Next Article in Journal
Bubbling, Bistable Limit Cycles and Quasi-Periodic Oscillations in Queues with Delayed Information
Previous Article in Journal
Product of Hessians and Discriminant of Critical Points of Level Function Attached to Sphere Arrangement
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

An Exact Solution to a Quaternion Matrix Equation with an Application

1
Department of Mathematics, Shanghai University, Shanghai 200444, China
2
Collaborative Innovation Center for the Marine Artificial Intelligence, Shanghai 200444, China
*
Author to whom correspondence should be addressed.
Symmetry 2022, 14(2), 375; https://doi.org/10.3390/sym14020375
Submission received: 25 January 2022 / Revised: 6 February 2022 / Accepted: 10 February 2022 / Published: 14 February 2022
(This article belongs to the Section Mathematics)

Abstract

:
In this paper, we establish the solvability conditions and the formula of the general solution to a Sylvester-like quaternion matrix equation. As an application, we give some necessary and sufficient conditions for a system of quaternion matrix equations to be consistent, and present an expression of the general solution of the system when it is solvable. We present an algorithm and an example to illustrate the main results of this paper. The findings of this paper generalize the known results in the literature.

1. Introduction

In this paper, we mainly investigate the following matrix equation:
A 1 X 1 B 1 + A 1 X 2 B 2 + A 2 X 3 B 2 + A 2 X 4 B 3 = C c
over the real quaternion algebra, H , where A 1 , A 2 , B 1 , B 2 , B 3 and C c are given matrices, while X i ( i = 1 , 4 ¯ ) are unknown.
The quaternion algebra, H , is a non-commutative division ring. It has many applications in computer science, orbital mechanics, signal and color image processing, and control theory, and so on (see, e.g., [1,2,3,4,5,6]).
Linear matrix equation is one of active topics in mathematics. Besides mathematics, they also have important applications in other fields, such as descriptor systems control theorem [7], neural network [8], feedback [9], and graph theory [10]. There have been a large number of papers on this topic (see, e.g., [1,2,3,4,5,11,12,13,14,15,16]). We know that the following linear matrix equation:
A 1 X 1 B 1 = C
is both classical and fundamental, which was studied by many authors. For instance, Ben-Israel and Greville [17] gave a necessary and sufficient condition for the solvability to (2). Peng [18] presented some necessary and sufficient conditions for (2) to have a centrosymmetric solution by using generalized singular value decomposition. Huang [19] investigated the skew-symmetric solution and optimal approximate solution of (2). Recently, Xie and Wang [20] derived a necessary and sufficient condition for (2) to have a reducible solution. Furthermore, Xie and Wang [20] studied the following matrix equation:
A 1 X 1 B 1 + A 1 X 2 B 2 + A 2 X 3 B 2 = C 1
which is the special case of (1). They provided some necessary and sufficient conditions for (3) to be consistent and gave an expression of its general solution when it is solvable. Motivated by the above, in this paper, we aim to establish some necessary and sufficient conditions for (1) to have a solution and derive an expression of its general solution when it is solvable. As an application of (1), we investigate the system of the following matrix equations:
E 1 X 1 = F 1 , X 1 G 1 = H 1 , E 1 X 2 = F 2 , X 2 G 2 = H 2 , E 2 X 3 = F 3 , X 3 G 2 = H 3 , E 2 X 4 = F 4 , X 4 G 3 = H 4 , E 11 X 1 F 11 + E 11 X 2 F 22 + E 22 X 3 F 22 + E 22 X 4 F 33 = T
over H , where X i ( i = 1 , , 4 ) are unknown quaternion matrices and the others are given.
The rest of this paper is structured as follows. In Section 2, we give preliminaries. In Section 3, we establish some necessary and sufficient conditions for the matrix Equation (1) to have a solution, and derive an expression of the general solution to (1) when it is solvable. as an application of (1), we derive some necessary and sufficient conditions for the system of matrix Equations (4) to have a solution as well as an expression of its general solution. Finally, we give a brief conclusion to close this paper in In Section 4.

2. Preliminaries

Throughout this paper, we denote the set of all real numbers by R , the set of all m × n quaternion matrices by H m × n , where we obtain the following:
H = { u 0 + u 1 i + u 2 j + u 3 k | i 2 = j 2 = k 2 = ijk = 1 , u 0 , u 1 , u 2 , u 3 R } .
Denoted by the rank of A by r ( A ) . I and 0 represent an identity matrix and a zero matrix of appropriate sizes, respectively. An inner inverse of A is denoted by A which satisfies A A A = A . L A and R A stand for the projectors L A = I A A and R A = I A A , induced by A, respectively. It is easy to know that L A = ( L A ) 2 , R A = ( R A ) 2 .
Lemma 1
([20]). Let A 1 , A 2 , B 1 , B 2 and C 1 be given matrices over H with suitable sizes. Put the following:
B 3 = B 1 L B 2 , M = R A 1 A 2 , C = C 1 L B 2 + R A 1 C 1 , N = B 2 L B 3 .
Then, the following statements are equivalent:
(1)
Equation (3) is consistent.
(2)
R M R A 1 C = 0 , C L B 3 L N = 0 , R A 1 C L B 2 = 0 , R M C L B 3 = 0 .
(3)
r 2 C 1 A 2 A 1 B 1 0 0 B 2 0 0 = r ( A 2 , A 1 ) + r B 1 B 2 , r 2 C 1 A 2 A 1 B 2 0 0 = r ( A 2 , A 1 ) + r B 2 , r 2 C 1 A 1 B 1 0 B 2 0 = r ( A 1 ) + r B 1 B 2 , r C 1 A 1 B 2 0 = r ( A 1 ) + r B 2 .
In this case, the general solution of (3) can be expressed as follows:
X 1 = A 1 C B 3 + L A 1 V 1 + V 2 R B 3 , X 2 = A 1 ( C 1 A 1 X 1 B 1 A 2 X 3 B 2 ) B 2 + T 1 R B 2 L A 1 T 2 , X 3 = M C B 2 + L M U 1 + U 2 R B 2 ,
where U 1 , U 2 , V 1 , V 2 , T 1 and T 2 are arbitrary matrices over H , with appropriate sizes.
The following lemma is due to Marsaglia and Styan [21], which can be generalized to  H .
Lemma 2
[21]). Let A H m × n , B H m × k , C H l × n , D H j × k and E H l × i be given. Then, we have the following rank equality:
r A B L D R E C 0 = r A B 0 C 0 E 0 D 0 r ( D ) r ( E ) .
Lemma 3
([22]). Let A i i , B i i and C i i ( i = 1 , 2 ¯ ) be given matrices over H with appropriate sizes. Put the following:
A 1 = A 22 L A 11 , B 1 = R B 11 B 22 , C 1 = C 22 A 22 A 11 C 11 B 11 B 22 , D 1 = R A 1 A 22 , ϕ = A 11 C 11 B 11 + L A 11 A 1 C 1 B 22 L A 11 A 1 A 22 D 1 R A 1 C 1 B 22 + D 1 R A 1 C 1 B 1 R B 11 .
Then, the system of matrix equations A i i X B i i = C i i ( i = 1 , 2 ¯ ) has a solution if—and only if—the following is true:
R A i i C i i = 0 , C i i L B i i = 0 , ( i = 1 , 2 ¯ ) , R A 1 C 1 L B 1 = 0 .
In this case, the general solution to the system can be expressed as follows:
X = ϕ + L A 11 L A 1 U 1 + U 2 R B 1 R B 11 + L A 11 U 3 R B 22 + L A 22 U 4 R B 11 ,
where U i ( i = 1 , 4 ¯ ) are arbitrary matrices over H , with appropriate sizes.
Lemma 4
([23]). Let A 1 H m 1 × n 1 , B 1 H r 1 × s 1 , C 1 H m 1 × r 1 and C 2 H n 1 × s 1 be given. Then, we obtain the following system:
A 1 X 1 = C 1 , X 1 B 1 = C 2
which is consistent if—and only if—the following is true:
R A 1 C 1 = 0 , C 2 L B 1 = 0 , A 1 C 2 = C 1 B 1 .
Under these conditions, a general solution to (5) can be expressed as follows:
X 1 = A 1 C 1 + L A 1 C 2 B 1 + L A 1 U 1 R B 1 ,
where U 1 is an any matrix with conformable dimension.
Lemma 5
([24]). Consider the following matrix equation:
A 1 X 1 + X 2 B 1 + C 3 X 3 D 3 + C 4 X 4 D 4 = E 1
over H , where A 1 , B 1 , C 3 , D 3 , C 4 , D 4 and E 1 be given matrices of suitable sizes. Put the following:
A = R A 1 C 3 , B = D 3 L B 1 , C = R A 1 C 4 , D = D 4 L B 1 , E = R A 1 E 1 L B 1 , M = R A C , N = D L B , S = C L M .
Then, the following statements are equivalent:
(1)
The matrix Equation (6) has a solution.
(2)
R M R A E = 0 , E L B L N = 0 , R A E L D = 0 , R C E L B = 0 .
(3)
r E 1 C 4 C 3 A 1 B 1 0 0 0 = r ( B 1 ) + r ( C 4 , C 3 , A 1 ) , r E 1 A 1 D 3 0 D 4 0 B 1 0 = r D 3 D 4 B 1 + r ( A 1 ) , r E 1 C 3 A 1 D 4 0 0 B 1 0 0 = r ( C 3 , A 1 ) + r D 4 B 1 , r E 1 C 4 A 1 D 3 0 0 B 1 0 0 = r ( C 4 , A 1 ) + r D 3 B 1 .
In this case, the general solution to the matrix Equation (6) can be expressed as follows:
X 1 = A 1 ( E 1 C 3 X 3 D 3 C 4 X 4 D 4 ) A 1 T 7 B 1 + L A 1 T 6 , X 2 = R A 1 ( E 1 C 3 X 3 D 3 C 4 X 4 D 4 ) B 1 + A 1 A 1 T 7 + T 8 R B 1 , X 3 = A E B A C M E B A S C E N D B A S T 2 R N D B + L A T 4 + T 5 R B , X 4 = M E D + S S C E N + L M L S T 1 + L M T 2 R N + T 3 R D ,
where T 1 , , T 8 are arbitrary matrices of appropriate sizes over H .
Lemma 6
([22]). Let A 1 , B 1 and C 1 be given matrices over H with suitable sizes. Then, the matrix equation A 1 X 1 B 1 = C 1 is consistent if—and only if— R A 1 C 1 = 0 , C 1 L B 1 = 0 . In this case, the general solution of the matrix equation can be expressed as follows:
X 1 = A 1 C 1 B 1 + L A 1 V + U R B 1 ,
where U and V are any matrices with compatible dimensions over H .

3. The General Solution to the Matrix Equation (1)

For convenience, we define the notation as follows: let A i , B j ( i = 1 , 2 ¯ , j = 1 , 3 ¯ ) be given matrices of suitable sizes over H and put the following:
B 4 = B 1 L B 2 , B 5 = B 2 L B 4 , A 33 = R A 1 A 2 , C 44 = C c L B 2 + R A 1 C c , B 33 = B 3 L B 2 , C 33 = R A 1 C c L B 2 , A 11 = A 2 + A 33 , B 11 = B 3 L B 4 L B 5 , C 11 = ( I + R A 1 ) C c L B 4 L B 5 , A 22 = R A 33 A 2 , B 22 = B 3 L B 2 L B 4 , C 22 = R A 33 C 44 L B 4 , M 1 = A 22 L A 11 , N 1 = R B 11 B 22 , C 1 = C 22 A 22 A 11 C 11 B 11 B 22 , D 1 = R A 1 A 22 , ϕ = A 11 C 11 B 11 + L A 11 M 1 C 1 B 22 L A 11 M 1 A 22 D 1 R M 1 C 1 B 22 + D 1 R M 1 C 1 N 1 R B 11 , M 2 = L A 11 L M 1 , L A 33 , N 2 = R N 1 R B 11 R B 33 , A = R M 2 L A 11 , B = R B 22 L N 2 , C = R M 2 L A 22 , D = R B 11 L N 2 , E 1 = A 33 C 33 B 33 ϕ , E = R M 2 E 1 L N 2 , M = R A C , N = D L B , S = C L M ,
and
S 1 = I m , 0 , S 2 = I n 0 , S 3 = 0 , I m , S 4 = 0 I n ,
where I m and I n denote the unit matrices of order n and m, respectively. Then, we obtain the main theorem of this paper.
Theorem 1.
Consider (1) with the notation in (7). The following statements are equivalent:
(1)
The matrix Equation (1) has a solution.
(2)
R A 33 R A 1 C 44 = 0 , R A 11 C 11 = 0 , C i i L B i i = 0 , ( i = 1 , 3 ¯ ) ,
R M 1 C 1 L N 1 = 0 , R A E L D = 0 , R M R A E = 0 , E L B L N = 0 , R C E L B = 0 .
(3)
r 2 C c A 2 A 1 B 2 0 0 = r ( A 2 , A 1 ) + r ( B 2 ) ,
r 2 C c A 2 A 1 B 1 0 0 B 2 0 0 = r ( A 2 , A 1 ) + r B 1 B 2 ,
r 2 C c A 1 B 3 0 B 2 0 B 1 0 = r ( A 1 ) + r B 3 B 2 B 1 ,
r 2 C c A 2 A 1 B 3 0 0 B 2 0 0 B 1 0 0 = r ( A 2 , A 1 ) + r B 3 B 2 B 1 ,
r C c A 1 B 3 0 B 2 0 = r ( A 1 ) + r B 3 B 2 ,
r 2 C c 0 0 A 2 A 1 0 B 3 0 B 3 0 0 0 0 A 2 2 C c 0 0 A 1 B 1 0 0 0 0 0 0 0 B 1 0 0 0 0 0 B 2 0 0 0 B 2 0 0 0 0 0 = r A 2 A 1 0 0 0 0 A 2 A 1 + r B 3 B 3 B 2 0 B 1 0 0 B 2 0 B 1 ,
r 0 B 3 B 3 0 0 2 A 2 2 C c 0 A 1 0 A 2 0 C c 0 A 1 0 B 2 0 0 0 0 B 1 0 0 0 0 0 B 2 0 0 = r 0 A 1 0 A 2 0 A 1 + r B 3 B 3 B 2 0 B 1 0 0 B 2 ,
r 0 0 B 3 B 3 B 3 0 0 0 0 0 0 2 C c 0 0 A 2 0 A 1 0 A 2 0 0 2 C c 0 0 0 0 A 1 0 A 2 0 0 C c 0 A 1 0 0 0 0 0 0 B 2 0 0 0 0 0 0 B 1 0 0 0 0 0 0 0 0 B 2 0 0 0 0 0 0 0 0 0 B 2 0 0 0 0 0 0 0 0 B 1 0 0 0 0 0
= r A 2 A 1 0 0 0 0 0 0 A 2 A 1 0 0 0 0 0 0 A 2 A 1 + r B 3 B 3 B 3 B 2 0 0 B 1 0 0 0 B 2 0 0 B 1 0 0 0 B 2 ,
r 0 B 3 B 3 0 0 0 0 0 0 0 B 3 B 3 0 0 0 0 2 A 2 0 2 C c 0 0 0 A 1 0 0 2 C c 0 0 0 A 2 0 A 1 A 2 0 0 C c A 1 0 0 0 0 B 2 0 0 0 0 0 0 0 B 1 0 0 0 0 0 0 0 0 B 2 0 0 0 0 0 0 0 B 1 0 0 0 0 0 0 0 0 B 2 0 0 0 0 = r 0 A 2 0 A 1 0 2 A 2 0 0 0 A 1 A 2 0 A 1 0 0 + r B 3 B 3 0 0 B 3 B 3 B 2 0 0 B 1 0 0 0 B 2 0 0 B 1 0 0 0 B 2 ,
r 0 0 B 3 B 3 B 3 0 0 0 0 0 0 0 0 0 B 3 0 0 0 0 0 2 C c 0 0 0 A 1 A 2 0 A 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 A 1 0 A 2 0 0 0 C c 0 0 0 0 0 B 1 0 0 0 0 0 0 0 0 B 2 0 0 0 0 0 0 0 0 0 B 1 0 0 0 0 0 0 0 0 B 2 0 0 0 0 0 0 0 0 0 B 1 0 0 0 0 0 0 0 0 B 2 0 0 0 0 0 0 0 0 0 B 2 0 0 0
= r 0 0 A 2 A 1 0 A 2 0 0 0 0 0 0 0 0 A 1 0 A 2 0 0 0 + r B 3 B 3 B 3 0 0 0 0 B 3 B 2 0 0 0 B 1 0 0 0 0 B 2 0 0 0 B 1 0 0 0 0 B 1 0 0 0 B 2 0 0 0 0 B 2 .
In this case, the general solution to (1) can be expressed as follows:
X 1 = A 1 ( C c A 2 X 4 B 3 ) L B 2 + R A 1 ( C c A 2 X 4 B 3 ) B 4 + L A 1 V 1 + V 2 R B 4 , X 2 = A 1 ( C c A 1 X 1 B 1 A 2 X 3 B 2 A 2 X 4 B 3 ) B 2 + V 3 R B 2 L A 1 V 4 , X 3 = M ( C c A 2 X 4 B 3 ) L B 2 + R A 1 ( C c A 2 X 4 B 3 ) B 2 + L M V 5 + V 6 R B 2 , X 4 = ϕ + L A 11 L M 1 U 1 + U 2 R N 1 R B 11 + L A 11 U 3 R B 22 + L A 22 U 4 R B 11 , o r X 4 = A 33 C 33 B 33 + L A 33 U 5 + U 6 R B 33 ,
where
U 1 = S 1 M 2 E 1 L A 11 U 3 R B 22 L A 22 U 4 R B 11 M 2 T 7 N 2 + L M 2 T 6 , U 2 = R M 2 E 1 L A 11 U 3 R B 22 L A 2 U 4 R B 11 N 2 + M 2 M 2 T 7 + T 8 R N 2 S 2 , U 3 = A E B A C M R A E B A S C E L B N D B A S T 3 R N D B + L A T 1 + T 2 R B , U 4 = M R A E D + L M S S C E L B N + L M L S T 4 + L M T 3 R N + T 5 R D , U 5 = S 3 M 2 E 1 L A 11 U 3 R B 22 L A 22 U 4 R B 11 M 2 T 7 N 2 + L M 2 T 6 , U 6 = R M 2 E 1 L A 11 U 3 R B 22 L A 22 U 4 R B 11 N 2 + M 2 M 2 T 7 + T 8 R N 2 S 4 ,
and V i ( i = 1 , 6 ¯ ) , T i ( i = 1 , 8 ¯ ) are arbitrary matrices over H , with appropriate sizes.
Proof. 
( 1 ) ( 2 ) : It is easy to know that Equation (1) can be written as follows:
A 1 X 1 B 1 + A 1 X 2 B 2 + A 2 X 3 B 2 = C c A 2 X 4 B 3 .
Clearly, Equation (1) is solvable if—and only if—Equation (21) is consistent. By Lemma 1, we obtain that (21) is solvable if—and only if—there exists X 4 in (21) such that we obtain the following:
R A 33 R A 1 ( C c A 2 X 4 B 3 ) L B 2 + R A 1 ( C c A 2 X 4 B 3 ) = 0 , ( C c A 2 X 4 B 3 ) L B 2 + R A 1 ( C c A 2 X 4 B 3 ) L B 3 L B 5 = 0 , R A 33 ( C c A 2 X 4 B 3 ) L B 2 + R A 1 ( C c A 2 X 4 B 3 ) L B 4 = 0 , R A 1 ( C c A 2 X 4 B 3 ) L B 2 + R A 1 ( C c A 2 X 4 B 3 ) L B 2 = 0 ,
i.e.,
R A 33 R A 1 C 44 = 0 ,
A i i X 4 B i i = C i i ( i = 1 , 2 ) ,
and
A 33 X 4 B 33 = C 33 ,
respectively. Moreover, when (22) is solvable, we obtain the following:
X 1 = A 1 ( C c A 2 X 4 B 3 ) L B 2 + R A 1 ( C c A 2 X 4 B 3 ) B 4 + L A 1 V 1 + V 2 R B 4 , X 2 = A 1 ( C c A 1 X 1 B 1 A 2 X 3 B 2 A 2 X 4 B 3 ) B 2 + V 3 R B 2 L A 1 V 4 , X 3 = M ( C c A 2 X 4 B 3 ) L B 2 + R A 1 ( C c A 2 X 4 B 3 ) B 2 + L M V 5 + V 6 R B 2 ,
where B 4 , B 5 , A 33 and M are defined by (7), V i ( i = 1 , 6 ¯ ) , which are arbitrary matrices over H , with appropriate sizes.
Hence, the matrix Equation (21) is solvable if—and only if—(22) holds, and there exists X 4 , such that both (23) and (24) are solvable.
Next, we consider the common solution of (23) and (24). On the ond hand, by Lemma 3, the system (23) is solvable if—and only if—the following is true:
R A i i C i i = 0 , C i i L B i i = 0 ( i = 1 , 2 ) , R M 1 C 1 L N 1 = 0 ,
in which case, the general solution of (23) can be expressed as follows:
X 4 = ϕ + L A 11 L M 1 U 1 + U 2 R N 1 R B 11 + L A 11 U 3 R B 22 + L A 22 U 4 R B 11 ,
where A i i ( i = 1 , 2 ) , M 1 , N 1 and C 1 are given by (7), and U i ( i = 1 , 4 ¯ ) are arbitrary matrices over H , with appropriate sizes. On the other hand, in view of Lemma 6, (24) is solvable if—and only if—the following is true:
R A 33 C 33 = 0 , C 33 L B 33 = 0 ,
in which case, the general solution of (24) can be expressed as follows:
X 4 = A 33 C 33 B 33 + L A 33 U 5 + U 6 R B 33 ,
where A 33 , B 33 and C 33 are given by (7), and U 5 and U 6 are arbitrary matrices over H , with appropriate sizes.
Clearly, the matrix Equations (23) and (24) have a common solution if—and only if— X 4 of (26) is equal to X 4 of (28). Letting X 4 of (26) be the one of (28), yielding the following:
( L A 11 L M 1 , L A 33 ) U 1 U 5 + ( U 2 , U 6 ) R N 1 R B 11 R B 33 + L A 11 U 3 R B 22 + L A 22 U 4 R B 11 = E 1 ,
i.e.,
M 2 U 1 U 5 + ( U 2 , U 6 ) N 2 + L A 11 U 3 R B 22 + L A 22 U 4 R B 11 = E 1 .
It follows from Lemma 5 that Equation (29) has a solution if—and only if—the following is true:
R A E L D = 0 , R M R A E = 0 , E L B L N = 0 , R C E L B = 0 .
In this case, the general solution to (29) can be expressed as follows:
U 1 = S 1 M 2 E 1 L A 11 U 3 R B 22 L A 22 U 4 R B 11 M 2 T 7 N 2 + L M 2 T 6 , U 2 = R M 2 E 1 L A 11 U 3 R B 22 L A 2 U 4 R B 11 N 2 + M 2 M 2 T 7 + T 8 R N 2 S 2 , U 3 = A E B A C M R A E B A S C E L B N D B A S T 3 R N D B + L A T 1 + T 2 R B , U 4 = M R A E D + L M S S C E L B N + L M L S T 4 + L M T 3 R N + T 5 R D , U 5 = S 3 M 2 E 1 L A 11 U 3 R B 22 L A 22 U 4 R B 11 M 2 T 7 N 2 + L M 2 T 6 , U 6 = R M 2 E 1 L A 11 U 3 R B 22 L A 22 U 4 R B 11 N 2 + M 2 M 2 T 7 + T 8 R N 2 S 4 ,
where M 1 , M 2 , N 1 , N 2 , A , B , D , E , S , M , N are defined as (7), and T j ( j = 1 , 8 ¯ ) are arbitrary matrices over H , with appropriate sizes.
So far, we have shown that Equation (21) is solvable if—and only if—(22), (25), (27), and (30) hold. In this case, the general solution of (21) can be expressed as (20).
We now show that R A 33 C 33 = 0 R A 33 R A 1 C 44 = 0 and R A 22 C 22 = 0 R A 11 C 11 = 0 .
In fact, it follows from Lemma 2 that we obtain the following:
R A 33 C 33 = 0 r ( R A 33 C 33 ) = 0 r ( C 33 , A 33 ) = r ( A 33 ) r ( R A 1 C c L B 2 , R A 1 A 2 ) = r ( R A 1 A 2 ) r C c A 2 A 1 B 2 0 0 = r ( A 2 , A 1 ) + r ( B 2 )
and
R A 33 R A 1 C 44 = 0 r R A 33 R A 1 ( C c L B 2 + R A 1 C c ) = 0 r ( C c L B 2 + R A 1 C c , A 2 , A 1 ) = r ( A 2 , A 1 ) r 2 C c A 2 A 1 B 2 0 0 = r ( A 2 , A 1 ) + r ( B 2 )
yielding R A 33 C 33 = 0 R A 33 R A 1 C 44 = 0 .
On the other hand, we have the following:
R A 11 C 11 = 0 r ( R A 11 C 11 ) = 0 r ( C 11 , A 11 ) = r ( A 11 ) r [ ( I + R A 1 ) C c L B 4 L B 5 , ( I + R A 1 ) A 2 ] = r [ ( I + R A 1 ) A 2 ] r I 0 0 0 ( I + R A 1 ) C c L B 4 L B 5 ( I + R A 1 ) A 2 = r I 0 0 ( I + R A 1 ) A 2 r I C c A 2 0 I C c A 2 A 1 0 B 2 0 0 0 B 1 0 0 = r I A 2 0 I A 2 A 1 + r B 2 B 1 r 2 C c A 2 A 1 B 2 0 0 B 1 0 0 = r ( A 2 , A 1 ) + r B 2 B 1 ( 11 ) .
Similarly, we can show that R A 22 C 22 = 0 (11). Hence, R A 11 C 11 = 0 R A 22 C 22 = 0 .
So far, we have proved that (22), (25), (27), and (30) hold if—and only if—(8) and (9) hold.
To sum up, Equation (21), and thus Equation (1), are consistent if—and only if—(8) and (9) hold.
( 2 ) ( 3 ) : We first show that (8) holds if—and only if—(10)–(14) hold. It follows from (32) and (33) that (22) (10) and R A 11 C 11 = 0 (11). Next, we prove that C 11 L B 11 = 0 (12). By Lemma 2, as follows:
C 11 L B 11 = 0 r ( C 11 L B 11 ) = 0 r C 11 B 11 = r ( B 11 ) r ( I + R A 1 ) C c B 3 B 2 B 1 = r B 3 B 2 B 1 r I 0 I ( I + R A 1 ) C c 0 B 3 0 B 2 0 B 1 r ( I ) = r B 3 B 2 B 1 r I C c 0 I C c A 1 0 B 3 0 0 B 2 0 0 B 1 0 r ( I ) = r B 3 B 2 B 1 + r ( A 1 ) r 2 C c A 1 B 3 0 B 2 0 B 1 0 = r B 3 B 2 B 1 + r ( A 1 ) ( 12 ) .
Similarly, we can show that C 22 L B 22 = 0 13 and C 33 L B 33 = 0 (14). Therefore, (8) holds if—and only if—(10)–(14) all hold.
We now turn our attention to show that (9) holds if—and only if—(15)–(19) hold. R M 1 C 1 L N 1 = 0 (15). In fact, it follows from Lemma 2 that the following is true:
R M 1 C 1 L N 1 = 0 r ( R M 1 C 1 L N 1 ) = 0 r C 1 M 1 N 1 0 = r ( M 1 ) + r ( N 1 ) r C 22 A 22 0 B 22 0 B 11 0 A 11 C 11 = r A 22 A 11 + r ( B 22 , B 11 ) r C c L B 2 + R A 1 C c A 2 0 A 33 B 3 L B 2 0 B 3 0 0 ( I + R A 1 ) A 2 ( I + R A 1 ) C c 0 B 1 L B 2 0 0 0 0 0 B 4 0 0 0 B 2 0 = r B 3 L B 2 B 3 B 1 L B 2 0 0 B 4 0 B 2 + r A 2 A 33 ( I + R A 1 ) A 2 0 r I 0 0 0 0 I C c L B 2 + R A 1 C c A 2 0 A 33 0 B 3 L B 2 0 B 3 0 I 0 ( I + R A 1 ) A 2 ( I + R A 1 ) C c 0 0 B 1 L B 2 0 0 0 0 0 0 B 4 0 0 0 0 B 2 0 = r B 3 L B 2 B 3 B 1 L B 2 0 0 B 4 0 B 2 + r I 0 0 0 A 2 A 33 I ( I + R A 1 ) A 2 0 r I C c A 2 C c 0 0 0 I C c A 2 0 A 2 A 1 0 0 B 3 0 B 3 0 0 0 I 0 A 2 C c 0 0 A 1 0 B 1 0 0 0 0 0 0 0 0 B 4 0 0 0 0 0 0 B 2 0 0 0 0 B 2 0 0 0 0 0 = r B 3 B 3 B 1 0 0 B 4 0 B 2 B 2 0 + r I A 2 0 0 0 0 A 2 A 2 A 1 0 I A 2 0 0 A 1 r 2 C c 0 0 A 2 A 1 0 B 3 0 B 3 0 0 0 0 A 2 2 C c 0 0 A 1 B 1 0 0 0 0 0 0 0 B 1 0 0 0 0 0 B 2 0 0 0 B 2 0 0 0 0 0 = r A 2 A 1 0 0 0 0 A 2 A 1 + r B 3 B 3 B 2 0 B 1 0 0 B 2 0 B 1 ( 15 ) .
Similarly, we can show that R M R A E = 0 (16), E L B L N = 0 (17), R A E L D = 0 (18) and R C E L B = 0 (19). The proof is completed. Next, we use an Algorithm 1 for calculating Equation (1) to illustrate this theorem.    □

3.1. Algorithm with a Numerical Example

In this section, we present an algorithm and an example to illustrate Theorem 1.
Algorithm 1: Algorithm for calculating Equation (1)
(1) Feed the values of A i , B j ( i = 1 , 2 , j = 1 , 3 ¯ ) and C c with conformable shapes over H .
(2) Compute the symbols in (7).
(3) Check whether (8), (9) or rank equalities in (10)–(19) hold or not. If no, then return “inconsisten”.
(4) Otherwise, compute X i ( i = 1 , 4 ¯ ) .
Example 1.
Consider the matrix Equation (1). Put the following:
A 1 = a 111 a 112 a 121 a 122 a 131 a 132 , B 1 = b 111 b 112 b 113 b 121 b 122 b 123 , B 2 = b 211 b 212 b 213 b 221 b 222 b 223 , A 2 = a 211 a 212 a 221 a 222 a 231 a 232 , B 3 = b 311 b 312 b 313 b 321 b 322 b 323 , C c = c 11 c 12 c 13 c 21 c 22 c 23 c 31 c 32 c 33 ,
where
a 111 = 0.3181 + 0.5447 i + 0.2187 j + 0.3685 k , a 112 = 0.6456 + 0.7210 i + 0.0636 j + 0.7720 k , a 121 = 0.1192 + 0.6473 i + 0.1058 j + 0.7635 k , a 122 = 0.4795 + 0.5225 i + 0.4046 j + 0.9329 k , a 131 = 0.9398 + 0.5439 i + 0.1097 j + 0.6279 k , a 132 = 0.6393 + 0.9937 i + 0.4484 j + 0.9727 k , b 111 = 0.1920 + 0.8611 i + 0.3477 j + 0.2428 k , b 112 = 0.6963 + 0.3935 i + 0.5861 j + 0.6878 k , b 113 = 0.5254 + 0.7413 i + 0.0445 j + 0.7363 k , b 121 = 0.1389 + 0.4849 i + 0.1500 j + 0.4424 k , b 122 = 0.0938 + 0.6714 i + 0.2621 j + 0.3592 k , b 123 = 0.5303 + 0.5201 i + 0.7549 j + 0.3947 k , b 211 = 0.6834 + 0.2703 i + 0.7691 j + 0.7904 k , b 212 = 0.4423 + 0.8217 i + 0.8085 j + 0.3276 k , b 213 = 0.3309 + 0.8878 i + 0.3774 j + 0.4386 k , b 221 = 0.7040 + 0.1971 i + 0.3968 j + 0.9493 k , b 222 = 0.0196 + 0.4299 i + 0.7551 j + 0.6713 k , b 223 = 0.4243 + 0.3912 i + 0.2160 j + 0.8335 k , a 211 = 0.7689 + 0.5880 i + 0.7900 j + 0.6787 k , a 212 = 0.9899 + 0.4070 i + 0.0900 j + 0.4950 k , a 221 = 0.1673 + 0.1548 i + 0.3185 j + 0.4952 k , a 222 = 0.5144 + 0.7487 i + 0.1117 j + 0.1476 k , a 231 = 0.8620 + 0.1999 i + 0.5341 j + 0.1897 k , a 232 = 0.8843 + 0.8256 i + 0.1363 j + 0.0550 k , b 311 = 0.8507 + 0.8790 i + 0.5277 j + 0.5747 k , b 312 = 0.9296 + 0.0005 i + 0.8013 j + 0.7386 k , b 313 = 0.5828 + 0.6126 i + 0.4981 j + 0.2467 k , b 321 = 0.5606 + 0.9889 i + 0.4795 j + 0.8452 k , b 322 = 0.6967 + 0.8654 i + 0.2278 j + 0.5860 k , b 323 = 0.8154 + 0.9900 i + 0.9009 j + 0.6664 k , c 11 = 38.7863 + 4.0617 i + 0.5536 j 3.4984 k , c 12 = 35.3609 9.0836 i 1.7527 j 6.7689 k , c 13 = 33.503 3.7707 i + 5.2872 j 6.2708 k , c 21 = 24.7749 3.6921 i 0.5143 j 10.8211 k , c 22 = 21.0950 11.3075 i 3.9522 j 10.8211 k , c 23 = 18.9376 7.7280 i + 1.7134 j 11.9519 k , c 31 = 36.2182 + 5.3877 i 2.8839 j 0.8389 k , c 32 = 33.9232 7.3248 i 4.3221 j 3.9587 k , c 33 = 31.8026 1.6492 i + 1.2342 j 6.7683 k .
Computing directly yields the following:
r 2 C c A 2 A 1 B 1 0 0 B 2 0 0 = r ( A 2 , A 1 ) + r B 1 B 2 = 6 , r 2 C c A 2 A 1 B 2 0 0 = r ( A 2 , A 1 ) + r ( B 2 ) = 5 , r 2 C c A 1 B 3 0 B 2 0 B 1 0 = r ( A 1 ) + r B 3 B 2 B 1 = 5 ,
r 2 C c A 2 A 1 B 3 0 0 B 2 0 0 B 1 0 0 = r ( A 2 , A 1 ) + r B 3 B 2 B 1 = 6 , r C c A 1 B 3 0 B 2 0 = r ( A 1 ) + r B 3 B 2 = 5 , r 2 C c 0 0 A 2 A 1 0 B 3 0 B 3 0 0 0 0 A 2 2 C c 0 0 A 1 B 1 0 0 0 0 0 0 0 B 1 0 0 0 0 0 B 2 0 0 0 B 2 0 0 0 0 0 = r A 2 A 1 0 0 0 0 A 2 A 1 + r B 3 B 3 B 2 0 B 1 0 0 B 2 0 B 1 = 12 , r 0 B 3 B 3 0 0 2 A 2 2 C c 0 A 1 0 A 2 0 C c 0 A 1 0 B 2 0 0 0 0 B 1 0 0 0 0 0 B 2 0 0 = r 0 A 1 0 A 2 0 A 1 + r B 3 B 3 B 2 0 B 1 0 0 B 2 = 11 , r 0 0 B 3 B 3 B 3 0 0 0 0 0 0 2 C c 0 0 A 2 0 A 1 0 A 2 0 0 2 C c 0 0 0 0 A 1 0 A 2 0 0 C c 0 A 1 0 0 0 0 0 0 B 2 0 0 0 0 0 0 B 1 0 0 0 0 0 0 0 0 B 2 0 0 0 0 0 0 0 0 0 B 2 0 0 0 0 0 0 0 0 B 1 0 0 0 0 0 = r A 2 A 1 0 0 0 0 0 0 A 2 A 1 0 0 0 0 0 0 A 2 A 1 + r B 3 B 3 B 3 B 2 0 0 B 1 0 0 0 B 2 0 0 B 1 0 0 0 B 2 = 18 ,
r 0 B 3 B 3 0 0 0 0 0 0 0 B 3 B 3 0 0 0 0 2 A 2 0 2 C c 0 0 0 A 1 0 0 2 C c 0 0 0 A 2 0 A 1 A 2 0 0 C c A 1 0 0 0 0 B 2 0 0 0 0 0 0 0 B 1 0 0 0 0 0 0 0 0 B 2 0 0 0 0 0 0 0 B 1 0 0 0 0 0 0 0 0 B 2 0 0 0 0 = r 0 A 2 A 1 0 0 A 2 0 0 A 1 0 A 2 0 0 0 A 1 + r B 3 0 0 B 3 B 3 0 0 B 3 B 3 B 2 0 0 B 1 0 0 0 B 2 0 0 B 1 0 0 0 B 2 = 17 ,
r 0 0 B 3 B 3 B 3 0 0 0 0 0 0 0 0 0 B 3 0 0 0 0 0 2 C c 0 0 0 A 1 A 2 0 A 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 A 1 0 A 2 0 0 0 C c 0 0 0 0 0 B 1 0 0 0 0 0 0 0 0 B 2 0 0 0 0 0 0 0 0 0 B 1 0 0 0 0 0 0 0 0 B 2 0 0 0 0 0 0 0 0 0 B 1 0 0 0 0 0 0 0 0 B 2 0 0 0 0 0 0 0 0 0 B 2 0 0 0 = r 0 0 A 2 A 1 0 A 2 0 0 0 0 0 0 0 0 A 1 0 A 2 0 0 0 + r B 3 B 3 B 3 0 0 0 0 B 3 B 2 0 0 0 B 1 0 0 0 0 B 2 0 0 0 B 1 0 0 0 0 B 1 0 0 0 B 2 0 0 0 0 B 2 = 24 .
All rank equalities in (10)–(19) hold. Hence, according to Theorem 1, Equation (1) is consistent, and the general solution to the matrix Equation (1) can be expressed as follows:
X 1 = 0.500 + 3.0117 i + 0.0161 j + 1.2813 k 2.2870 5.3594 i + 2.8008 j 3.4531 k 0.3281 + 0.1484 i + 1.4375 j 1.1836 k 2.2500 + 1.9219 i + 0.4844 j + 7.1406 k + V 2 0.2734 0.0010 i 0.0020 j 0.0078 k 0.0117 0.1328 i 0.0625 j 0.4063 k 0.0508 + 0.1519 i + 0.1387 j + 0.4042 k 0.1973 + 0.0039 i 0.2617 j , X 2 = 3 i + 2 j 2 k + i 2 j + 3 i 2 i + j , X 3 = x 311 x 312 x 321 x 322 , X 4 = x 0411 x 0412 x 0421 x 0422 ,
or
X 4 = x 411 x 412 x 421 x 422 + T 1 U 5 + U 6 T 2 , U 1 = S 1 ( U 11 U 12 T 7 U 13 + U 14 T 6 ) , U 2 = 1 0 0 1 T 7 + T 8 u 211 u 212 u 213 u 214 u 221 u 222 u 223 u 224 u 231 u 232 u 233 u 234 u 241 u 242 u 243 u 244 S 2 , U 3 = u 311 u 312 u 321 u 322 , U 4 = u 411 u 412 u 421 u 422 , U 5 = S 3 ( U 11 U 12 T 7 U 13 + U 14 T 6 ) , U 6 = 1 0 0 1 T 7 + T 8 u 211 u 212 u 213 u 214 u 221 u 222 u 223 u 224 u 231 u 232 u 233 u 234 u 241 u 242 u 243 u 244 S 4 , U 14 = 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 , T 1 = 0.2500 + 0.0447 i 0.0938 j 0.2090 k 0.1348 + 0.3086 i 0.0781 j + 0.2188 k 0.0938 0.3564 i + 0.0313 j + 0.3167 k 0.4102 0.0117 i + 0.1094 j 0.2109 k , T 2 = 0.0005 + 0.0012 i + 0.0005 j + 0.0005 k 0.0002 + 0.0005 i + 0.0005 j 0.0005 k 0.0005 0.0004 i 0.0010 j + 0.0010 k 0.0012 i + 0.0020 j + 0.0002 k , ,
U 11 = 0 0 0 0 0.2157 0.5625 i 0.5079 j + 0.4975 k 0.0479 + 0.8423 i + 1.4991 j + 0.0312 k 0.4770 + 2.4543 i + 2.5170 j + 2.3890 k 2.9781 2.4611 i 0.1109 j 4.8836 k , U 12 = 0 0 0 0 2.0941 1.8169 i 19.7767 j + 7.1464 k 4.0003 7.6426 i 23.6916 j 12.6004 k 35.0358 + 22.9322 i 19.0766 j + 62.5683 k 50.3227 + 10.8273 i 41.1511 j + 44.4639 k , U 13 = 0 0 0 0 0.0005 + 0.0012 i + 0.0005 k 0.0002 + 0.0005 i + 0.0005 j + 0.0005 k 0.0005 0.0004 i 0.0010 j + 0.0010 k 0.0012 i + 0.0020 j + 0.0002 k ,
where
x 311 = 2.4249 × 10 15 + 9.158 × 10 14 i + 3.6562 × 10 15 j 9.802 × 10 14 k , x 312 = 2.8915 × 10 15 3.424 × 10 15 i + 3.6682 × 10 15 j + 3.8670 × 10 14 k , x 321 = 2.8900 × 10 15 8.349 × 10 14 i + 4.8121 × 10 15 j + 1.3028 × 10 15 k , x 322 = 2.876 × 10 15 + 3.0166 × 10 15 i + 1.3349 × 10 15 j + 5.6492 × 10 14 k , x 0411 = 1.0460 × 10 14 5.5967 × 10 14 i 4.5730 × 10 14 j + 2.5023 × 10 14 k , x 0412 = 4.0206 × 10 14 + 1.7870 × 10 14 i + 3.5717 × 10 14 j + 1.6691 × 10 14 k , x 0421 = 1.0061 × 10 14 + 3.6673 × 10 14 i + 4.9065 × 10 14 j 7.1850 × 10 14 k , x 0411 = 1.0460 × 10 14 5.5967 × 10 14 i 4.5730 × 10 14 j + 2.5023 × 10 14 k , x 0422 = 2.0371 × 10 14 1.9449 × 10 14 i 6.7917 × 10 14 j + 3.27 × 10 11 k , x 412 = 2.5081 × 10 15 2.526 × 10 14 i 1.8086 × 10 15 j 1.6121 × 10 15 k , x 421 = 1.6826 × 10 15 + 3.233 × 10 14 i + 1.2608 × 10 14 j 5.905 × 10 14 k , x 422 = 3.376 × 10 14 2.1855 × 10 15 i 2.5144 × 10 15 j 9.287 × 10 14 k , u 311 = 1.093 × 10 35 9.730 × 10 35 i + 1.8576 × 10 36 j 1.9289 × 10 36 k , u 312 = 8.155 × 10 35 + 9.72 × 10 34 i 1.5978 × 10 36 j 1.5691 × 10 36 k , u 321 = 8.932 × 10 35 1.8508 × 10 36 i + 4.0088 × 10 36 j 4.8557 × 10 36 k , u 322 = 1.5025 × 10 36 7.623 × 10 35 i 4.0296 × 10 36 j 3.3906 × 10 36 k , u 411 = 1.4764 × 10 35 + 4.669 × 10 34 i 5.229 × 10 34 j 2.3157 × 10 35 k , u 412 = 3.7703 × 10 35 + 2.5079 × 10 35 i 4.3196 × 10 35 j + 5.1752 × 10 35 k , u 421 = 1.3750 × 10 35 1.2281 × 10 35 i 2.4962 × 10 35 j + 1.7278 × 10 35 k , u 422 = 4.310 × 10 34 + 5.1989 × 10 35 i + 8.0931 × 10 35 j + 2.5832 × 10 35 k , u 211 = 0.9999 + 0.0001 j 0.0001 k , u 212 = 0.0002 + 0.0001 i + 0.0004 j , u 213 = 0.0025 0.0052 i 0.0085 j 0.0084 k , u 214 = 0.0052 0.0006 i 0.0064 j + 0.0067 k , u 221 = 0.0002 0.0001 i 0.0001 j 0.0002 k , u 222 = 0.9994 + 0.0001 i 0.0005 k , u 223 = 0.0096 0.0130 i 0.0134 j + 0.0039 k , u 224 = 0.0098 + 0.0104 i + 0.0081 j + 0.0108 k , u 231 = 0.0025 + 0.0052 i 0.0002 j 0.0013 k , u 232 = 0.0096 + 0.0130 i 0.0014 j 0.0031 k , u 233 = 0.0006 + 0.0001 i 0.0001 k , u 234 = 0.0001 + 0.0005 i 0.0001 j , u 241 = 0.0052 + 0.0006 i 0.0040 j 0.0043 k , u 242 = 0.0098 0.0104 i + 0.0036 j 0.0096 k , u 243 = 0.0001 0.0005 i + 0.0004 j 0.0001 k , u 244 = 0.0005 0.0002 j 0.0003 k ,
V 2 is an arbitrary matrix of order 2 × 2 over quaternion H , T 6 is an arbitrary matrix of order 4 × 2 over quaternion H , and T 7 and T 8 are arbitrary matrix of order 2 × 4 over quaternion H , S 1 = I 2 0 , S 2 = I 2 0 , S 3 = 0 I 2 , S 4 = 0 I 2 .

3.2. The General Solution to the System (4)

Based on Theorem 1, in this section, we consider the system (4) with the known matrices E 1 , E 2 , E 11 , E 22 , F i , H i ( i = 1 , 4 ¯ ) , G j , F j j ( j = 1 , 3 ¯ ) , and T over H . For convenience, we define the notation as follows:
A i = E i i L E i , B j = R G j F j j ( i = 1 , 2 , j = 1 , 3 ¯ ) , C c = T E 11 ( E 1 F 1 + L E 1 H 1 G 1 ) F 11 E 11 ( E 1 F 2 + L E 1 H 2 G 2 ) F 22 E 22 ( E 2 F 3 + L E 2 H 3 G 2 ) F 22 E 22 ( E 1 F 4 + L E 2 H 4 G 3 ) F 33 , B 4 = B 1 L B 2 , B 5 = B 2 L B 4 , A 33 = R A 1 A 2 , B 33 = B 3 L B 2 , C 33 = R A 1 C c L B 2 , A 11 = A 2 + A 33 , C 44 = C c L B 2 + R A 1 C c , B 11 = B 3 L B 4 L B 5 , C 11 = ( I + R A 1 ) C c L B 4 L B 5 , A 22 = R A 33 A 2 , B 22 = B 3 L B 2 L B 4 , C 22 = R A 33 C 44 L B 4 , M 1 = A 22 L A 11 , N 1 = R B 11 B 22 , C 1 = C 22 A 22 A 11 C 11 B 11 B 22 , D 1 = R A 1 A 22 , ϕ = A 11 C 11 B 11 + L A 11 M 1 C 1 B 22 L A 11 M 1 A 22 D 1 R M 1 C 1 B 22 + D 1 R M 1 C 1 N 1 R B 11 , M 2 = L A 11 L M 1 , L A 33 , N 2 = R N 1 R B 11 R B 33 , A = R M 2 L A 11 , B = R B 22 L N 2 , C = R M 2 L A 22 , D = R B 11 L N 2 , E 1 = A 33 C 33 B 33 ϕ , E = R M 2 E 1 L N 2 , M = R A C , N = D L B , S = C L M ,
and
S 1 = I m , 0 , S 2 = I n 0 , S 3 = 0 , I m , S 4 = 0 I n .
Thus, we obtain the following—one of the main result of this paper.
Theorem 2.
Consider the system of quaternion matrix Equation (4) with the notation given in (34). The following statements are equivalent:
(1)
The system of matrix Equation (4) is consistent.
(2)
E 1 H 1 = F 1 G 1 , E 1 H 2 = F 2 G 2 , E 2 H 3 = F 3 G 2 , E 2 H 4 = F 4 G 3
and
R E 1 F 1 = 0 , R E 2 F 3 = 0 , H 1 L G 1 = 0 , H 2 L G 2 = 0 , H 4 L G 3 = 0 ,
R A 33 R A 1 C 44 = 0 , R A 11 C 11 = 0 , C i i L B i i = 0 ( i = 1 , 3 ¯ ) , R M 1 C 1 L N 1 = 0 , R M R A E = 0 , E L B L N = 0 , R A E L D = 0 , R C E L B = 0 .
(3)
(35) holds and
r F 1 E 1 = r ( E 1 ) , r F 3 E 2 = r ( E 2 ) , r H 1 G 1 = r ( G 1 ) , r H 2 G 2 = r ( G 2 ) , r H 4 G 3 = r ( G 3 ) ,
r P i S i 0 Q i = r ( P i ) + r ( Q i ) , i = 1 , 10 ¯
where
P 1 = E 22 E 11 E 2 0 0 E 1 , Q 1 = F 22 G 2 , S 1 = 2 T 0 2 W 2 0 2 W 1 0 , P 2 = E 22 E 11 E 2 0 0 E 1 ,
Q 2 = F 11 G 1 0 F 22 0 G 2 , S 2 = 2 T 0 2 V 1 2 W 2 0 0 2 U 1 0 0 , Q 3 = F 33 G 3 0 0 F 22 0 G 2 0 F 11 0 0 G 1 ,
P 3 = E 11 E 1 , S 3 = 2 T 2 V 2 2 V 3 2 V 4 2 W 2 0 0 2 U 2 0 0 0 , S 4 = 2 T 2 V 2 2 V 1 0 2 U 3 0 0 0 2 U 1 0 0 0 ,
P 4 = E 22 E 11 E 2 0 0 E 1 , Q 4 = F 33 G 3 0 0 F 22 0 G 2 0 F 11 0 0 G 1 , Q 5 = F 33 G 3 0 F 22 0 G 2 ,
P 5 = E 11 E 1 , S 5 = T V 2 V 3 W 1 0 0 , Q 6 = F 33 F 33 G 3 0 0 0 0 F 22 0 0 G 2 0 0 0 F 11 0 0 0 G 1 0 0 0 F 22 0 0 0 G 2 0 0 F 11 0 0 0 0 G 1 ,
P 6 = E 22 E 11 0 0 0 0 E 22 E 11 E 2 0 0 0 0 E 1 0 0 0 0 E 2 0 0 0 0 E 1 , S 6 = 2 T 0 0 2 V 3 2 V 4 0 0 0 2 T 0 0 0 2 V 3 2 V 4 2 U 4 0 0 0 0 0 0 2 U 5 0 0 0 0 0 0 0 2 U 4 0 0 0 0 0 0 2 U 5 0 0 0 0 0 ,
P 7 = E 22 E 11 0 0 0 0 0 0 E 22 E 11 0 0 0 0 0 0 E 22 E 11 E 2 0 0 0 0 0 0 E 1 0 0 0 0 0 0 E 2 0 0 0 0 0 0 E 1 0 0 0 0 0 0 E 2 0 0 0 0 0 0 E 1 , S 7 = 2 T 0 0 2 V 3 2 V 4 0 0 0 2 T 0 0 0 2 V 3 2 V 4 2 U 4 0 0 0 0 0 0 2 U 5 0 0 0 0 0 0 0 2 U 4 0 0 0 0 0 0 2 U 5 0 0 0 0 0 ,
Q 7 = F 33 F 33 F 33 G 3 0 0 0 0 0 F 22 0 0 0 G 2 0 0 0 0 F 11 0 0 0 0 G 1 0 0 0 0 F 22 0 0 0 0 G 2 0 0 0 F 11 0 0 0 0 0 G 1 0 0 0 F 22 0 0 0 0 0 G 2 , P 8 = 2 E 22 0 E 11 0 0 E 22 E 11 0 0 0 0 0 0 E 22 E 11 E 2 0 0 0 0 0 E 1 0 0 0 0 0 E 1 0 0 0 0 0 E 2 0 0 0 0 0 E 1 ,
S 8 = 0 2 T 0 0 0 0 0 2 V 3 2 V 4 0 T 0 T 0 0 V 3 V 4 0 0 V 3 2 T 0 0 0 0 2 V 3 2 V 4 0 0 0 2 U 4 0 0 0 0 0 0 0 0 0 U 4 0 U 4 0 0 0 0 0 0 0 0 U 5 V 1 0 0 0 0 0 0 0 0 2 U 5 0 0 0 0 0 0 0 0 2 U 4 0 0 0 0 0 0 0 0 0 0 2 U 5 0 0 0 0 0 0 0 0 , Q 8 = F 33 F 33 0 G 3 0 0 0 0 0 0 0 F 33 F 33 0 G 3 0 0 0 0 0 F 22 0 0 0 0 G 2 0 0 0 0 F 11 0 0 0 0 0 G 1 0 0 0 0 F 22 0 0 0 0 0 G 2 0 0 0 F 11 0 0 0 0 0 0 G 1 0 0 0 F 22 0 0 0 0 0 0 G 2 ,
P 10 = 0 0 E 22 0 0 E 11 0 0 2 E 22 0 0 0 0 0 0 E 11 0 0 0 E 22 0 0 E 11 0 0 E 22 0 0 E 11 0 0 0 E 2 0 0 0 0 0 0 0 0 E 2 0 0 0 0 0 0 0 0 E 2 0 0 0 0 0 0 0 0 E 2 0 0 0 0 0 0 0 0 E 1 0 0 0 0 0 0 0 0 E 1 0 0 0 0 0 0 0 0 E 1 0 0 0 0 0 0 0 0 E 1 , P 9 = 0 E 11 0 E 22 0 E 11 E 2 0 0 0 E 1 0 0 0 E 1 ,
Q 9 = F 33 F 33 G 3 0 0 0 F 22 0 0 G 2 0 0 F 11 0 0 0 G 1 0 0 F 22 0 0 0 G 2 , S 9 = 2 T 2 T 2 V 2 2 V 3 2 V 4 2 V 3 0 T 0 0 0 W 4 0 U 4 0 0 0 0 2 U 5 2 U 1 0 0 0 0 0 U 5 0 0 0 0 ,
Q 10 = F 33 F 33 F 33 0 G 3 0 0 0 0 0 0 0 0 F 33 F 33 F 33 0 G 3 0 0 0 0 0 0 F 22 0 0 0 0 0 G 2 0 0 0 0 0 F 11 0 0 0 0 0 0 G 1 0 0 0 0 0 F 22 0 0 0 0 0 0 G 2 0 0 0 0 0 F 11 0 0 0 0 0 0 G 1 0 0 0 0 F 22 0 0 0 0 0 0 0 G 2 0 0 0 0 F 22 0 0 0 0 0 0 0 G 2 ,
S 10 = 2 T 0 0 0 0 0 0 2 V 3 2 V 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 T 0 0 0 0 0 0 0 0 V 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 U 4 0 0 0 0 0 0 0 0 0 2 U 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 W 1 0 0 0 0 0 0 0 0 0 2 U 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ,
and
W 1 = F 1 F 11 + F 2 F 22 , W 2 = F 3 F 22 + F 4 F 33 , W 3 = E 22 H 2 + E 22 H 3 , W 4 = E 11 H 2 + E 22 H 3 ,
V 1 = E 11 H 2 , V 3 = E 22 H 3 , V 2 = E 22 H 4 , V 4 = E 11 H 1 ,
U 1 = F 1 F 11 , U 2 = F 2 F 11 , U 3 = F 3 F 22 , U 4 = F 4 F 33 , U 5 = F 2 F 22 .
In this case, the general solution to the system of the matrix Equation (4) can be expressed as follows:
X 1 = E 1 F 1 + L E 1 H 1 G 1 + L E 1 U 1 R G 1 , X 2 = E 1 F 2 + L E 1 H 2 G 2 + L E 1 U 2 R G 2 , X 3 = E 2 F 3 + L E 2 H 3 G 2 + L E 2 U 3 R G 2 , X 4 = E 2 F 4 + L E 2 H 4 G 3 + L E 2 U 4 R G 3 ,
where
U 1 = A 1 ( C c A 2 X 4 B 3 ) L B 2 + R A 1 ( C c A 2 X 4 B 3 ) B 4 + L A 1 V 1 + V 2 R B 4 , U 2 = A 1 ( C c A 1 X 1 B 1 A 2 X 3 B 2 A 2 X 4 B 3 ) B 2 + V 3 R B 2 L A 1 V 4 , U 3 = M ( C c A 2 X 4 B 3 ) L B 2 + R A 1 ( C c A 2 X 4 B 3 ) B 2 + L M V 5 + V 6 R B 2 , U 4 = ϕ + L A 11 L M 1 V 7 + V 8 R N 1 R B 11 + L A 11 V 9 R B 22 + L A 22 V 10 R B 11 , o r U 4 = A 33 C 33 B 33 L A 33 V 11 V 12 R B 33 , V 7 = S 1 M 2 E 1 L A 11 U 3 R B 22 L A 22 U 4 R B 11 M 2 T 7 N 2 + L M 2 T 6 , V 8 = R M 2 E 1 L A 11 U 3 R B 22 L A 2 U 4 R B 11 N 2 + M 2 M 2 T 7 + T 8 R N 2 S 2 , V 9 = A E B A C M R A E B A S C E L B N D B A S T 3 R N D B + L A T 1 + T 2 R B , V 10 = M R A E D + L M S S C E L B N + L M L S T 4 + L M T 3 R N + T 5 R D , V 11 = S 3 M 2 E 1 L A 11 U 3 R B 22 L A 22 U 4 R B 11 M 2 T 7 N 2 + L M 2 T 6 , V 12 = R M 2 E 1 L A 11 U 3 R B 22 L A 22 U 4 R B 11 N 2 + M 2 M 2 T 7 + T 8 R N 2 S 4 ,
V i ( i = 1 , 6 ¯ ) are arbitrary matrices over H with appropriate sizes, and T i ( i = 1 , 8 ¯ ) are arbitrary matrices over H with appropriate sizes.
Proof. 
( 1 ) ( 2 ) Clearly, the system of matrix Equation (4) is solvable if—and only if—both of the following are consistent:
E 1 X 1 = F 1 , X 1 G 1 = H 1 , E 1 X 2 = F 2 , X 2 G 2 = H 2 , E 2 X 3 = F 3 , X 3 G 2 = H 3 , E 2 X 4 = F 4 , X 4 G 3 = H 4
and
E 11 X 1 F 11 + E 11 X 2 F 22 + E 22 X 3 F 22 + E 22 X 4 F 33 = T .
It follows from Lemma 4 that the system (54) has a solution if—and only if— (35) holds, and
R E 1 F 1 = 0 , R E 1 F 2 = 0 , R E 2 F 3 = 0 , R E 2 F 4 = 0 , H 1 L G 1 = 0 , H 2 L G 2 = 0 , H 3 L G 2 = 0 , H 4 L G 3 = 0 .
Under these conditions, the expression of general solution to (54) can be expressed as follows:
X 1 = E 1 F 1 + L E 1 H 1 G 1 + L E 1 U 1 R G 1 , X 2 = E 1 F 2 + L E 1 H 2 G 2 + L E 1 U 2 R G 2 , X 3 = E 2 F 3 + L E 2 H 3 G 2 + L E 2 U 3 R G 2 , X 4 = E 2 F 4 + L E 2 H 4 G 3 + L E 2 U 4 R G 3 ,
where U i ( i = 1 , 4 ¯ ) are arbitrary matrices over H with appropriate sizes.
Next, substituting (57) into (55) yields the following:
A 1 U 1 B 1 + A 1 U 2 B 2 + A 2 U 3 B 2 + A 2 U 4 B 3 = C c ,
where A i , B j , ( i = 1 , 2 ¯ , j = 1 , 3 ¯ ) are defined as (34). By Theorem 1, the matrix Equation (58) is solvable if—and only if—(37) holds. In this case, the general solution to matrix Equation (58) can be expressed as follows:
U 1 = A 1 ( C c A 2 X 4 B 3 ) L B 2 + R A 1 ( C c A 2 X 4 B 3 ) B 4 + L A 1 V 1 + V 2 R B 4 , U 2 = A 1 ( C c A 1 X 1 B 1 A 2 X 3 B 2 A 2 X 4 B 3 ) B 2 + V 3 R B 2 L A 1 V 4 , U 3 = M ( C c A 2 X 4 B 3 ) L B 2 + R A 1 ( C c A 2 X 4 B 3 ) B 2 + L M V 5 + V 6 R B 2 , U 4 = ϕ + L A 11 L M 1 V 7 + V 8 R N 1 R B 11 + L A 11 V 9 R B 22 + L A 22 V 10 R B 11 , o r U 4 = A 33 C 33 B 33 L A 33 V 11 V 12 R B 33 , V 7 = S 1 M 2 E 1 L A 11 U 3 R B 22 L A 22 U 4 R B 11 M 2 T 7 N 2 + L M 2 T 6 , V 8 = R M 2 E 1 L A 11 U 3 R B 22 L A 2 U 4 R B 11 N 2 + M 2 M 2 T 7 + T 8 R N 2 S 2 , V 9 = A E B A C M R A E B A S C E L B N D B A S T 3 R N D B + L A T 1 + T 2 R B , V 10 = M R A E D + L M S S C E L B N + L M L S T 4 + L M T 3 R N + T 5 R D , V 11 = S 3 M 2 E 1 L A 11 U 3 R B 22 L A 22 U 4 R B 11 M 2 T 7 N 2 + L M 2 T 6 , V 12 = R M 2 E 1 L A 11 U 3 R B 22 L A 22 U 4 R B 11 N 2 + M 2 M 2 T 7 + T 8 R N 2 S 4 ,
where V i ( i = 1 , 6 ¯ ) are arbitrary matrices over H with appropriate sizes, A i i , B i i , C i i ( i = 1 , 3 ¯ ) , M 1 , M 2 , N 1 , N 2 , A , B , D , E , S , M and N are defined as (34), T i ( i = 1 , 8 ¯ ) are arbitrary matrices over H , with appropriate sizes.
Hence, the system of matrix Equation (54) and the matrix Equation (55) are consistent if—and only if—(35), (56), and (37) hold,
Now, we show that (56) (36). It follows from Lemma 2 that the following is true:
R E 1 F 1 = 0 r ( F 1 , E 1 ) = r ( E 1 ) , R E 1 F 2 = 0 r ( F 2 , E 1 ) = r ( E 1 ) , R E 2 F 3 = 0 r ( F 3 , E 2 ) = r ( E 2 ) , R E 2 F 4 = 0 r ( F 4 , E 2 ) = r ( E 2 ) , H 1 L G 1 = 0 r H 1 G 1 = r ( G 1 ) , H 2 L G 2 = 0 r H 2 G 2 = r ( G 2 ) , H 3 L G 2 = 0 r H 3 G 2 = r ( G 2 ) , H 4 L G 3 = 0 r H 4 G 3 = r ( G 3 ) .
According to (59), we obtain (56) (36). To sum up, the system of matrix Equation (54) and the matrix Equation (55) are consistent if—and only if—(35)–(37) hold.
( 2 ) ( 3 ) In view of (59), we obtain (36) (38).
Next, we turn our attention to show that (37) holds if—and only if—(39) holds. According to Theorem 1, we can find that (37) holds if—and only if—(10)–(19) hold. Hence, we need prove ( 9 + i ) (39) ( i = 1 , 10 ¯ ) when we show that (37) holds if—and only if—(39) holds. We need to use the following fact to prove ( 9 + i ) (39) ( i = 1 , 10 ¯ ) :
It is easy to know that there exists a solution, according to X 1 0 , X 2 0 , X 3 0 , X 4 0 , such that the following is true:
E 1 X 1 0 = F 1 , X 1 0 G 1 = H 1 , E 1 X 2 0 = F 2 , X 2 0 G 2 = H 2 , E 2 X 3 0 = F 3 , X 3 0 G 2 = H 3 , E 2 X 4 0 = F 4 , X 4 0 G 3 = H 4 , E 11 X 1 0 F 11 + E 11 X 2 0 F 22 + E 22 X 3 0 F 22 + E 22 X 4 0 F 33 = T ,
where
X 1 0 = E 1 F 1 + L E 1 H 1 G 1 , X 2 0 = E 1 F 2 + L E 1 H 2 G 2 , X 3 0 = E 2 F 3 + L E 2 H 3 G 2 , X 4 0 = E 2 F 4 + L E 2 H 4 G 3 .
Let T 0 = T ( E 11 X 1 0 F 11 + E 11 X 2 0 F 22 + E 22 X 3 0 F 22 + E 22 X 4 0 F 33 ) . We first show the following: ( 9 + i ) (39) for i = 1 , ( 9 + i ) (39) for i = 2 , ( 9 + i ) (39) for i = 3 , ( 9 + i ) (39) for i = 4 , and ( 9 + i ) (39) for i = 5 .
In fact, when i = 1 , by Lemma 2, (60) and elementary operations, we obtain the following:
( 9 + i ) r 2 T 0 E 22 L E 2 E 11 L E 1 R G 1 F 11 0 0 R G 2 F 22 0 0 = r E 22 L E 2 , E 11 L E 1 + r R G 1 F 11 R G 2 F 22 r 2 T 0 E 22 E 11 0 0 F 11 0 0 G 1 0 F 22 0 0 0 G 2 0 E 2 0 0 0 0 0 E 11 0 0 = r E 22 E 11 E 2 0 0 E 11 + r F 11 G 1 0 F 22 0 G 2 ( 39 ) .
Similarly, we can show that ( 9 + i ) (39) for i = 2 , ( 9 + i ) (39) for i = 3 , ( 9 + i ) (39) for i = 4 and ( 9 + i ) (39) for i = 5 , where P i , Q i , S i and O i ( i = 1 , 5 ¯ ) in (39) are defined as (40), (41), (42), (43), and (44), respectively, W i ( i = 1 , 3 ¯ ) are defined as (51), U j ( j = 1 , 5 ¯ ) are defined as (53), and V k ( k = 1 , 4 ¯ ) are defined as (52).
Second, we show that ( 9 + i ) (39) for i = 6 , ( 9 + i ) (39) for i = 7 , ( 9 + i ) (39) for i = 8 , ( 9 + i ) (39) for i = 9 and ( 9 + i ) (39) for i = 10 . In fact, when i = 6 , it follows from Lemma 2, (60), and elementary operations, that the following is true:
( 9 + i ) r 2 T 0 0 0 E 22 L E 2 E 11 L E 1 0 R G 3 F 33 0 R G 3 F 33 0 0 0 0 E 22 L E 2 2 T 0 0 0 E 11 L E 1 R G 1 F 11 0 0 0 0 0 0 0 R G 1 F 11 0 0 0 0 0 R G 2 F 22 0 0 0 R G 2 F 22 0 0 0 0 0 = r E 22 L E 2 E 11 L E 1 0 0 0 0 E 22 L E 2 E 11 L E 1 + r R G 3 F 33 R G 3 F 33 R G 2 F 22 0 R G 1 F 11 0 0 R G 2 F 22 0 R G 1 F 11 r 2 T 0 0 0 E 22 E 11 0 0 0 0 0 0 F 33 0 F 33 0 0 0 G 3 0 0 0 0 0 E 22 2 T 0 0 0 E 11 0 0 0 0 0 F 11 0 0 0 0 0 0 G 1 0 0 0 0 0 F 11 0 0 0 0 0 G 1 0 0 0 0 F 22 0 0 0 0 0 0 G 2 0 F 22 0 0 0 0 0 0 0 0 0 G 2 0 E 2 0 0 0 0 0 0 0 0 0 0 0 0 E 2 0 0 0 0 0 0 0 0 0 0 0 E 1 0 0 0 0 0 0 0 0 0 0 0 E 1 0 0 0 0 0 = r E 22 E 11 0 0 0 0 E 22 E 11 E 2 0 0 0 0 E 1 0 0 0 0 E 2 0 0 0 0 E 1 + r F 33 F 33 G 3 0 0 0 0 F 22 0 0 G 2 0 0 0 F 11 0 0 0 G 1 0 0 0 F 22 0 0 0 G 2 0 0 F 11 0 0 0 0 G 1 ( 39 ) .
Similarly, we can show that ( 9 + i ) ( ) (39) for i = 7 , ( 9 + i ) ( ) (39) for i = 8 , ( 9 + i ) ( ) (39) for i = 9 and ( 9 + i ) ( ) (39) for i = 10 , where P i , Q i , S i ( i = 6 , 7 , 8 ) , and in (39), are defined as (45), (46), (47), respectively, P i , Q i and S i ( i = 9 , 10 ) in (39), are defined as (48), (49), and (50). W i ( i = 1 , 3 ¯ ) are defined as (51), U j ( j = 1 , 5 ¯ ) are defined as (53), and V k ( k = 1 , 4 ¯ ) are defined as (52). The proof is completed. □

4. Conclusions

We have established some necessary and sufficient conditions for the existence of the solution to quaternion matrix Equation (1), and derived a formula of its general solution when it is solvable. As an application of (1), we have investigated some necessary and sufficient conditions for the system of matrix Equation (4) to be consistent, as well as the expression of its general solution, and presented a numerical example to emphasize our main results.

Author Contributions

Methodology, L.-S.L. and Q.-W.W.; software, J.-F.C.; writing—original draft preparation, Q.-W.W. and L.-S.L.; writing—review and editing, Q.-W.W., L.-S.L. and Y.-Z.X.; supervision, Q.-W.W.; project adiministration, Q.-W.W. All authors have read and agreed to the published version of the manuscript.

Funding

This research was supported by the grants from the National Natural Science Foundation of China (11971294) and (12171369).

Institutional Review Board Statement

Not Applicable.

Informed Consent Statement

Not Applicable.

Data Availability Statement

Not Applicable.

Acknowledgments

The authors would like to thank the editor and the reviewers for their valuable suggestions, comments and Natural Science Foundatuion of China under grant No: 11971294 and 12171369.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Kyrchei, I. Explicit representation formulas for the minimum norm least squares solutions of some quaternion matrix equations. Linear Algebra Appl. 2018, 438, 136–152. [Google Scholar] [CrossRef] [Green Version]
  2. Kyrchei, I. Determinantal representations of the Drazin inverse over the quaternion skew field with applications to some matrix equations. Appl. Math. Comput. 2014, 238, 193–207. [Google Scholar] [CrossRef]
  3. Liu, L.S.; Wang, Q.W.; Mahmoud, S.M. A Sylvester-type Hamilton quaternion matrix equation with an application. arXiv 2021, arXiv:2109.10045. [Google Scholar]
  4. Liu, X.; Zhang, Y. Consistency of split quaternion matrix equations AXXB = CY+D and XAXB = CY + D. Adv. Appl. Clifford Algebras 2019, 64, 1–20. [Google Scholar] [CrossRef]
  5. Qi, L.; Luo, Z.Y.; Wang, Q.W.; Zhang, X.Z. Quaternion matrix optimization: Motivation and analysis. J. Optim. Theory Appl. 2021. [Google Scholar] [CrossRef]
  6. Zhang, Y.; Wang, R.H. The exact solution of a system of quaternion matrix equations involving η-Hermicity. Appl. Math. Comput. 2013, 222, 201–209. [Google Scholar] [CrossRef]
  7. Castelan, E.B.; da Silva, V.G. On the solution of a Sylvester equation appearing in descriptor systems control theory. Syst. Control Lett. 2005, 54, 109–117. [Google Scholar] [CrossRef]
  8. Zhang, Y.N.; Jiang, D.C.; Wang, J. A recurrent neural network for solving Sylvester equation with time-varying coefficients. IEEE Trans. Neural Netw. 2002, 13, 1053–1063. [Google Scholar] [CrossRef]
  9. Villareal, E.R.L.; Vargas, J.A.R.; Hemerly, E.M. Static output feedback stabilization using invariant subspaces and Sylvester equations. TEMA Tend. Mat. Apl. Comput. 2009, 10, 99–110. [Google Scholar] [CrossRef]
  10. Dmytryshyn, A.D.; Kagstrm, B. Coupled Sylvester-type matrix equations and block diagonalization. SIAM J. Matrix Anal. Appl. 2015, 36, 580–593. [Google Scholar] [CrossRef]
  11. Cvetković-Ilić, D.S.; Radenković, J.N.; Wang, Q.W. Algebraic conditions for the solvability to some systems of matrix equations. Linear Multilinear Algebra 2021, 69, 1579–1609. [Google Scholar] [CrossRef]
  12. Nie, X.R.; Wang, Q.W.; Zhang, Y. A system of matrix equations over the quaternion algebra with applications. Algebra Colloq. 2017, 24, 233–253. [Google Scholar] [CrossRef]
  13. Myers, R.C.; Periwal, V. Exact solution of critical self-dual unitary-matrix models. Phys. Rev. Lett. 1990, 65, 1088–1091. [Google Scholar] [CrossRef] [PubMed]
  14. Ragusa, M.A. On weak solutions of ultraparabolic equations. Nonlinear Anal. 2001, 47, 503–511. [Google Scholar] [CrossRef]
  15. Wang, Q.W.; He, Z.H.; Zhang, Y. Constrained two-side coupled Sylvester-type quaternion matrix equations. Automatica 2019, 101, 207–213. [Google Scholar] [CrossRef]
  16. Zhang, X.; Wang, Q.W. The solvability and the exact solution of a system of real quaternion matrix equations. Banach J. Math. Anal. 2013, 7, 208–225. [Google Scholar] [CrossRef]
  17. Ben-Israel, A.; Greville, T.N.E. Generalized Inverses: Theory and Application; John Wiley and Sons: New York, NY, USA, 1974. [Google Scholar]
  18. Peng, Z.Y. The centro-symmetric solutions of linear matrix equation AXB=C and its optimal approximation. Chin. J. Engrg. Math. 2003, 6, 60–64. [Google Scholar]
  19. Huang, G.X.; Yin, F.; Guo, K. An iterative method for the skew-symmetric solution and the optimal approximate solution of the matrix equation AXB=C. J. Comput. Appl. Math. 2008, 212, 231–244. [Google Scholar] [CrossRef] [Green Version]
  20. Xie, M.Y.; Wang, Q.W. The reducible solution to a quaternion tensor equation. Front. Math. China 2020, 15, 1047–1070. [Google Scholar] [CrossRef]
  21. Marsaglia, G.; Styan, G.P. Equalities and inequalities for ranks of matrices. Linear Multilinear Algebra 1974, 2, 269–292. [Google Scholar] [CrossRef]
  22. He, Z.H.; Wang, Q.W. The general solutions to some systems of matrix equations. Linear Multilinear Algebra 2015, 63, 2017–2032. [Google Scholar] [CrossRef]
  23. Bhimasankaram, P. Common solutions to the linear matrix equations AX = C, XB = D and FXG = H. Sankhyā Ser. A 1976, 38, 404–409. [Google Scholar]
  24. Wang, Q.W.; He, Z.H. Some matrix equations with applications. Linear Multilinear Algebra 2012, 60, 1327–1353. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Share and Cite

MDPI and ACS Style

Liu, L.-S.; Wang, Q.-W.; Chen, J.-F.; Xie, Y.-Z. An Exact Solution to a Quaternion Matrix Equation with an Application. Symmetry 2022, 14, 375. https://doi.org/10.3390/sym14020375

AMA Style

Liu L-S, Wang Q-W, Chen J-F, Xie Y-Z. An Exact Solution to a Quaternion Matrix Equation with an Application. Symmetry. 2022; 14(2):375. https://doi.org/10.3390/sym14020375

Chicago/Turabian Style

Liu, Long-Sheng, Qing-Wen Wang, Jiang-Feng Chen, and Yu-Zhu Xie. 2022. "An Exact Solution to a Quaternion Matrix Equation with an Application" Symmetry 14, no. 2: 375. https://doi.org/10.3390/sym14020375

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop