Coefficient Estimates for a Family of Starlike Functions Endowed with Quasi Subordination on Conic Domain
Abstract
1. Introduction
2. Main Results
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Robertson, M.S. Quasi-subordination and coefficient conjectures. Bull. Am. Math. Soc. 1970, 76, 1–9. [Google Scholar] [CrossRef]
- Haji Mohd, M.; Darus, M. Fekete-Szegö problems for quasi-subordination classes. Abstr. Appl. Anal. 2012, 2012, 192956. [Google Scholar] [CrossRef]
- Kanas, S.; Altinkaya, Ş. Functions of bounded variation related to domains bounded by conic sections. Math. Slovaca 2019, 69, 833–842. [Google Scholar] [CrossRef]
- Lee, S.Y. Quasi-subordinate functions and coefficient conjectures. J. Kor. Math. Soc. 1975, 12, 43–50. [Google Scholar]
- Magesh, N.; Balaji, V.K.; Yamini, J. Certain subclasses of bistarlike and biconvex functions based on quasi-subordination. Abstr. Appl. Anal. 2016, 2016, 3102960. [Google Scholar] [CrossRef][Green Version]
- Magesh, N.; Balaji, V.K. Fekete-Szego problem for a class of lambda-convex and mu-starlike functions associated with k-th root transformation using quasi-subordination. Afrika Mat. 2018, 29, 775–782. [Google Scholar] [CrossRef]
- Kılıç, Ö.Ö.; Altintaş, O. Majorization by starlike functions. JNSA 2017, 10, 215–1220. [Google Scholar]
- Magesh, N.; Yamini, J. Fekete–Szegö inequalities associated with kth root transformation based on quasi-subordination. Ann. Univ. Paedagog. Crac. Stud. Math. 2017, 16, 7–15. [Google Scholar]
- Ren, F.Y.; Owa, S.; Fukui, S. Some inequalities on Quasi-subordinate functions. Bull. Aust. Math. Soc. 1991, 43, 317–324. [Google Scholar] [CrossRef]
- Altintaş, O.; Owa, S. Majorizations and quasi-subordinations for certain analytic functions. Proc. Jpn. Acad. Ser. A Math. Sci. 1992, 68, 181–185. [Google Scholar] [CrossRef]
- De Branges, L. A proof of the Bieberbach conjecture. Acta Math. 1985, 154, 137–152. [Google Scholar] [CrossRef]
- Fekete, M.; Szego, G. Eine Bemerkung uber ungerade schlichte Funktionen. J. Lond. Math. Soc. 1933, 26, 85–89. [Google Scholar] [CrossRef]
- Keogh, F.R.; Merkes, E.P. A coefficient inequality for certain classes of analytic functions. Proc. Am. Math. Soc. 1969, 20, 8–12. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Mishra, A.K.; Das, M.K. The Fekete–Szegö problem for a subclass of close-toconvex functions. Complex Var. Theory Appl. 2001, 44, 145–163. [Google Scholar]
- Kowalczyk, B.; Lecko, A.; Srivastava, H.M. A note on the Fekete–Szegö problem for close-to-convex functions with respect to convex functions. Publ. Inst. Math. Nouv. Ser. 2017, 101, 143–149. [Google Scholar] [CrossRef]
- Tang, H.; Srivastava, H.M.; Sivasubramanian, S.; Gurusamy, P. The Fekete-Szegö functional problems for some subclasses of m-fold symmetric bi-univalent functions. J. Math. Inequal. 2016, 10, 1063–1092. [Google Scholar] [CrossRef]
- Abdel-Gawad, H.R. On the Fekete–Szegö problem for alpha-quasi-convex functions. Tamkang J. Math. 2000, 31, 251–255. [Google Scholar] [CrossRef]
- Ahuja, O.P.; Jahangiri, M. Fekete–Szegö problem for a unified class of analytic functions. Panamer. Math. J. 1997, 7, 67–78. [Google Scholar]
- Choi, J.H.; Kim, Y.C.; Sugawa, T. A general approach to the Fekete-Szegö problem. J. Math. Soc. Jpn. 2007, 59, 707–727. [Google Scholar] [CrossRef]
- Darus, M.; Tuneski, N. On the Fekete-Szegö problem for generalized close-to-convex functions. Int. Math. J. 2003, 4, 561–568. [Google Scholar]
- Kumar, S.S.; Kumar, V. Fekete-Szegö problem for a class of analytic functions. Stud. Univ. Babes-Bolyai Math. 2013, 58, 181–188. [Google Scholar]
- Zaprawa, P. On the Fekete–Szegö problem for classes of bi-univalent functions. Bull. Belg. Math. Soc. Simon Stevin 2014, 21, 169–178. [Google Scholar] [CrossRef]
- Kanas, S.; Wisniowska, A. Conic regions and k-uniform convexity. J. Comput. Appl. Math. 1999, 105, 327–336. [Google Scholar] [CrossRef]
- Kanas, S.; Wisniowska, A. Conic domains and starlike functions. Rev. Roum. Math. Pures Appl. 2000, 45, 647–658. [Google Scholar]
- Duren, P.L. Univalent Functions; Springer: New York, NY, USA, 1983. [Google Scholar]
- Goodman, A.W. On uniformly convex functions. Ann. Polon. Math. 1992, 56, 87–92. [Google Scholar] [CrossRef]
- Kanas, S.; Wisniowska, A. Conic regions and k-uniform convexity, II, Zeszyty Nauk. Politech. Rzeszowskiej Mat. 1998, 22, 65–78. [Google Scholar]
- Ali, R.M.; Ravichandran, V.; Seerivasaga, N. Coefficient bounds for p-valent functions. Appl. Math. Comput. 2007, 187, 35–46. [Google Scholar] [CrossRef]
- Ma, W.; Minda, D. A unified treatment of some special classes of univalent functions. In Proceedings of the Conference on Complex Analysis, Tianjin, China, 19–23 June 1992; pp. 157–169. [Google Scholar]
- Kanas, S. Coefficient estimates in subclasses of the Caratheodory class related to conical domains. Acta Math. Univ. Comenian 2005, 74, 149–161. [Google Scholar]
- Ahiezer, N.I. Elements of Theory of Elliptic Functions; American Mathematical Society: Moscow, Russia, 1970. (In Russian) [Google Scholar]
- Anderson, G.D.; Vamanamurthy, M.K.; Vourinen, M.K. Conformal Invariants, Inequalities and Quasiconformal Maps, Wiley-Interscience Fekete M, Szegö G. Eine Bemerkung über ungerade schlichte Funktionen. J. Lond. Math. Soc. 1997, 1, 85–89. [Google Scholar]
- Dziok, J.; Srivastava, M. Classes of analytic functions associated with the generalized hypergeometric function. Appl. Math. Comput. 1999, 103, 1–13. [Google Scholar] [CrossRef]
- Çağlar, M.; Gurusamy, P.; Orhan, H. The coefficient estimates for a class defined by Hohlov operator using conic domains. TWMS J. Pure Appl. Math. 2020, 11, 157–172. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Akgül, A.; Cotîrlă, L.-I. Coefficient Estimates for a Family of Starlike Functions Endowed with Quasi Subordination on Conic Domain. Symmetry 2022, 14, 582. https://doi.org/10.3390/sym14030582
Akgül A, Cotîrlă L-I. Coefficient Estimates for a Family of Starlike Functions Endowed with Quasi Subordination on Conic Domain. Symmetry. 2022; 14(3):582. https://doi.org/10.3390/sym14030582
Chicago/Turabian StyleAkgül, Arzu, and Luminita-Ioana Cotîrlă. 2022. "Coefficient Estimates for a Family of Starlike Functions Endowed with Quasi Subordination on Conic Domain" Symmetry 14, no. 3: 582. https://doi.org/10.3390/sym14030582
APA StyleAkgül, A., & Cotîrlă, L.-I. (2022). Coefficient Estimates for a Family of Starlike Functions Endowed with Quasi Subordination on Conic Domain. Symmetry, 14(3), 582. https://doi.org/10.3390/sym14030582