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Abstract: In this paper, we establish the solvability conditions and the formula of the general solution
to a Sylvester-like quaternion matrix equation. As an application, we give some necessary and
sufficient conditions for a system of quaternion matrix equations to be consistent, and present an
expression of the general solution of the system when it is solvable. We present an algorithm and an
example to illustrate the main results of this paper. The findings of this paper generalize the known
results in the literature.
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1. Introduction

In this paper, we mainly investigate the following matrix equation:

A1X1B1 + A1X2B2 + A2X3B2 + A2X4B3 = Cc (1)

over the real quaternion algebra, H, where A1, A2, B1, B2, B3 and Cc are given matrices,
while Xi (i = 1, 4) are unknown.

The quaternion algebra, H, is a non-commutative division ring. It has many appli-
cations in computer science, orbital mechanics, signal and color image processing, and
control theory, and so on (see, e.g., [1–6]).

Linear matrix equation is one of active topics in mathematics. Besides mathematics,
they also have important applications in other fields, such as descriptor systems control
theorem [7], neural network [8], feedback [9], and graph theory [10]. There have been a
large number of papers on this topic (see, e.g., [1–5,11–16]). We know that the following
linear matrix equation:

A1X1B1 = C (2)

is both classical and fundamental, which was studied by many authors. For instance,
Ben-Israel and Greville [17] gave a necessary and sufficient condition for the solvability
to (2). Peng [18] presented some necessary and sufficient conditions for (2) to have a cen-
trosymmetric solution by using generalized singular value decomposition. Huang [19]
investigated the skew-symmetric solution and optimal approximate solution of (2).
Recently, Xie and Wang [20] derived a necessary and sufficient condition for (2) to
have a reducible solution. Furthermore, Xie and Wang [20] studied the following
matrix equation:

Symmetry 2022, 14, 375. https://doi.org/10.3390/sym14020375 https://www.mdpi.com/journal/symmetry

https://doi.org/10.3390/sym14020375
https://doi.org/10.3390/sym14020375
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://orcid.org/0000-0003-0189-5355
https://doi.org/10.3390/sym14020375
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com/article/10.3390/sym14020375?type=check_update&version=2


Symmetry 2022, 14, 375 2 of 24

A1X1B1 + A1X2B2 + A2X3B2 = C1 (3)

which is the special case of (1). They provided some necessary and sufficient conditions for (3)
to be consistent and gave an expression of its general solution when it is solvable. Motivated
by the above, in this paper, we aim to establish some necessary and sufficient conditions for (1)
to have a solution and derive an expression of its general solution when it is solvable. As an
application of (1), we investigate the system of the following matrix equations:

E1X1 = F1, X1G1 = H1,

E1X2 = F2, X2G2 = H2,

E2X3 = F3, X3G2 = H3,

E2X4 = F4, X4G3 = H4,

E11X1F11+E11X2F22 + E22X3F22 + E22X4F33 = T

(4)

over H, where Xi(i = 1, · · · , 4) are unknown quaternion matrices and the others are given.
The rest of this paper is structured as follows. In Section 2, we give preliminar-

ies. In Section 3, we establish some necessary and sufficient conditions for the matrix
Equation (1) to have a solution, and derive an expression of the general solution to (1) when
it is solvable. as an application of (1), we derive some necessary and sufficient conditions
for the system of matrix Equations (4) to have a solution as well as an expression of its
general solution. Finally, we give a brief conclusion to close this paper in In Section 4.

2. Preliminaries

Throughout this paper, we denote the set of all real numbers by R, the set of all m× n
quaternion matrices by Hm×n, where we obtain the following:

H = {u0 + u1i + u2j + u3k|i2 = j2 = k2 = ijk = −1, u0, u1, u2, u3 ∈ R}.

Denoted by the rank of A by r(A). I and 0 represent an identity matrix and a zero
matrix of appropriate sizes, respectively. An inner inverse of A is denoted by A− which
satisfies AA−A = A. LA and RA stand for the projectors LA = I − A−A and RA =
I − AA−, induced by A, respectively. It is easy to know that LA = (LA)

2, RA = (RA)
2.

Lemma 1 ([20]). Let A1, A2, B1, B2 and C1 be given matrices over H with suitable sizes. Put
the following:

B3 = B1LB2 , M = RA1 A2, C = C1LB2 + RA1 C1, N = B2LB3 .

Then, the following statements are equivalent:

(1) Equation (3) is consistent.
(2)

RMRA1 C = 0, CLB3 LN = 0, RA1 CLB2 = 0, RMCLB3 = 0.

(3)

r

2C1 A2 A1
B1 0 0
B2 0 0

 = r(A2, A1) + r
(

B1
B2

)
, r
(

2C1 A2 A1
B2 0 0

)
= r(A2, A1) + r

(
B2
)
,

r

2C1 A1
B1 0
B2 0

 = r(A1) + r
(

B1
B2

)
, r
(

C1 A1
B2 0

)
= r(A1) + r

(
B2
)
.
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In this case, the general solution of (3) can be expressed as follows:

X1 = A−1 CB−3 + LA1 V1 + V2RB3 ,

X2 = A−1 (C1 − A1X1B1 − A2X3B2)B−2 + T1RB2 − LA1 T2,

X3 = M−CB−2 + LMU1 + U2RB2 ,

where U1, U2, V1, V2, T1 and T2 are arbitrary matrices over H, with appropriate sizes.

The following lemma is due to Marsaglia and Styan [21], which can be generalized to H.

Lemma 2 ([21]). Let A ∈ Hm×n, B ∈ Hm×k, C ∈ Hl×n, D ∈ Hj×k and E ∈ Hl×i be given.
Then, we have the following rank equality:

r
(

A BLD
REC 0

)
= r

A B 0
C 0 E
0 D 0

− r(D)− r(E).

Lemma 3 ([22]). Let Aii, Bii and Cii (i = 1, 2) be given matrices over H with appropriate sizes.
Put the following:

A1 = A22LA11 , B1 = RB11 B22, C1 = C22 − A22 A−11C11B−11B22, D1 = RA1 A22,

φ = A−11C11B−11 + LA11 A−1 C1B−22 − LA11 A−1 A22D−1 RA1 C1B−22 + D−1 RA1 C1B−1 RB11 .

Then, the system of matrix equations AiiXBii = Cii (i = 1, 2) has a solution if—and only if—the
following is true:

RAii Cii = 0, CiiLBii = 0, (i = 1, 2), RA1 C1LB1 = 0.

In this case, the general solution to the system can be expressed as follows:

X = φ + LA11 LA1U1 + U2RB1 RB11 + LA11U3RB22 + LA22U4RB11 ,

where Ui (i = 1, 4) are arbitrary matrices over H, with appropriate sizes.

Lemma 4 ([23]). Let A1 ∈ Hm1×n1 , B1 ∈ Hr1×s1 , C1 ∈ Hm1×r1 and C2 ∈ Hn1×s1 be given. Then,
we obtain the following system:

A1X1 = C1, X1B1 = C2 (5)

which is consistent if—and only if—the following is true:

RA1 C1 = 0, C2LB1 = 0, A1C2 = C1B1.

Under these conditions, a general solution to (5) can be expressed as follows:

X1 = A−1 C1 + LA1 C2B−1 + LA1U1RB1 ,

where U1 is an any matrix with conformable dimension.
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Lemma 5 ([24]). Consider the following matrix equation:

A1X1 + X2B1 + C3X3D3 + C4X4D4 = E1 (6)

over H, where A1, B1, C3, D3, C4, D4 and E1 be given matrices of suitable sizes. Put the following:

A = RA1 C3, B = D3LB1 , C = RA1 C4, D = D4LB1 ,

E = RA1 E1LB1 , M = RAC, N = DLB, S = CLM.

Then, the following statements are equivalent:

(1) The matrix Equation (6) has a solution.
(2)

RMRAE = 0, ELBLN = 0, RAELD = 0, RCELB = 0.

(3)

r
(

E1 C4 C3 A1
B1 0 0 0

)
= r(B1) + r(C4, C3, A1),

r


E1 A1
D3 0
D4 0
B1 0

 = r

 D3
D4
B1

+ r(A1),

r

 E1 C3 A1
D4 0 0
B1 0 0

 = r(C3, A1) + r
(

D4
B1

)
,

r

 E1 C4 A1
D3 0 0
B1 0 0

 = r(C4, A1) + r
(

D3
B1

)
.

In this case, the general solution to the matrix Equation (6) can be expressed as follows:

X1 = A−1 (E1 − C3X3D3 − C4X4D4)− A−1 T7B1 + LA1 T6,

X2 = RA1(E1 − C3X3D3 − C4X4D4)B−1 + A1 A−1 T7 + T8RB1 ,

X3 = A−EB− − A−CM−EB− − A−SC−EN−DB− − A−ST2RN DB− + LAT4 + T5RB,

X4 = M−ED− + S−SC−EN− + LMLST1 + LMT2RN + T3RD,

where T1, . . . , T8 are arbitrary matrices of appropriate sizes over H.

Lemma 6 ([22]). Let A1, B1 and C1 be given matrices over H with suitable sizes. Then, the matrix
equation A1X1B1 = C1 is consistent if—and only if—RA1 C1 = 0, C1LB1 = 0. In this case,
the general solution of the matrix equation can be expressed as follows:

X1 = A−1 C1B−1 + LA1 V + URB1 ,

where U and V are any matrices with compatible dimensions over H.
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3. The General Solution to the Matrix Equation (1)

For convenience, we define the notation as follows: let Ai, Bj (i = 1, 2, j = 1, 3) be
given matrices of suitable sizes over H and put the following:

B4 = B1LB2 , B5 = B2LB4 , A33 = RA1 A2, C44 = CcLB2 + RA1 Cc, B33 = B3LB2 , C33 = RA1 CcLB2 ,

A11 = A2 + A33, B11 = B3LB4 LB5 , C11 = (I + RA1)CcLB4 LB5 , A22 = RA33 A2, B22 = B3LB2 LB4 ,

C22 = RA33 C44LB4 , M1 = A22LA11 , N1 = RB11 B22, C1 = C22 − A22 A−11C11B−11B22, D1 = RA1 A22,

φ = A−11C11B−11 + LA11 M−1 C1B−22 − LA11 M−1 A22D−1 RM1 C1B−22 + D−1 RM1 C1N−1 RB11 ,

M2 =
[
LA11 LM1 , LA33

]
, N2 =

[
RN1 RB11

RB33

]
, A = RM2 LA11 , B = RB22 LN2 , C = RM2 LA22 ,

D = RB11 LN2 , E1 = A−33C33B−33 − φ, E = RM2 E1LN2 , M = RAC, N = DLB, S = CLM,

(7)

and

S1 = [Im, 0], S2 =

[
In
0

]
, S3 = [0, Im], S4 =

[
0
In

]
,

where Im and In denote the unit matrices of order n and m, respectively. Then, we obtain
the main theorem of this paper.

Theorem 1. Consider (1) with the notation in (7). The following statements are equivalent:

(1) The matrix Equation (1) has a solution.
(2)

RA33 RA1 C44 = 0, RA11 C11 = 0, CiiLBii = 0, (i = 1, 3), (8)

RM1 C1LN1 = 0, RAELD = 0, RMRAE = 0, ELBLN = 0, RCELB = 0. (9)

(3)

r

(
2Cc A2 A1

B2 0 0

)
= r(A2, A1) + r(B2), (10)

r

2Cc A2 A1

B1 0 0
B2 0 0

 = r(A2, A1) + r

(
B1

B2

)
, (11)

r


2Cc A1

B3 0
B2 0
B1 0

 = r(A1) + r

B3

B2

B1

, (12)

r


2Cc A2 A1

B3 0 0
B2 0 0
B1 0 0

 = r(A2, A1) + r

B3

B2

B1

, (13)

r

Cc A1

B3 0
B2 0

 = r(A1) + r

(
B3

B2

)
, (14)
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r



2Cc 0 0 A2 A1 0
B3 0 B3 0 0 0
0 A2 −2Cc 0 0 A1

B1 0 0 0 0 0
0 0 B1 0 0 0
0 0 B2 0 0 0

B2 0 0 0 0 0


= r

(
A2 A1 0 0
0 0 A2 A1

)
+ r


B3 B3

B2 0
B1 0
0 B2

0 B1

, (15)

r



0 B3 B3 0 0
−2A2 2Cc 0 A1 0

A2 0 Cc 0 A1

0 B2 0 0 0
0 B1 0 0 0
0 0 B2 0 0


= r

(
0 A1 0

A2 0 A1

)
+ r


B3 B3

B2 0
B1 0
0 B2

, (16)

r



0 0 −B3 B3 B3 0 0 0 0
0 0 2Cc 0 0 A2 0 A1 0

A2 0 0 2Cc 0 0 0 0 A1

0 A2 0 0 Cc 0 A1 0 0
0 0 0 0 B2 0 0 0 0
0 0 B1 0 0 0 0 0 0
0 0 B2 0 0 0 0 0 0
0 0 0 B2 0 0 0 0 0
0 0 0 B1 0 0 0 0 0



= r

A2 A1 0 0 0 0
0 0 A2 A1 0 0
0 0 0 0 A2 A1

+ r



B3 B3 B3

B2 0 0
B1 0 0
0 B2 0
0 B1 0
0 0 B2


, (17)
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r



0 B3 B3 0 0 0 0 0
0 0 −B3 B3 0 0 0 0

2A2 0 2Cc 0 0 0 A1 0
0 2Cc 0 0 0 A2 0 A1

A2 0 0 Cc A1 0 0 0
0 B2 0 0 0 0 0 0
0 B1 0 0 0 0 0 0
0 0 B2 0 0 0 0 0
0 0 B1 0 0 0 0 0
0 0 0 B2 0 0 0 0



= r

 0 A2 0 A1 0
2A2 0 0 0 A1

A2 0 A1 0 0

+ r



B3 B3 0
0 B3 B3

B2 0 0
B1 0 0
0 B2 0
0 B1 0
0 0 B2


,

(18)

r



0 0 B3 B3 B3 0 0 0 0
0 0 0 0 0 B3 0 0 0
0 0 2Cc 0 0 0 A1 A2 0

A2 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 A1

0 A2 0 0 0 Cc 0 0 0
0 0 B1 0 0 0 0 0 0
0 0 B2 0 0 0 0 0 0
0 0 0 B1 0 0 0 0 0
0 0 0 B2 0 0 0 0 0
0 0 0 0 B1 0 0 0 0
0 0 0 0 B2 0 0 0 0
0 0 0 0 0 B2 0 0 0



= r


0 0 A2 A1 0

A2 0 0 0 0
0 0 0 0 A1

0 A2 0 0 0

+ r



B3 B3 B3 0
0 0 0 B3

B2 0 0 0
B1 0 0 0
0 B2 0 0
0 B1 0 0
0 0 B1 0
0 0 B2 0
0 0 0 B2


. (19)

In this case, the general solution to (1) can be expressed as follows:

X1 = A−1
[
(Cc − A2X4B3)LB2 + RA1(Cc − A2X4B3)

]
B−4 + LA1 V1 + V2RB4 ,

X2 = A−1 (Cc − A1X1B1 − A2X3B2 − A2X4B3)B−2 + V3RB2 − LA1 V4,

X3 = M−
[
(Cc − A2X4B3)LB2 + RA1(Cc − A2X4B3)

]
B−2 + LMV5 + V6RB2 ,

X4 = φ + LA11 LM1U1 + U2RN1 RB11 + LA11U3RB22 + LA22U4RB11 ,

or

X4 = A−33C33B−33 + LA33U5 + U6RB33 ,

(20)
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where

U1 = S1
[
M−2

(
E1 − LA11U3RB22 − LA22U4RB11

)
−M−2 T7N2 + LM2 T6

]
,

U2 =
[
RM2

(
E1 − LA11U3RB22 − LA2U4RB11

)
N−2 + M2M−2 T7 + T8RN2

]
S2,

U3 = A−EB− − A−CM−RAEB− − A−SC−ELBN−DB− − A−ST3RN DB−

+ LAT1 + T2RB,

U4 = M−RAED− + LMS−SC−ELBN− + LMLST4 + LMT3RN + T5RD,

U5 = −S3
[
M−2

(
E1 − LA11U3RB22 − LA22U4RB11

)
−M−2 T7N2 + LM2 T6

]
,

U6 = −
[
RM2

(
E1 − LA11U3RB22 − LA22U4RB11

)
N−2 + M2M−2 T7 + T8RN2

]
S4,

and Vi (i = 1, 6), Ti (i = 1, 8) are arbitrary matrices over H, with appropriate sizes.

Proof. (1)⇔ (2): It is easy to know that Equation (1) can be written as follows:

A1X1B1 + A1X2B2 + A2X3B2 = Cc − A2X4B3. (21)

Clearly, Equation (1) is solvable if—and only if—Equation (21) is consistent. By Lemma 1,
we obtain that (21) is solvable if—and only if—there exists X4 in (21) such that we obtain
the following:

RA33 RA1

[
(Cc − A2X4B3)LB2 + RA1(Cc − A2X4B3)

]
= 0,[

(Cc − A2X4B3)LB2 + RA1(Cc − A2X4B3)
]
LB3 LB5 = 0,

RA33

[
(Cc − A2X4B3)LB2 + RA1(Cc − A2X4B3)

]
LB4 = 0,

RA1

[
(Cc − A2X4B3)LB2 + RA1(Cc − A2X4B3)

]
LB2 = 0,

i.e.,
RA33 RA1 C44 = 0, (22)

AiiX4Bii = Cii (i = 1, 2), (23)

and
A33X4B33 = C33, (24)

respectively. Moreover, when (21) is solvable, we obtain the following:

X1 = A−1
[
(Cc − A2X4B3)LB2 + RA1(Cc − A2X4B3)

]
B−4 + LA1 V1 + V2RB4 ,

X2 = A−1 (Cc − A1X1B1 − A2X3B2 − A2X4B3)B−2 + V3RB2 − LA1 V4,

X3 = M−
[
(Cc − A2X4B3)LB2 + RA1(Cc − A2X4B3)

]
B−2 + LMV5 + V6RB2 ,

where B4, B5, A33 and M are defined by (7), Vi (i = 1, 6), which are arbitrary matrices over
H, with appropriate sizes.

Hence, the matrix Equation (21) is solvable if—and only if—(22) holds, and there exists
X4, such that both (23) and (24) are solvable.

Next, we consider the common solution of (23) and (24). On the ond hand, by Lemma 3,
the system (23) is solvable if—and only if—the following is true:

RAii Cii = 0, CiiLBii = 0 (i = 1, 2), RM1 C1LN1 = 0, (25)

in which case, the general solution of (23) can be expressed as follows:

X4 = φ + LA11 LM1U1 + U2RN1 RB11 + LA11U3RB22 + LA22U4RB11 , (26)
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where Aii (i = 1, 2), M1, N1 and C1 are given by (7), and Ui (i = 1, 4) are arbitrary matrices
over H, with appropriate sizes. On the other hand, in view of Lemma 6, (24) is solvable
if—and only if—the following is true:

RA33 C33 = 0, C33LB33 = 0, (27)

in which case, the general solution of (24) can be expressed as follows:

X4 = A−33C33B−33 + LA33U5 + U6RB33 , (28)

where A33, B33 and C33 are given by (7), and U5 and U6 are arbitrary matrices over H, with
appropriate sizes.

Clearly, the matrix Equations (23) and (24) have a common solution if—and only
if—X4 of (26) is equal to X4 of (28). Letting X4 of (26) be the one of (28), yielding
the following:

(LA11 LM1 , LA33)

(
U1
−U5

)
+ (U2, −U6)

(
RN1RB11

RB33

)
+ LA11U3RB22 + LA22U4RB11 = E1,

i.e.,

M2

(
U1
−U5

)
+ (U2, −U6)N2 + LA11U3RB22 + LA22U4RB11 = E1. (29)

It follows from Lemma 5 that Equation (29) has a solution if—and only if—the follow-
ing is true:

RAELD = 0, RMRAE = 0, ELBLN = 0, RCELB = 0. (30)

In this case, the general solution to (29) can be expressed as follows:

U1 = S1
[
M−2

(
E1 − LA11U3RB22 − LA22U4RB11

)
−M−2 T7N2 + LM2 T6

]
,

U2 =
[
RM2

(
E1 − LA11U3RB22 − LA2U4RB11

)
N−2 + M2M−2 T7 + T8RN2

]
S2,

U3 = A−EB− − A−CM−RAEB− − A−SC−ELBN−DB− − A−ST3RN DB−

+ LAT1 + T2RB,

U4 = M−RAED− + LMS−SC−ELBN− + LMLST4 + LMT3RN + T5RD,

U5 = −S3
[
M−2

(
E1 − LA11U3RB22 − LA22U4RB11

)
−M−2 T7N2 + LM2 T6

]
,

U6 = −
[
RM2

(
E1 − LA11U3RB22 − LA22U4RB11

)
N−2 + M2M−2 T7 + T8RN2

]
S4,

where M1, M2, N1, N2, A, B, D, E, S, M, N are defined as (7), and Tj (j = 1, 8) are arbitrary
matrices over H, with appropriate sizes.

So far, we have shown that Equation (21) is solvable if—and only if—(22), (25), (27),
and (30) hold. In this case, the general solution of (21) can be expressed as (20).

We now show that RA33 C33 = 0⇔ RA33 RA1 C44 = 0 and RA22 C22 = 0⇔ RA11 C11 = 0.
In fact, it follows from Lemma 2 that we obtain the following:

RA33 C33 = 0⇔ r(RA33 C33) = 0⇔ r(C33, A33) = r(A33)

⇔ r(RA1
CcLB2 , RA1 A2) = r(RA1 A2)⇔ r

(
Cc A2 A1
B2 0 0

)
= r(A2, A1) + r(B2)

(31)

and
RA33 RA1 C44 = 0⇔ r

(
RA33 RA1(CcLB2 + RA1 Cc)

)
= 0

⇔ r(
(
CcLB2 + RA1 Cc

)
, A2, A1) = r(A2, A1)

⇔ r
(

2Cc A2 A1
B2 0 0

)
= r(A2, A1) + r(B2)

(32)

yielding RA33 C33 = 0⇔ RA33 RA1 C44 = 0.
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On the other hand, we have the following:

RA11 C11 = 0⇔ r(RA11 C11) = 0⇔ r(C11, A11) = r(A11)

⇔ r[(I + RA1)CcLB4 LB5 , (I + RA1)A2] = r[(I + RA1)A2]

⇔ r
(

I 0 0
0 (I + RA1)CcLB4 LB5 (I + RA1)A2

)
= r
(

I 0
0 (I + RA1)A2

)

⇔ r


I −Cc −A2 0
I Cc A2 A1
0 B2 0 0
0 B1 0 0

 = r
(

I −A2 0
I A2 A1

)
+ r
(

B2
B1

)

⇔ r

 2Cc A2 A1
B2 0 0
B1 0 0

 = r(A2, A1) + r
(

B2
B1

)
⇔ (11).

(33)

Similarly, we can show that RA22 C22 = 0⇔ (11). Hence, RA11 C11 = 0⇔ RA22 C22 = 0.
So far, we have proved that (22), (25), (27), and (30) hold if—and only if—(8) and (9) hold.
To sum up, Equation (21), and thus Equation (1), are consistent if—and only if—(8)

and (9) hold.
(2)⇔ (3): We first show that (8) holds if—and only if—(10)–(14) hold. It follows from

(32) and (33) that (22)⇔ (10) and RA11 C11 = 0⇔ (11). Next, we prove that C11LB11 = 0⇔
(12). By Lemma 2, as follows:

C11LB11 = 0⇔ r(C11LB11) = 0⇔ r
(

C11
B11

)
= r(B11)

⇔ r


(I + RA1)Cc

B3
B2
B1

 = r

B3
B2
B1

⇔ r


I 0
I (I + RA1)Cc
0 B3
0 B2
0 B1

− r(I) = r

B3
B2
B1



⇔ r


I −Cc 0
I Cc A1
0 B3 0
0 B2 0
0 B1 0

− r(I) = r

B3
B2
B1

+ r(A1)⇔ r


2Cc A1
B3 0
B2 0
B1 0

 = r

B3
B2
B1

+ r(A1)⇔ (12).

Similarly, we can show that C22LB22 = 0 ⇔ (13) and C33LB33 = 0 ⇔ (14). Therefore,
(8) holds if—and only if—(10)–(14) all hold.

We now turn our attention to show that (9) holds if—and only if—(15)–(19) hold.
RM1 C1LN1 = 0⇔ (15). In fact, it follows from Lemma 2 that the following is true:
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RM1 C1LN1 = 0⇔ r(RM1 C1LN1) = 0

⇔ r
(

C1 M1
N1 0

)
= r(M1) + r(N1)

⇔ r

C22 A22 0
B22 0 B11
0 A11 −C11

 = r
(

A22
A11

)
+ r(B22, B11)

⇔ r



CcLB2 + RA1 Cc A2 0 A33
B3LB2 0 B3 0

0 (I + RA1)A2 −(I + RA1)Cc 0
B1LB2 0 0 0

0 0 B4 0
0 0 B2 0



= r


B3LB2 B3
B1LB2 0

0 B4
0 B2

+ r
(

A2 A33
(I + RA1)A2 0

)

⇔ r



I 0 0 0 0
I CcLB2 + RA1 Cc A2 0 A33
0 B3LB2 0 B3 0
I 0 (I + RA1)A2 −(I + RA1)Cc 0
0 B1LB2 0 0 0
0 0 0 B4 0
0 0 0 B2 0



= r


B3LB2 B3
B1LB2 0

0 B4
0 B2

+ r

 I 0 0
0 A2 A33
I (I + RA1)A2 0



⇔ r



I −Cc −A2 Cc 0 0 0
I Cc A2 0 A2 A1 0
0 B3 0 B3 0 0 0
I 0 A2 Cc 0 0 A1
0 B1 0 0 0 0 0
0 0 0 B4 0 0 0
0 0 0 B2 0 0 0
0 B2 0 0 0 0 0


= r


B3 B3
B1 0
0 B4
0 B2
B2 0

+ r

 I −A2 0 0 0
0 A2 A2 A1 0
I A2 0 0 A1



⇔ r



2Cc 0 0 A2 A1 0
B3 0 B3 0 0 0
0 A2 2Cc 0 0 A1
B1 0 0 0 0 0
0 0 B1 0 0 0
0 0 B2 0 0 0
B2 0 0 0 0 0


= r
(

A2 A1 0 0
0 0 A2 A1

)
+ r


B3 B3
B2 0
B1 0
0 B2
0 B1

⇔ (15).

Similarly, we can show that RMRAE = 0⇔ (16), ELBLN = 0⇔ (17), RAELD = 0⇔
(18) and RCELB = 0 ⇔ (19). The proof is completed. Next, we use an Algorithm 1 for
calculating Equation (1) to illustrate this theorem.

3.1. Algorithm with a Numerical Example

In this section, we present an algorithm and an example to illustrate Theorem 1.
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Algorithm 1: Algorithm for calculating Equation (1)

(1) Feed the values of Ai, Bj (i = 1, 2, j = 1, 3) and Cc with conformable shapes
over H.

(2) Compute the symbols in (7).
(3) Check whether (8), (9) or rank equalities in (10)–(19) hold or not. If no, then

return “inconsisten”.
(4) Otherwise, compute Xi (i = 1, 4).

Example 1. Consider the matrix Equation (1). Put the following:

A1 =

 a111 a112
a121 a122
a131 a132

, B1 =

(
b111 b112 b113
b121 b122 b123

)
, B2 =

(
b211 b212 b213
b221 b222 b223

)
,

A2 =

 a211 a212
a221 a222
a231 a232

, B3 =

(
b311 b312 b313
b321 b322 b323

)
, Cc =

 c11 c12 c13
c21 c22 c23
c31 c32 c33

,

where

a111 = 0.3181 + 0.5447i + 0.2187j + 0.3685k, a112 = 0.6456 + 0.7210i + 0.0636j + 0.7720k,

a121 = 0.1192 + 0.6473i + 0.1058j + 0.7635k, a122 = 0.4795 + 0.5225i + 0.4046j + 0.9329k,

a131 = 0.9398 + 0.5439i + 0.1097j + 0.6279k, a132 = 0.6393 + 0.9937i + 0.4484j + 0.9727k,

b111 = 0.1920 + 0.8611i + 0.3477j + 0.2428k, b112 = 0.6963 + 0.3935i + 0.5861j + 0.6878k,

b113 = 0.5254 + 0.7413i + 0.0445j + 0.7363k, b121 = 0.1389 + 0.4849i + 0.1500j + 0.4424k,

b122 = 0.0938 + 0.6714i + 0.2621j + 0.3592k, b123 = 0.5303 + 0.5201i + 0.7549j + 0.3947k,

b211 = 0.6834 + 0.2703i + 0.7691j + 0.7904k, b212 = 0.4423 + 0.8217i + 0.8085j + 0.3276k,

b213 = 0.3309 + 0.8878i + 0.3774j + 0.4386k, b221 = 0.7040 + 0.1971i + 0.3968j + 0.9493k,

b222 = 0.0196 + 0.4299i + 0.7551j + 0.6713k, b223 = 0.4243 + 0.3912i + 0.2160j + 0.8335k,

a211 = 0.7689 + 0.5880i + 0.7900j + 0.6787k, a212 = 0.9899 + 0.4070i + 0.0900j + 0.4950k,

a221 = 0.1673 + 0.1548i + 0.3185j + 0.4952k, a222 = 0.5144 + 0.7487i + 0.1117j + 0.1476k,

a231 = 0.8620 + 0.1999i + 0.5341j + 0.1897k, a232 = 0.8843 + 0.8256i + 0.1363j + 0.0550k,

b311 = 0.8507 + 0.8790i + 0.5277j + 0.5747k, b312 = 0.9296 + 0.0005i + 0.8013j + 0.7386k,

b313 = 0.5828 + 0.6126i + 0.4981j + 0.2467k, b321 = 0.5606 + 0.9889i + 0.4795j + 0.8452k,

b322 = 0.6967 + 0.8654i + 0.2278j + 0.5860k, b323 = 0.8154 + 0.9900i + 0.9009j + 0.6664k,

c11 = −38.7863 + 4.0617i + 0.5536j− 3.4984k, c12 = −35.3609− 9.0836i− 1.7527j− 6.7689k,

c13 = −33.503− 3.7707i + 5.2872j− 6.2708k, c21 = −24.7749− 3.6921i− 0.5143j− 10.8211k,

c22 = −21.0950− 11.3075i− 3.9522j− 10.8211k, c23 = −18.9376− 7.7280i + 1.7134j− 11.9519k,

c31 = −36.2182 + 5.3877i− 2.8839j− 0.8389k, c32 = −33.9232− 7.3248i− 4.3221j− 3.9587k,

c33 = −31.8026− 1.6492i + 1.2342j− 6.7683k.
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Computing directly yields the following:

r

2Cc A2 A1
B1 0 0
B2 0 0

 = r(A2, A1) + r
(

B1
B2

)
= 6,

r
(

2Cc A2 A1
B2 0 0

)
= r(A2, A1) + r(B2) = 5,

r


2Cc A1
B3 0
B2 0
B1 0

 = r(A1) + r

B3
B2
B1

 = 5,

r


2Cc A2 A1
B3 0 0
B2 0 0
B1 0 0

 = r(A2, A1) + r

B3
B2
B1

 = 6,

r

Cc A1
B3 0
B2 0

 = r(A1) + r
(

B3
B2

)
= 5,

r



2Cc 0 0 A2 A1 0
B3 0 B3 0 0 0
0 A2 −2Cc 0 0 A1
B1 0 0 0 0 0
0 0 B1 0 0 0
0 0 B2 0 0 0
B2 0 0 0 0 0


= r
(

A2 A1 0 0
0 0 A2 A1

)
+ r


B3 B3
B2 0
B1 0
0 B2
0 B1

 = 12,

r



0 B3 B3 0 0
−2A2 2Cc 0 A1 0

A2 0 Cc 0 A1
0 B2 0 0 0
0 B1 0 0 0
0 0 B2 0 0

 = r
(

0 A1 0
A2 0 A1

)
+ r


B3 B3
B2 0
B1 0
0 B2

 = 11,

r



0 0 −B3 B3 B3 0 0 0 0
0 0 2Cc 0 0 A2 0 A1 0

A2 0 0 2Cc 0 0 0 0 A1
0 A2 0 0 Cc 0 A1 0 0
0 0 0 0 B2 0 0 0 0
0 0 B1 0 0 0 0 0 0
0 0 B2 0 0 0 0 0 0
0 0 0 B2 0 0 0 0 0
0 0 0 B1 0 0 0 0 0



= r

A2 A1 0 0 0 0
0 0 A2 A1 0 0
0 0 0 0 A2 A1

+ r



B3 B3 B3
B2 0 0
B1 0 0
0 B2 0
0 B1 0
0 0 B2

 = 18,
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r



0 B3 B3 0 0 0 0 0
0 0 −B3 B3 0 0 0 0

2A2 0 2Cc 0 0 0 A1 0
0 2Cc 0 0 0 A2 0 A1

A2 0 0 Cc A1 0 0 0
0 B2 0 0 0 0 0 0
0 B1 0 0 0 0 0 0
0 0 B2 0 0 0 0 0
0 0 B1 0 0 0 0 0
0 0 0 B2 0 0 0 0



= r

 0 A2 A1 0 0
A2 0 0 A1 0
A2 0 0 0 A1

+ r



B3 0 0
B3 B3 0
0 B3 B3
B2 0 0
B1 0 0
0 B2 0
0 B1 0
0 0 B2


= 17,

r



0 0 B3 B3 B3 0 0 0 0
0 0 0 0 0 B3 0 0 0
0 0 2Cc 0 0 0 A1 A2 0

A2 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 A1
0 A2 0 0 0 Cc 0 0 0
0 0 B1 0 0 0 0 0 0
0 0 B2 0 0 0 0 0 0
0 0 0 B1 0 0 0 0 0
0 0 0 B2 0 0 0 0 0
0 0 0 0 B1 0 0 0 0
0 0 0 0 B2 0 0 0 0
0 0 0 0 0 B2 0 0 0



= r


0 0 A2 A1 0

A2 0 0 0 0
0 0 0 0 A1
0 A2 0 0 0

+ r



B3 B3 B3 0
0 0 0 B3
B2 0 0 0
B1 0 0 0
0 B2 0 0
0 B1 0 0
0 0 B1 0
0 0 B2 0
0 0 0 B2


= 24.

All rank equalities in (10)–(19) hold. Hence, according to Theorem 1, Equation (1) is consistent,
and the general solution to the matrix Equation (1) can be expressed as follows:
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X1 =

(
0.500 + 3.0117i + 0.0161j + 1.2813k −2.2870− 5.3594i + 2.8008j− 3.4531k
−0.3281 + 0.1484i + 1.4375j− 1.1836k 2.2500 + 1.9219i + 0.4844j + 7.1406k

)
+

V2

(
0.2734− 0.0010i− 0.0020j− 0.0078k −0.0117− 0.1328i− 0.0625j− 0.4063k
0.0508 + 0.1519i + 0.1387j + 0.4042k −0.1973 + 0.0039i− 0.2617j

)
,

X2 =

(
3i + 2j 2k + i
2j + 3i 2i + j

)
, X3 =

(
x311 x312
x321 x322

)
, X4 =

(
x0411 x0412
x0421 x0422

)
,

or

X4 =

(
x411 x412
x421 x422

)
+ T1U5 + U6T2, U1 = S1(U11 −U12T7U13 + U14T6),

U2 =


(

1 0
0 1

)
T7 + T8


u211 u212 u213 u214
u221 u222 u223 u224
u231 u232 u233 u234
u241 u242 u243 u244


S2,

U3 =

(
u311 u312
u321 u322

)
, U4 =

(
u411 u412
u421 u422

)
, U5 = −S3(U11 −U12T7U13 + U14T6),

U6 = −


(

1 0
0 1

)
T7 + T8


u211 u212 u213 u214
u221 u222 u223 u224
u231 u232 u233 u234
u241 u242 u243 u244


S4, U14 =


1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

,

T1 =

(
0.2500 + 0.0447i− 0.0938j− 0.2090k −0.1348 + 0.3086i− 0.0781j + 0.2188k
−0.0938− 0.3564i + 0.0313j + 0.3167k 0.4102− 0.0117i + 0.1094j− 0.2109k

)
,

T2 =

(
0.0005 + 0.0012i + 0.0005j + 0.0005k −0.0002 + 0.0005i + 0.0005j− 0.0005k
−0.0005− 0.0004i− 0.0010j + 0.0010k 0.0012i + 0.0020j + 0.0002k,

)
,

U11 =


0 0
0 0

0.2157− 0.5625i− 0.5079j + 0.4975k 0.0479 + 0.8423i + 1.4991j + 0.0312k
0.4770 + 2.4543i + 2.5170j + 2.3890k −2.9781− 2.4611i− 0.1109j− 4.8836k

,

U12 =


0 0
0 0

2.0941− 1.8169i− 19.7767j + 7.1464k 4.0003− 7.6426i− 23.6916j− 12.6004k
35.0358 + 22.9322i− 19.0766j + 62.5683k 50.3227 + 10.8273i− 41.1511j + 44.4639k

,

U13 =


0 0
0 0

0.0005 + 0.0012i + 0.0005k −0.0002 + 0.0005i + 0.0005j + 0.0005k
−0.0005− 0.0004i− 0.0010j + 0.0010k 0.0012i + 0.0020j + 0.0002k

,
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where

x311 = 2.4249× 1015 + 9.158× 1014i + 3.6562× 1015j− 9.802× 1014k,

x312 = 2.8915× 1015 − 3.424× 1015i + 3.6682× 1015j + 3.8670× 1014k,

x321 = −2.8900× 1015 − 8.349× 1014i + 4.8121× 1015j + 1.3028× 1015k,

x322 = −2.876× 1015 + 3.0166× 1015i + 1.3349× 1015j + 5.6492× 1014k,

x0411 = −1.0460× 1014 − 5.5967× 1014i− 4.5730× 1014j + 2.5023× 1014k,

x0412 = 4.0206× 1014 + 1.7870× 1014i + 3.5717× 1014j + 1.6691× 1014k,

x0421 = −1.0061× 1014 + 3.6673× 1014i + 4.9065× 1014j− 7.1850× 1014k,

x0411 = −1.0460× 1014 − 5.5967× 1014i− 4.5730× 1014j + 2.5023× 1014k,

x0422 = −2.0371× 1014 − 1.9449× 1014i− 6.7917× 1014j + 3.27× 1011k,

x412 = −2.5081× 1015 − 2.526× 1014i− 1.8086× 1015j− 1.6121× 1015k,

x421 = −1.6826× 1015 + 3.233× 1014i + 1.2608× 1014j− 5.905× 1014k,

x422 = 3.376× 1014 − 2.1855× 1015i− 2.5144× 1015j− 9.287× 1014k,

u311 = −1.093× 1035 − 9.730× 1035i + 1.8576× 1036j− 1.9289× 1036k,

u312 = 8.155× 1035 + 9.72× 1034i− 1.5978× 1036j− 1.5691× 1036k,

u321 = −8.932× 1035 − 1.8508× 1036i + 4.0088× 1036j− 4.8557× 1036k,

u322 = 1.5025× 1036 − 7.623× 1035i− 4.0296× 1036j− 3.3906× 1036k,

u411 = 1.4764× 1035 + 4.669× 1034i− 5.229× 1034j− 2.3157× 1035k,

u412 = −3.7703× 1035 + 2.5079× 1035i− 4.3196× 1035j + 5.1752× 1035k,

u421 = 1.3750× 1035 − 1.2281× 1035i− 2.4962× 1035j + 1.7278× 1035k,

u422 = 4.310× 1034 + 5.1989× 1035i + 8.0931× 1035j + 2.5832× 1035k,

u211 = 0.9999 + 0.0001j− 0.0001k, u212 = −0.0002 + 0.0001i + 0.0004j,

u213 = 0.0025− 0.0052i− 0.0085j− 0.0084k, u214 = 0.0052− 0.0006i− 0.0064j + 0.0067k,

u221 = −0.0002− 0.0001i− 0.0001j− 0.0002k, u222 = 0.9994 + 0.0001i− 0.0005k,

u223 = 0.0096− 0.0130i− 0.0134j + 0.0039k, u224 = 0.0098 + 0.0104i + 0.0081j + 0.0108k,

u231 = 0.0025 + 0.0052i− 0.0002j− 0.0013k, u232 = 0.0096 + 0.0130i− 0.0014j− 0.0031k,

u233 = 0.0006 + 0.0001i− 0.0001k, u234 = −0.0001 + 0.0005i− 0.0001j,

u241 = 0.0052 + 0.0006i− 0.0040j− 0.0043k, u242 = 0.0098− 0.0104i + 0.0036j− 0.0096k,

u243 = −0.0001− 0.0005i + 0.0004j− 0.0001k, u244 = 0.0005− 0.0002j− 0.0003k,

V2 is an arbitrary matrix of order 2× 2 over quaternion H, T6 is an arbitrary matrix of order
4× 2 over quaternion H, and T7 and T8 are arbitrary matrix of order 2× 4 over quaternion H,

S1 =
(

I2 0
)
, S2 =

(
I2
0

)
, S3 =

(
0 I2

)
, S4 =

(
0
I2

)
.

3.2. The General Solution to the System (4)

Based on Theorem 1, in this section, we consider the system (4) with the known
matrices E1, E2, E11, E22, Fi, Hi (i = 1, 4), Gj, Fjj (j = 1, 3), and T over H. For convenience,
we define the notation as follows:
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Ai = EiiLEi , Bj = RGj Fjj(i = 1, 2, j = 1, 3), Cc = T − E11(E−1 F1 + LE1 H1G−1 )F11

− E11(E−1 F2 + LE1 H2G−2 )F22 − E22(E−2 F3 + LE2 H3G−2 )F22 − E22(E−1 F4 + LE2 H4G−3 )F33,

B4 = B1LB2 , B5 = B2LB4 , A33 = RA1 A2, B33 = B3LB2 ,

C33 = RA1 CcLB2 , A11 = A2 + A33, C44 = CcLB2 + RA1 Cc, B11 = B3LB4 LB5 ,

C11 = (I + RA1)CcLB4 LB5 , A22 = RA33 A2, B22 = B3LB2 LB4 , C22 = RA33 C44LB4 ,

M1 = A22LA11 , N1 = RB11 B22, C1 = C22 − A22 A−11C11B−11B22, D1 = RA1 A22,

φ = A−11C11B−11 + LA11 M−1 C1B−22 − LA11 M−1 A22D−1 RM1 C1B−22 + D−1 RM1 C1N−1 RB11 ,

M2 =
[
LA11 LM1 , LA33

]
, N2 =

[
RN1 RB11

RB33

]
, A = RM2 LA11 , B = RB22 LN2 , C = RM2 LA22 ,

D = RB11 LN2 , E1 = A−33C33B−33 − φ, E = RM2 E1LN2 , M = RAC, N = DLB, S = CLM,

(34)

and

S1 = [Im, 0], S2 =

[
In
0

]
, S3 = [0, Im], S4 =

[
0
In

]
.

Thus, we obtain the following—one of the main result of this paper.

Theorem 2. Consider the system of quaternion matrix Equation (4) with the notation given in (34).
The following statements are equivalent:

(1) The system of matrix Equation (4) is consistent.
(2)

E1H1 = F1G1, E1H2 = F2G2, E2H3 = F3G2, E2H4 = F4G3 (35)

and

RE1 F1 = 0, RE2 F3 = 0, H1LG1 = 0, H2LG2 = 0, H4LG3 = 0, (36)

RA33 RA1 C44 = 0, RA11 C11 = 0, CiiLBii = 0(i = 1, 3), RM1 C1LN1 = 0,

RMRAE = 0, ELBLN = 0, RAELD = 0, RCELB = 0.
(37)

(3) (35) holds and

r
(

F1 E1
)
= r(E1), r

(
F3 E2

)
= r(E2),

r
(

H1
G1

)
= r(G1), r

(
H2
G2

)
= r(G2), r

(
H4
G3

)
= r(G3),

(38)

r
(

Pi Si
0 Qi

)
= r(Pi) + r(Qi), i = 1, 10 (39)

where

P1 =

E22 E11
E2 0
0 E1

, Q1 =
(

F22 G2
)
, S1 =

 2T 0
2W2 0
2W1 0

, P2 =

E22 E11
E2 0
0 E1

, (40)

Q2 =

(
F11 G1 0
F22 0 G2

)
, S2 =

 2T 0 2V1
2W2 0 0
2U1 0 0

, Q3 =

F33 G3 0 0
F22 0 G2 0
F11 0 0 G1

, (41)
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P3 =

(
E11
E1

)
, S3 =

 2T 2V2 2V3 2V4
2W2 0 0
2U2 0 0 0

, S4 =

 2T 2V2 2V1 0
2U3 0 0 0
2U1 0 0 0

, (42)

P4 =

E22 E11
E2 0
0 E1

, Q4 =

F33 G3 0 0
F22 0 G2 0
F11 0 0 G1

, Q5 =

(
F33 G3 0
F22 0 G2

)
, (43)

P5 =

(
E11
E1

)
, S5 =

(
T V2 V3

W1 0 0

)
, Q6 =


F33 F33 G3 0 0 0 0
F22 0 0 G2 0 0 0
F11 0 0 0 G1 0 0
0 F22 0 0 0 G2 0
0 F11 0 0 0 0 G1

, (44)

P6 =



E22 E11 0 0
0 0 E22 E11

E2 0 0 0
0 E1 0 0
0 0 E2 0
0 0 0 E1

, S6 =



2T 0 0 2V3 2V4 0 0
0 2T 0 0 0 2V3 2V4

2U4 0 0 0 0 0 0
2U5 0 0 0 0 0 0

0 2U4 0 0 0 0 0
0 2U5 0 0 0 0 0

,

P7 =



E22 E11 0 0 0 0
0 0 E22 E11 0 0
0 0 0 0 E22 E11

E2 0 0 0 0 0
0 E1 0 0 0 0
0 0 E2 0 0 0
0 0 0 E1 0 0
0 0 0 0 E2 0
0 0 0 0 0 E1


, S7 =



2T 0 0 2V3 2V4 0 0
0 2T 0 0 0 2V3 2V4

2U4 0 0 0 0 0 0
2U5 0 0 0 0 0 0

0 2U4 0 0 0 0 0
0 2U5 0 0 0 0 0

, (45)

Q7 =



F33 F33 F33 G3 0 0 0 0 0
F22 0 0 0 G2 0 0 0 0
F11 0 0 0 0 G1 0 0 0
0 F22 0 0 0 0 G2 0 0
0 F11 0 0 0 0 0 G1 0
0 0 F22 0 0 0 0 0 G2

, P8 =



2E22 0 E11 0 0
E22 E11 0 0 0
0 0 0 E22 E11

E2 0 0 0 0
0 E1 0 0 0
0 0 E1 0 0
0 0 0 E2 0
0 0 0 0 E1


, (46)

S8 =



0 2T 0 0 0 0 0 2V3 2V4 0
T 0 T 0 0 V3 V4 0 0 V3

2T 0 0 0 0 2V3 2V4 0 0 0
2U4 0 0 0 0 0 0 0 0 0
U4 0 U4 0 0 0 0 0 0 0
0 U5 V1 0 0 0 0 0 0 0
0 2U5 0 0 0 0 0 0 0 0

2U4 0 0 0 0 0 0 0 0 0
0 2U5 0 0 0 0 0 0 0 0


,

Q8 =



F33 F33 0 G3 0 0 0 0 0 0
0 F33 F33 0 G3 0 0 0 0 0

F22 0 0 0 0 G2 0 0 0 0
F11 0 0 0 0 0 G1 0 0 0
0 F22 0 0 0 0 0 G2 0 0
0 F11 0 0 0 0 0 0 G1 0
0 0 F22 0 0 0 0 0 0 G2


,

(47)
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P10 =



0 0 E22 0 0 E11 0 0
2E22 0 0 0 0 0 0 E11

0 0 0 E22 0 0 E11 0
0 E22 0 0 E11 0 0 0

E2 0 0 0 0 0 0 0
0 E2 0 0 0 0 0 0
0 0 E2 0 0 0 0 0
0 0 0 E2 0 0 0 0
0 0 0 0 E1 0 0 0
0 0 0 0 0 E1 0 0
0 0 0 0 0 0 E1 0
0 0 0 0 0 0 0 E1



, P9 =


0 E11 0

E22 0 E11
E2 0 0
0 E1 0
0 0 E1

, (48)

Q9 =


F33 F33 G3 0 0 0
F22 0 0 G2 0 0
F11 0 0 0 G1 0
0 F22 0 0 0 G2

, S9 =


2T 2T 2V2 2V3 2V4 2V3
0 T 0 0 0 W4
0 U4 0 0 0 0

2U5 2U1 0 0 0 0
0 U5 0 0 0 0

,

Q10 =



F33 F33 F33 0 G3 0 0 0 0 0 0 0
0 F33 F33 F33 0 G3 0 0 0 0 0 0

F22 0 0 0 0 0 G2 0 0 0 0 0
F11 0 0 0 0 0 0 G1 0 0 0 0
0 F22 0 0 0 0 0 0 G2 0 0 0
0 0 F11 0 0 0 0 0 0 G1 0 0
0 0 F22 0 0 0 0 0 0 0 G2 0
0 0 0 F22 0 0 0 0 0 0 0 G2


, (49)

S10 =



2T 0 0 0 0 0 0 2V3 2V4 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 T 0 0 0 0 0 0 0 0 V3
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 U4 0 0 0 0 0 0 0 0 0

2U4 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 W1 0 0 0 0 0 0 0 0 0

2U5 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0



, (50)

and
W1 = F1F11 + F2F22, W2 = F3F22 + F4F33,

W3 = E22H2 + E22H3, W4 = E11H2 + E22H3,
(51)

V1 = E11H2, V3 = E22H3, V2 = E22H4, V4 = E11H1, (52)

U1 = F1F11, U2 = F2F11, U3 = F3F22, U4 = F4F33, U5 = F2F22. (53)

In this case, the general solution to the system of the matrix Equation (4) can be expressed as follows:

X1 = E−1 F1 + LE1 H1G−1 + LE1U1RG1 ,

X2 = E−1 F2 + LE1 H2G−2 + LE1U2RG2 ,

X3 = E−2 F3 + LE2 H3G−2 + LE2U3RG2 ,

X4 = E−2 F4 + LE2 H4G−3 + LE2U4RG3 ,



Symmetry 2022, 14, 375 20 of 24

where

U1 = A−1
[
(Cc − A2X4B3)LB2 + RA1(Cc − A2X4B3)

]
B−4 + LA1 V1 + V2RB4 ,

U2 = A−1 (Cc − A1X1B1 − A2X3B2 − A2X4B3)B−2 + V3RB2 − LA1 V4,

U3 = M−
[
(Cc − A2X4B3)LB2 + RA1(Cc − A2X4B3)

]
B−2 + LMV5 + V6RB2 ,

U4 = φ + LA11 LM1 V7 + V8RN1 RB11 + LA11 V9RB22 + LA22 V10RB11 ,

or

U4 = A−33C33B−33 − LA33 V11 −V12RB33 ,

V7 = S1
[
M−2

(
E1 − LA11U3RB22 − LA22U4RB11

)
−M−2 T7N2 + LM2 T6

]
,

V8 =
[
RM2

(
E1 − LA11U3RB22 − LA2U4RB11

)
N−2 + M2M−2 T7 + T8RN2

]
S2,

V9 = A−EB− − A−CM−RAEB− − A−SC−ELBN−DB− − A−ST3RN DB−

+ LAT1 + T2RB,

V10 = M−RAED− + LMS−SC−ELBN− + LMLST4 + LMT3RN + T5RD,

V11 = S3
[
M−2

(
E1 − LA11U3RB22 − LA22U4RB11

)
−M−2 T7N2 + LM2 T6

]
,

V12 =
[
RM2

(
E1 − LA11U3RB22 − LA22U4RB11

)
N−2 + M2M−2 T7 + T8RN2

]
S4,

Vi (i = 1, 6) are arbitrary matrices over H with appropriate sizes, and Ti (i = 1, 8) are arbitrary
matrices over H with appropriate sizes.

Proof. (1) ⇔ (2) Clearly, the system of matrix Equation (4) is solvable if—and only if—
both of the following are consistent:

E1X1 = F1, X1G1 = H1,

E1X2 = F2, X2G2 = H2,

E2X3 = F3, X3G2 = H3,

E2X4 = F4, X4G3 = H4

(54)

and
E11X1F11+E11X2F22 + E22X3F22 + E22X4F33 = T. (55)

It follows from Lemma 4 that the system (54) has a solution if—and only if— (35) holds,
and

RE1 F1 = 0, RE1 F2 = 0, RE2 F3 = 0, RE2 F4 = 0,

H1LG1 = 0, H2LG2 = 0, H3LG2 = 0, H4LG3 = 0.
(56)

Under these conditions, the expression of general solution to (54) can be expressed
as follows:

X1 = E−1 F1 + LE1 H1G−1 + LE1U1RG1 ,

X2 = E−1 F2 + LE1 H2G−2 + LE1U2RG2 ,

X3 = E−2 F3 + LE2 H3G−2 + LE2U3RG2 ,

X4 = E−2 F4 + LE2 H4G−3 + LE2U4RG3 ,

(57)

where Ui (i = 1, 4) are arbitrary matrices over H with appropriate sizes.
Next, substituting (57) into (55) yields the following:

A1U1B1 + A1U2B2 + A2U3B2 + A2U4B3 = Cc, (58)
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where Ai, Bj, (i = 1, 2, j = 1, 3) are defined as (34). By Theorem 1, the matrix Equation
(58) is solvable if—and only if—(37) holds. In this case, the general solution to matrix
Equation (58) can be expressed as follows:

U1 = A−1
[
(Cc − A2X4B3)LB2 + RA1(Cc − A2X4B3)

]
B4 + LA1 V1 + V2RB4 ,

U2 = A−1 (Cc − A1X1B1 − A2X3B2 − A2X4B3)B2 + V3RB2 − LA1 V4,

U3 = M−
[
(Cc − A2X4B3)LB2 + RA1(Cc − A2X4B3)

]
B2 + LMV5 + V6RB2 ,

U4 = φ + LA11 LM1 V7 + V8RN1 RB11 + LA11 V9RB22 + LA22 V10RB11 ,

or U4 = A−33C33B−33 − LA33 V11 −V12RB33 ,

V7 = S1
[
M−2

(
E1 − LA11U3RB22 − LA22U4RB11

)
−M−2 T7N2 + LM2 T6

]
,

V8 =
[
RM2

(
E1 − LA11U3RB22 − LA2U4RB11

)
N−2 + M2M−2 T7 + T8RN2

]
S2,

V9 = A−EB− − A−CM−RAEB− − A−SC−ELBN−DB− − A−ST3RN DB−

+ LAT1 + T2RB,

V10 = M−RAED− + LMS−SC−ELBN− + LMLST4 + LMT3RN + T5RD,

V11 = S3
[
M−2

(
E1 − LA11U3RB22 − LA22U4RB11

)
−M−2 T7N2 + LM2 T6

]
,

V12 =
[
RM2

(
E1 − LA11U3RB22 − LA22U4RB11

)
N−2 + M2M−2 T7 + T8RN2

]
S4,

where Vi (i = 1, 6) are arbitrary matrices over H with appropriate sizes, Aii, Bii, Cii (i =
1, 3), M1, M2, N1, N2, A, B, D, E, S, M and N are defined as (34), Ti (i = 1, 8) are arbitrary
matrices over H, with appropriate sizes.

Hence, the system of matrix Equation (54) and the matrix Equation (55) are consistent
if—and only if—(35), (56), and (37) hold,

Now, we show that (56)⇔ (36). It follows from Lemma 2 that the following is true:

RE1 F1 = 0⇔ r(F1, E1) = r(E1), RE1 F2 = 0⇔ r(F2, E1) = r(E1),

RE2 F3 = 0⇔ r(F3, E2) = r(E2), RE2 F4 = 0⇔ r(F4, E2) = r(E2),

H1LG1 = 0⇔ r
(

H1
G1

)
= r(G1), H2LG2 = 0⇔ r

(
H2
G2

)
= r(G2),

H3LG2 = 0⇔ r
(

H3
G2

)
= r(G2), H4LG3 = 0⇔ r

(
H4
G3

)
= r(G3).

(59)

According to (59), we obtain (56)⇔ (36). To sum up, the system of matrix Equation (54)
and the matrix Equation (55) are consistent if—and only if—(35)–(37) hold.

(2)⇔ (3) In view of (59), we obtain (36)⇔ (38).
Next, we turn our attention to show that (37) holds if—and only if—(39) holds.

According to Theorem 1, we can find that (37) holds if—and only if—(10)–(19) hold. Hence,
we need prove (9+ i)⇔ (39) (i = 1, 10) when we show that (37) holds if—and only if—(39)
holds. We need to use the following fact to prove (9 + i)⇔ (39) (i = 1, 10):

It is easy to know that there exists a solution, according to X0
1 , X0

2 , X0
3 , X0

4 , such that the
following is true:

E1X0
1 = F1, X0

1G1 = H1,

E1X0
2 = F2, X0

2G2 = H2,

E2X0
3 = F3, X0

3G2 = H3,

E2X0
4 = F4, X0

4G3 = H4,

E11X0
1 F11+E11X0

2 F22 + E22X0
3 F22 + E22X0

4 F33 = T,

(60)
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where

X0
1 = E−1 F1 + LE1 H1G−1 , X0

2 = E−1 F2 + LE1 H2G−2 ,

X0
3 = E−2 F3 + LE2 H3G−2 , X0

4 = E−2 F4 + LE2 H4G−3 .

Let T0 = T− (E11X0
1 F11 + E11X0

2 F22 + E22X0
3 F22 + E22X0

4 F33). We first show the following:
(9 + i)⇔ (39) for i = 1, (9 + i)⇔ (39) for i = 2, (9 + i)⇔ (39) for i = 3, (9 + i)⇔ (39) for
i = 4, and (9 + i)⇔ (39) for i = 5.

In fact, when i = 1, by Lemma 2, (60) and elementary operations, we obtain
the following:

(9 + i)⇔ r

 2T0 E22LE2 E11LE1

RG1 F11 0 0
RG2 F22 0 0

 = r
(
E22LE2 , E11LE1

)
+ r
(

RG1 F11
RG2 F22

)
⇔

r


2T0 E22 E11 0 0
F11 0 0 G1 0
F22 0 0 0 G2
0 E2 0 0 0
0 0 E11 0 0

 = r

E22 E11
E2 0
0 E11

+ r
(

F11 G1 0
F22 0 G2

)
⇔ (39).

Similarly, we can show that (9 + i) ⇔ (39) for i = 2, (9 + i) ⇔ (39) for i = 3,
(9 + i) ⇔ (39) for i = 4 and (9 + i) ⇔ (39) for i = 5, where Pi, Qi, Si and Oi (i = 1, 5) in
(39) are defined as (40), (41), (42), (43), and (44), respectively, Wi (i = 1, 3) are defined as
(51), Uj (j = 1, 5) are defined as (53), and Vk (k = 1, 4) are defined as (52).

Second, we show that (9 + i)⇔ (39) for i = 6, (9 + i)⇔ (39) for i = 7, (9 + i)⇔ (39)
for i = 8, (9 + i) ⇔ (39) for i = 9 and (9 + i) ⇔ (39) for i = 10. In fact, when i = 6, it
follows from Lemma 2, (60), and elementary operations, that the following is true:

(9 + i)⇔ r



2T0 0 0 E22LE2 E11LE1 0
RG3 F33 0 RG3 F33 0 0 0

0 E22LE2 2T0 0 0 E11LE1

RG1 F11 0 0 0 0 0
0 0 RG1 F11 0 0 0
0 0 RG2 F22 0 0 0

RG2 F22 0 0 0 0 0



= r
(

E22LE2 E11LE1 0 0
0 0 E22LE2 E11LE1

)
+ r


RG3 F33 RG3 F33
RG2 F22 0
RG1 F11 0

0 RG2 F22
0 RG1 F11
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⇔ r



2T0 0 0 E22 E11 0 0 0 0 0 0
F33 0 F33 0 0 0 G3 0 0 0 0
0 E22 2T0 0 0 E11 0 0 0 0 0

F11 0 0 0 0 0 0 G1 0 0 0
0 0 F11 0 0 0 0 0 G1 0 0
0 0 F22 0 0 0 0 0 0 G2 0

F22 0 0 0 0 0 0 0 0 0 G2
0 E2 0 0 0 0 0 0 0 0 0
0 0 0 E2 0 0 0 0 0 0 0
0 0 0 0 E1 0 0 0 0 0 0
0 0 0 0 0 E1 0 0 0 0 0



= r



E22 E11 0 0
0 0 E22 E11

E2 0 0 0
0 E1 0 0
0 0 E2 0
0 0 0 E1

+ r


F33 F33 G3 0 0 0 0
F22 0 0 G2 0 0 0
F11 0 0 0 G1 0 0
0 F22 0 0 0 G2 0
0 F11 0 0 0 0 G1

⇔ (39).

Similarly, we can show that (9 + i) ⇔ (39) for i = 7, (9 + i) ⇔ (39) for i = 8,
(9 + i) ⇔ (39) for i = 9 and (9 + i) ⇔ (39) for i = 10, where Pi, Qi, Si (i = 6, 7, 8), and in
(39), are defined as (45), (46), (47), respectively, Pi, Qi and Si(i = 9, 10) in (39), are defined
as (48), (49), and (50). Wi (i = 1, 3) are defined as (51), Uj (j = 1, 5) are defined as (53), and
Vk (k = 1, 4) are defined as (52). The proof is completed.

4. Conclusions

We have established some necessary and sufficient conditions for the existence of the
solution to quaternion matrix Equation (1), and derived a formula of its general solution
when it is solvable. As an application of (1), we have investigated some necessary and
sufficient conditions for the system of matrix Equation (4) to be consistent, as well as the
expression of its general solution, and presented a numerical example to emphasize our
main results.
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11. Cvetković-Ilić, D.S.; Radenković, J.N.; Wang, Q.W. Algebraic conditions for the solvability to some systems of matrix equations.

Linear Multilinear Algebra 2021, 69, 1579–1609. [CrossRef]
12. Nie, X.R.; Wang, Q.W.; Zhang, Y. A system of matrix equations over the quaternion algebra with applications. Algebra Colloq.

2017, 24, 233–253. [CrossRef]
13. Myers, R.C.; Periwal, V. Exact solution of critical self-dual unitary-matrix models. Phys. Rev. Lett. 1990, 65, 1088–1091. [CrossRef]

[PubMed]
14. Ragusa, M.A. On weak solutions of ultraparabolic equations. Nonlinear Anal. 2001, 47, 503–511. [CrossRef]
15. Wang, Q.W.; He, Z.H.; Zhang, Y. Constrained two-side coupled Sylvester-type quaternion matrix equations. Automatica 2019, 101,

207–213. [CrossRef]
16. Zhang, X.; Wang, Q.W. The solvability and the exact solution of a system of real quaternion matrix equations. Banach J. Math.

Anal. 2013, 7, 208–225. [CrossRef]
17. Ben-Israel, A.; Greville, T.N.E. Generalized Inverses: Theory and Application; John Wiley and Sons: New York, NY, USA, 1974.
18. Peng, Z.Y. The centro-symmetric solutions of linear matrix equation AXB = C and its optimal approximation. Chin. J. Engrg.

Math. 2003, 6, 60–64.
19. Huang, G.X.; Yin, F.; Guo, K. An iterative method for the skew-symmetric solution and the optimal approximate solution of the

matrix equation AXB = C. J. Comput. Appl. Math. 2008, 212, 231–244. [CrossRef]
20. Xie, M.Y.; Wang, Q.W. The reducible solution to a quaternion tensor equation. Front. Math. China 2020, 15, 1047–1070. [CrossRef]
21. Marsaglia, G.; Styan, G.P. Equalities and inequalities for ranks of matrices. Linear Multilinear Algebra 1974, 2, 269–292. [CrossRef]
22. He, Z.H.; Wang, Q.W. The general solutions to some systems of matrix equations. Linear Multilinear Algebra 2015, 63, 2017–2032.

[CrossRef]
23. Bhimasankaram, P. Common solutions to the linear matrix equations AX = C, XB = D and FXG = H. Sankhyā Ser. A 1976, 38,

404–409.
24. Wang, Q.W.; He, Z.H. Some matrix equations with applications. Linear Multilinear Algebra 2012, 60, 1327–1353. [CrossRef]

http://doi.org/10.1016/j.laa.2012.07.049
http://dx.doi.org/10.1016/j.amc.2014.03.125
http://dx.doi.org/10.1007/s00006-019-0980-1
http://dx.doi.org/10.1007/s10957-021-01906-y
http://dx.doi.org/10.1016/j.amc.2013.07.025
http://dx.doi.org/10.1016/j.sysconle.2004.07.002
http://dx.doi.org/10.1109/TNN.2002.1031938
http://dx.doi.org/10.5540/tema.2009.010.01.0099
http://dx.doi.org/10.1137/151005907
http://dx.doi.org/10.1080/03081087.2019.1633993
http://dx.doi.org/10.1142/S100538671700013X
http://dx.doi.org/10.1103/PhysRevLett.65.1088
http://www.ncbi.nlm.nih.gov/pubmed/10043102
http://dx.doi.org/10.1016/S0362-546X(01)00195-X
http://dx.doi.org/10.1016/j.automatica.2018.12.001
http://dx.doi.org/10.15352/bjma/1363784232
http://dx.doi.org/10.1016/j.cam.2006.12.005
http://dx.doi.org/10.1007/s11464-020-0865-6
http://dx.doi.org/10.1080/03081087408817070
http://dx.doi.org/10.1080/03081087.2014.896361
http://dx.doi.org/10.1080/03081087.2011.648635

	Introduction
	Preliminaries
	The General Solution to the Matrix Equation (1)
	Algorithm with a Numerical Example
	The General Solution to the System (4)

	Conclusions
	References

