 + T 2 3 1 2 μ 2 T 2 1 k 2 c 0 , μ β 1 ,
where:
β 1 = 1 k 2 2 T 2 c 0 2 + T 2 3 2 T 2 1 k 2 c 0 + 1 , β 2 = 1 k 2 2 T 2 c 0 2 + T 2 3 + 2 T 2 1 k 2 c 0 1 .
Corollary 9.
Let f k S H m , q and k = 1 . Then:
b 2 m + 1 μ b m + 1 2 4 m π 2 1 3 + 2 μ + m 1 m 1 8 π 2 c 0 , μ η 2 8 m π 2 , η 2 μ η 1 4 m π 2 5 3 2 μ + m 1 m 1 8 π 2 c 0 , μ η 1 ,
where:
η 1 = m π 2 16 c 0 5 3 + 8 m π 2 c 0 , η 2 = m π 2 16 c 0 8 m π 2 c 0 1 3 .
Further, taking m = 1 in Corollary 9, we obtain:
b 3 μ b 2 2 4 π 2 1 3 + 2 μ 1 8 π 2 c 0 , μ η 2 8 π 2 , η 2 μ η 1 4 π 2 5 3 2 μ 1 8 π 2 c 0 , μ η 1 ,
where:
η 1 = π 2 16 c 0 5 3 + 8 π 2 c 0 , η 2 = π 2 16 c 0 8 π 2 c 0 1 3 .
Corollary 10.
Let f k S H m , q and k > 1 . Then:
b 2 m + 1 μ b m + 1 2
π 2 8 m K 2 ( r ) ( k 2 1 ) ( 1 r ) r 1 + 2 μ + m 1 m 1 π 2 4 K 2 ( r ) ( k 2 1 ) ( 1 r ) r c 0 4 K 2 ( r ) ( r 2 + 6 r + 1 ) π 2 24 K 2 ( r ) ( 1 + r ) r , μ ϑ 2 π 2 4 m K 2 ( r ) ( k 2 1 ) ( 1 r ) r , ϑ 2 μ ϑ 1 π 2 8 m K 2 ( r ) ( k 2 1 ) ( 1 r ) r 1 2 μ + m 1 m 1 π 2 4 K 2 ( r ) ( k 2 1 ) ( 1 r ) r c 0 + 4 K 2 ( r ) ( r 2 + 6 r + 1 ) π 2 24 K 2 ( r ) ( 1 + r ) r , μ ϑ 1
where:
ϑ 1 = 2 m K 2 ( r ) ( k 2 1 ) ( 1 r ) r π 2 c 0 4 K 2 ( r ) ( r 2 + 6 r + 1 ) π 2 24 K 2 ( r ) ( 1 + r ) r + π 2 4 m K 2 ( r ) ( k 2 1 ) ( 1 r ) r c 0 + 1 , ϑ 2 = 2 m K 2 ( r ) ( k 2 1 ) ( 1 r ) r π 2 c 0 4 K 2 ( r ) ( r 2 + 6 r + 1 ) π 2 24 K 2 ( r ) ( 1 + r ) r + π 2 4 m K 2 ( r ) ( k 2 1 ) ( 1 r ) r 1 .
Moreover, taking m = 1 in Corollary 10, we obtain:
b 3 μ b 2 2
π 2 8 K 2 ( r ) ( k 2 1 ) ( 1 r ) r 1 + 2 μ 1 π 2 4 K 2 ( r ) ( k 2 1 ) ( 1 r ) r c 0 4 K 2 ( r ) ( r 2 + 6 r + 1 ) π 2 24 K 2 ( r ) ( 1 + r ) r , μ ϑ 2 π 2 4 m K 2 ( r ) ( k 2 1 ) ( 1 r ) r , ϑ 2 μ ϑ 1 π 2 8 K 2 ( r ) ( k 2 1 ) ( 1 r ) r 1 2 μ 1 π 2 4 K 2 ( r ) ( k 2 1 ) ( 1 r ) r c 0 + 4 K 2 ( r ) ( r 2 + 6 r + 1 ) π 2 24 K 2 ( r ) ( 1 + r ) r , μ ϑ 1 ,
where:
ϑ 1 = 2 K 2 ( r ) ( k 2 1 ) ( 1 r ) r π 2 c 0 4 K 2 ( r ) ( r 2 + 6 r + 1 ) π 2 24 K 2 ( r ) ( 1 + r ) r + π 2 4 K 2 ( r ) ( k 2 1 ) ( 1 r ) r c 0 + 1 , ϑ 2 = 2 K 2 ( r ) ( k 2 1 ) ( 1 r ) r π 2 c 0 4 K 2 ( r ) ( r 2 + 6 r + 1 ) π 2 24 K 2 ( r ) ( 1 + r ) r + π 2 4 K 2 ( r ) ( k 2 1 ) ( 1 r ) r c 0 1 .

Author Contributions

Conceptualization, A.A. and L.-I.C.; methodology, A.A. and L.-I.C.; software, A.A. and L.-I.C.; validation, A.A. and L.-I.C.; formal analysis, A.A. and L.-I.C.; investigation, A.A. and L.-I.C.; resources, A.A. and L.-I.C.; data curation, A.A. and L.-I.C.; writing—original draft preparation, A.A. and L.-I.C.; writing—review and editing, A.A. and L.-I.C.; visualization, A.A. and L.-I.C. supervision, A.A. and L.-I.C.; project administration, A.A. and L.-I.C.; funding acquisition, A.A. and L.-I.C. All authors have read and agreed to the published version of the manuscript.

Funding

This research received no external funding.

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

Not applicable.

Conflicts of Interest

The authors declare that they have no competing interest.

References

  1. Robertson, M.S. Quasi-subordination and coefficient conjectures. Bull. Am. Math. Soc. 1970, 76, 1–9. [Google Scholar] [CrossRef] [Green Version]
  2. Haji Mohd, M.; Darus, M. Fekete-Szegö problems for quasi-subordination classes. Abstr. Appl. Anal. 2012, 2012, 192956. [Google Scholar] [CrossRef] [Green Version]
  3. Kanas, S.; Altinkaya, Ş. Functions of bounded variation related to domains bounded by conic sections. Math. Slovaca 2019, 69, 833–842. [Google Scholar] [CrossRef]
  4. Lee, S.Y. Quasi-subordinate functions and coefficient conjectures. J. Kor. Math. Soc. 1975, 12, 43–50. [Google Scholar]
  5. Magesh, N.; Balaji, V.K.; Yamini, J. Certain subclasses of bistarlike and biconvex functions based on quasi-subordination. Abstr. Appl. Anal. 2016, 2016, 3102960. [Google Scholar] [CrossRef] [Green Version]
  6. Magesh, N.; Balaji, V.K. Fekete-Szego problem for a class of lambda-convex and mu-starlike functions associated with k-th root transformation using quasi-subordination. Afrika Mat. 2018, 29, 775–782. [Google Scholar] [CrossRef]
  7. Kılıç, Ö.Ö.; Altintaş, O. Majorization by starlike functions. JNSA 2017, 10, 215–1220. [Google Scholar]
  8. Magesh, N.; Yamini, J. Fekete–Szegö inequalities associated with kth root transformation based on quasi-subordination. Ann. Univ. Paedagog. Crac. Stud. Math. 2017, 16, 7–15. [Google Scholar]
  9. Ren, F.Y.; Owa, S.; Fukui, S. Some inequalities on Quasi-subordinate functions. Bull. Aust. Math. Soc. 1991, 43, 317–324. [Google Scholar] [CrossRef] [Green Version]
  10. Altintaş, O.; Owa, S. Majorizations and quasi-subordinations for certain analytic functions. Proc. Jpn. Acad. Ser. A Math. Sci. 1992, 68, 181–185. [Google Scholar] [CrossRef]
  11. De Branges, L. A proof of the Bieberbach conjecture. Acta Math. 1985, 154, 137–152. [Google Scholar] [CrossRef]
  12. Fekete, M.; Szego, G. Eine Bemerkung uber ungerade schlichte Funktionen. J. Lond. Math. Soc. 1933, 26, 85–89. [Google Scholar] [CrossRef]
  13. Keogh, F.R.; Merkes, E.P. A coefficient inequality for certain classes of analytic functions. Proc. Am. Math. Soc. 1969, 20, 8–12. [Google Scholar] [CrossRef]
  14. Srivastava, H.M.; Mishra, A.K.; Das, M.K. The Fekete–Szegö problem for a subclass of close-toconvex functions. Complex Var. Theory Appl. 2001, 44, 145–163. [Google Scholar]
  15. Kowalczyk, B.; Lecko, A.; Srivastava, H.M. A note on the Fekete–Szegö problem for close-to-convex functions with respect to convex functions. Publ. Inst. Math. Nouv. Ser. 2017, 101, 143–149. [Google Scholar] [CrossRef]
  16. Tang, H.; Srivastava, H.M.; Sivasubramanian, S.; Gurusamy, P. The Fekete-Szegö functional problems for some subclasses of m-fold symmetric bi-univalent functions. J. Math. Inequal. 2016, 10, 1063–1092. [Google Scholar] [CrossRef]
  17. Abdel-Gawad, H.R. On the Fekete–Szegö problem for alpha-quasi-convex functions. Tamkang J. Math. 2000, 31, 251–255. [Google Scholar] [CrossRef]
  18. Ahuja, O.P.; Jahangiri, M. Fekete–Szegö problem for a unified class of analytic functions. Panamer. Math. J. 1997, 7, 67–78. [Google Scholar]
  19. Choi, J.H.; Kim, Y.C.; Sugawa, T. A general approach to the Fekete-Szegö problem. J. Math. Soc. Jpn. 2007, 59, 707–727. [Google Scholar] [CrossRef]
  20. Darus, M.; Tuneski, N. On the Fekete-Szegö problem for generalized close-to-convex functions. Int. Math. J. 2003, 4, 561–568. [Google Scholar]
  21. Kumar, S.S.; Kumar, V. Fekete-Szegö problem for a class of analytic functions. Stud. Univ. Babes-Bolyai Math. 2013, 58, 181–188. [Google Scholar]
  22. Zaprawa, P. On the Fekete–Szegö problem for classes of bi-univalent functions. Bull. Belg. Math. Soc. Simon Stevin 2014, 21, 169–178. [Google Scholar] [CrossRef]
  23. Kanas, S.; Wisniowska, A. Conic regions and k-uniform convexity. J. Comput. Appl. Math. 1999, 105, 327–336. [Google Scholar] [CrossRef] [Green Version]
  24. Kanas, S.; Wisniowska, A. Conic domains and starlike functions. Rev. Roum. Math. Pures Appl. 2000, 45, 647–658. [Google Scholar]
  25. Duren, P.L. Univalent Functions; Springer: New York, NY, USA, 1983. [Google Scholar]
  26. Goodman, A.W. On uniformly convex functions. Ann. Polon. Math. 1992, 56, 87–92. [Google Scholar] [CrossRef] [Green Version]
  27. Kanas, S.; Wisniowska, A. Conic regions and k-uniform convexity, II, Zeszyty Nauk. Politech. Rzeszowskiej Mat. 1998, 22, 65–78. [Google Scholar]
  28. Ali, R.M.; Ravichandran, V.; Seerivasaga, N. Coefficient bounds for p-valent functions. Appl. Math. Comput. 2007, 187, 35–46. [Google Scholar] [CrossRef]
  29. Ma, W.; Minda, D. A unified treatment of some special classes of univalent functions. In Proceedings of the Conference on Complex Analysis, Tianjin, China, 19–23 June 1992; pp. 157–169. [Google Scholar]
  30. Kanas, S. Coefficient estimates in subclasses of the Caratheodory class related to conical domains. Acta Math. Univ. Comenian 2005, 74, 149–161. [Google Scholar]
  31. Ahiezer, N.I. Elements of Theory of Elliptic Functions; American Mathematical Society: Moscow, Russia, 1970. (In Russian) [Google Scholar]
  32. Anderson, G.D.; Vamanamurthy, M.K.; Vourinen, M.K. Conformal Invariants, Inequalities and Quasiconformal Maps, Wiley-Interscience Fekete M, Szegö G. Eine Bemerkung über ungerade schlichte Funktionen. J. Lond. Math. Soc. 1997, 1, 85–89. [Google Scholar]
  33. Dziok, J.; Srivastava, M. Classes of analytic functions associated with the generalized hypergeometric function. Appl. Math. Comput. 1999, 103, 1–13. [Google Scholar] [CrossRef]
  34. Çağlar, M.; Gurusamy, P.; Orhan, H. The coefficient estimates for a class defined by Hohlov operator using conic domains. TWMS J. Pure Appl. Math. 2020, 11, 157–172. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Share and Cite

MDPI and ACS Style

Akgül, A.; Cotîrlă, L.-I. Coefficient Estimates for a Family of Starlike Functions Endowed with Quasi Subordination on Conic Domain. Symmetry 2022, 14, 582. https://doi.org/10.3390/sym14030582

AMA Style

Akgül A, Cotîrlă L-I. Coefficient Estimates for a Family of Starlike Functions Endowed with Quasi Subordination on Conic Domain. Symmetry. 2022; 14(3):582. https://doi.org/10.3390/sym14030582

Chicago/Turabian Style

Akgül, Arzu, and Luminita-Ioana Cotîrlă. 2022. "Coefficient Estimates for a Family of Starlike Functions Endowed with Quasi Subordination on Conic Domain" Symmetry 14, no. 3: 582. https://doi.org/10.3390/sym14030582

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop