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Abstract: In this paper, we establish the solvability conditions and the formula of the general solution
to a Sylvester-like quaternion matrix equation. As an application, we give some necessary and
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example to illustrate the main results of this paper. The findings of this paper generalize the known
results in the literature.
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1. Introduction

In this paper, we mainly investigate the following matrix equation:
A1X1B1 + A1 XoBy + Ax X3By + Ax XyBs = C, 1)

over the real quaternion algebra, H, where A1, Ay, By, By, B3 and C. are given matrices,
while X; (i = 1,4) are unknown.

The quaternion algebra, H, is a non-commutative division ring. It has many appli-
cations in computer science, orbital mechanics, signal and color image processing, and
control theory, and so on (see, e.g., [1-6]).

Linear matrix equation is one of active topics in mathematics. Besides mathematics,
they also have important applications in other fields, such as descriptor systems control
theorem [7], neural network [8], feedback [9], and graph theory [10]. There have been a
large number of papers on this topic (see, e.g., [1-5,11-16]). We know that the following
linear matrix equation:

A1X1B1 =C 2)

is both classical and fundamental, which was studied by many authors. For instance,
Ben-Israel and Greville [17] gave a necessary and sufficient condition for the solvability
to (2). Peng [18] presented some necessary and sufficient conditions for (2) to have a cen-
trosymmetric solution by using generalized singular value decomposition. Huang [19]
investigated the skew-symmetric solution and optimal approximate solution of (2).
Recently, Xie and Wang [20] derived a necessary and sufficient condition for (2) to
have a reducible solution. Furthermore, Xie and Wang [20] studied the following
matrix equation:
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A1X1B1 + A1XoBy + A2 X3By, = Cq 3)

which is the special case of (1). They provided some necessary and sufficient conditions for (3)
to be consistent and gave an expression of its general solution when it is solvable. Motivated
by the above, in this paper, we aim to establish some necessary and sulfficient conditions for (1)
to have a solution and derive an expression of its general solution when it is solvable. As an
application of (1), we investigate the system of the following matrix equations:

E1 X1 = F, X1G1 = Hj,
E1 Xy = B, XoGy = Hy,
ExX3 = F3, X3G2 = Hs, 4)
Ex X4 = Fy, X4Gs = Hy,
EnXiFii+EnXoFo + ExnXsFop + ExpXyFs3 =T

over H, where X;(i =1, - - - ,4) are unknown quaternion matrices and the others are given.
The rest of this paper is structured as follows. In Section 2, we give preliminar-
ies. In Section 3, we establish some necessary and sufficient conditions for the matrix
Equation (1) to have a solution, and derive an expression of the general solution to (1) when
it is solvable. as an application of (1), we derive some necessary and sufficient conditions
for the system of matrix Equations (4) to have a solution as well as an expression of its
general solution. Finally, we give a brief conclusion to close this paper in In Section 4.

2. Preliminaries

Throughout this paper, we denote the set of all real numbers by R, the set of all m x n
quaternion matrices by H"™*", where we obtain the following:

H = {ug + wqi + pj + usk|i? = j*> = k* = ijk = —1, ug, uy, up, uz € R}.

Denoted by the rank of A by r(A). I and 0 represent an identity matrix and a zero
matrix of appropriate sizes, respectively. An inner inverse of A is denoted by A~ which
satisties AA”A = A. Ly and R4 stand for the projectors Ly = I — A~ A and Ry =
I — AA~, induced by A, respectively. It is easy to know that L4 = (L4)?, Ra = (Rx)>.

Lemma 1 ([20]). Let Ay, Aa, By, By and Cq be given matrices over H with suitable sizes. Put
the following:

Bs = BiLg,, M = Ry, Ay, C = CLp, + R4,C1, N = ByLg,.

Then, the following statements are equivalent:

(1) Equation (3) is consistent.

(2)
RyRa,C =0, CLg,Ly =0, R4, CLp, =0, RyyCLp, = 0.
(3)

2C; Ay A

rl BL 0 0| =r(Ay A))+r By T 261 Ay A = r(Ay, A1) +7(By),
B, B, 0 0
B, 0 0
2C; A

r| B 0 | =r(A))+r B T Cr A =r(A1) +r(By).
B 0 By B, O
2
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In this case, the general solution of (3) can be expressed as follows:

X1 = A;CB; + L, Vi + VaRp,,
Xy = Al_(C1 — A1 X1B — A2X3B2)BZ_ + T1Rp, — LAl Ty,
X3 = M_CBz_ + LyUq + u2R32/
where Uy, Uy, V1, Vo, T and Ty are arbitrary matrices over H, with appropriate sizes.

The following lemma is due to Marsaglia and Styan [21], which can be generalized to H.

Lemma 2 ([21]). Let A € H"*", B € H"*k, C € H"*", D € HW>*K and E € H'* be given.
Then, we have the following rank equality:

A B 0

r(RAC BSD):r C 0 E|—r(D)—r(E).
E 0 D 0

Lemma 3 ([22]). Let Aj;, B;; and C;; (i = 1,2) be given matrices over H with appropriate sizes.
Put the following:

Ay =AxnLa,, Bi1=Rp, Bn, C;=Cpn—AnAj;C11B;1Bxn, Di=Ru Axn,
¢ = AﬁCHBﬁ + LA11AIC1B£2 - LAHA;AZZD;RAlClBEz + Dy Ra, ClB;RBly

Then, the system of matrix equations A; XBj; = Cy; (i = 1,2) has a solution if—and only if—the
following is true:

Ra,Ci=0, Cilg =0, (i=12), Ry CiLg, = 0.

1

In this case, the general solution to the system can be expressed as follows:

X = ¢+ La,La Ui + U2Rp, Rp,, + L, UsRpy, + L, UsRp,,,

where U; (i = 1,4) are arbitrary matrices over H, with appropriate sizes.

Lemma 4 ([23]). Let Ay € H™*™ By € H">*1,Cy € H™*" gnd C, € H™ 1 be given. Then,
we obtain the following system:

A Xy =C, XiBi =G ©)
which is consistent if—and only if—the following is true:
Rp,Ci =0, GClLp =0, A1Cy = CiBy.
Under these conditions, a general solution to (5) can be expressed as follows:
X1=A;Cy +LasCBy +La URp,

where Uy is an any matrix with conformable dimension.
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Lemma 5 ([24]). Consider the following matrix equation:
A1X7 + XoB1 + C3X3D3 + C4XyDy = Eq 6)
over H, where A1, B1, C3, D3,Cy4, Dy and Eq be given matrices of suitable sizes. Put the following:

A =Ry,C3, B=D3Lp, C=Rp,Cs, D= DyLp,,
E =Ry EiLp, M =RAC, N =DLg, S = CLy.

Then, the following statements are equivalent:
(1) The matrix Equation (6) has a solution.

(2)
RyRAE =0, ELgLy =0, RAELp = 0, RcELg = 0.
(3)

El C4 C3 Al .
r( B, 0 0 O ) =7(B1) +7(Cy, C3, A1),

o o | (D
r 3 =r Dy +7‘(A1),
Dy 0 5
B; 0 1
Ey G A
Dy
r Dy O 0 :T’(Cg, A])-I—T’( B ),
B 0 0 1
E1 Cy A D
r| D3 O 0 = 7(Cy, A1)+7’< B3 )
Bi 0 0 !

In this case, the general solution to the matrix Equation (6) can be expressed as follows:

X) = Al_(E1 — C3X3D3 — C4X4D4) — A1_T7B1 + LAl Te,

X = Ra, (E1 — C3X3D3 — CyXyDyg) By + A1A] T7 + TgRp,,

X3=A"EBT  —ACM EB — A SC EN DB — A ST),RNDB™ + LsT4+ T5Rp,
X4 =M ED 4+ S SC EN™ + LpLsTy + LyToRy + T3Rp,

where Ty, . . ., Tg are arbitrary matrices of appropriate sizes over H.

Lemma 6 ([22]). Let A1, By and Cy be given matrices over H with suitable sizes. Then, the matrix
equation A1X 1By = Cy is consistent if—and only if—R, C; = 0, CiLp, = 0. In this case,
the general solution of the matrix equation can be expressed as follows:

X; = A] C1B; +La,V + URg,,

where U and 'V are any matrices with compatible dimensions over H.
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3. The General Solution to the Matrix Equation (1)

For convenience, we define the notation as follows: let A4;, B; (i=1,2,j=1,3) be
given matrices of suitable sizes over Il and put the following;:

By = B1Lp,, Bs = BoLp,, Azz = Ra, Az, Cag = CcLp, + R4, Cc, Bzz = B3Lp,, C33 = Rs,CcLp,,
A1y = Az + Agz3, By = BsLp,Lp,, C11 = (I + Ry, )CcLp,Lps, A22 = Ray, A2, Byo = B3Lp,Lp,,
Cx = Ray,Cyylp,, My = AppLa,,, N1 = Rp; B2, C1 = Cop — App A C11By; Ba, D1 = Ra, A2,
¢ = Al_lcllBl_l -+ LAllMl_C1B2_2 — LA11M1_A27-D1_RM1C182_2 + Dl_RMlclNl_RBn’ (7)
Ry R
My = [La, Lmy,Lag,), No = { NlB Bu
33

D = Rp, Ln,, E1 = A3;C33B; — ¢, E = Ry, E1Ly,, M = R4C, N = DLp, S = CLy,

], A =Rpm,La,,, B=Rpy,Ln,, C=Rpm,La,,

and
I 0
51:“7!1/0]/ 82: |: On :|I 53:[0/17”]/ 54: |: I :|1
n

where [, and I, denote the unit matrices of order n and m, respectively. Then, we obtain
the main theorem of this paper.

Theorem 1. Consider (1) with the notation in (7). The following statements are equivalent:

(1) The matrix Equation (1) has a solution.

(2)
Rp;Ra,Caa =0, Rp,Ci11 =0, CjLp, =0, (i=1,3), 8)
Ry, Cily, =0, RAELp =0, RyR4E =0, ELgLy =0, RcELg=0. (9)
(3)
r(ZCC A2 ) F(Ay, Ay)+7(By), (10)
B, 0
2C, A,
By
r Bl O Az, Al <B ), (11)
B, 0 2
2C. Ay
3
r g3 8 — (A 47| By |, (12)
2
B, 0 B
2C. Ay Ay
By, 0 0 Bs
rl 3 =r(Ay, A1) 47| By |, (13)
B, 0 0 5
B, 0 0 !
C. Ay
Bs
r B3 0 —Y(A1)+1’<B>, (14)
B, 0 2
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Bs 0 Bs 0 0 0 B3 Bs
0 Ay -2C. 0 0 A B, 0
Ay Ay 0 0
r| By 0 0 0 0 0 _r<02 01 ) A>+r B, 0|, (15)
0 0 B 0 0 0 z A 0 B,
0 0 B 0 0 0 0 B
B, 0 0 0 0 O
0 By By 0 0
“2A, 2C. 0 A; O By Bs
Ay, 0 C. 0 A 0 A 0 B, 0
_ ) 16
"l o B 0 0 o r(Az 0o 4 ) "B o (16)
0 B 0 0 0 0 B
0 0 B, 0 0
0 0 —-By By B3 0 0 0 0
0 0 2. 0 0 A, 0 A 0
Ay, 0 0 2C. 0 0 0 A
0 A, 0 0 C 0 A 0 0
/o 0 0 0 B 0 0 0 O
0 0 B 0 0 0 0 0 0
0o 0 B 0O 0 0 0 0 O
0 0 0 B 0 0 0 0 0
0 0 0 B 0 0 0 0 0
Bs B3 Bs
Ay A, 0 0 0 0 ?2 8 8
=rl0 0 A A 0 0 |+r 01 5 ol (17)
2
0 0 0 0 A A
2 A 0 B 0
0 0 B
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0O By By 0 0 0 0 0
0 0 -By B4 0 0 0 O
240 0 2. 0 0 0 A O
0 2. 0 0 0 Ay, 0 A

JAa 0o 0 oA 0 0 0
O B 0 0 0 0 0 0
O B 0 0 0 0 0 0
0 0 B 0 0 0 0 0
0O 0 B 0 0 0 0 0
0O 0 0 B 0 0 0 0
By By 0
0 B; B
0 A 0 A 0 B, 0 0
=r{24, 0 0 0 A |+r|B 0 0],
Ay 0 A 0 0 0 B, 0
0 B, 0
0 0 B,
0O 0 By By B, 0 0 0 0
0O 0 0 0 0 By 0 0 0
0 0 2C. 0 0 0 A Ay 0
A, 0 0 0 0 0 0 0 0
0O 0 0 0 0 0 0 0 A
0 A 0 0 0 C 0 0 0
rlo o B 0 0 0 0 0 0
0O 0 B 0 0 0 0 0 0
0O 0 0 B 0 0 0 0 0
0O 0 0 B 0 0 0 0 0
O 0 0 0 B 0 0 0 0
0O 0 0 0 B 0 0 0 0
0O 0 0 0 0 B 0 0 0
By By By O
0 0 0 Bs
0 0 A, A O gz 8 8 8
A, 0 0 0 0 !
“"lo 0 o0 o0 aTT|Y B 00
0 A, 0 0 0 0 B 00
0 0 B 0
0 0 B, 0
0 0 0 B

In this case, the general solution to (1) can be expressed as follows:

X1 = A7 [(Cc — ApX4B3)Lp, + Ra, (Cc — A2 X4B3)| By + La, Vi + VaRp,,
Xp = A7 (Cc — A1X1By — Ay X3By — A2X4B3)BZ_ + V3R, — La, Vy,

X3 = M~ [(Cc — A2X4B3)Lp, + Ra, (Cc — ApX4B3)|By + LV + VsRp,,
Xq = ¢+ Lay, LvyUn + UaRny Rpyy + Lay UsRpy, + La,UsRp,,,

or

Xy = A3_3C33B3_3 + LA33 Us + U6R333,

(18)

(19)

(20)
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where
U; =5 [M{ (El — La,,U3Rp,, — LA22u4RBll) — M, T7N; + LM2T6],
Uy = [Rum, (E1 — Lay,, UsRp,, — La,UsRp )Ny + MoM; Ty + TgRy;, | S2,
Us = AEB~ — A"CM~R4EB~ — A~SC~ELzN"DB~ — A~ ST;RyDB~
+LaTh + ToRp,
Uy =M R4ED™ + LS SC ELgN™ + LypLsTy + LyT3RN + TsRp,
Us = —S3 [MZ_ (E1 — LA11 U3Rp,, — LAZZ u4RB11) — M5 T7N> + Ly, Té},
Ug = — [RM2 (El — LAll U3Rp,, — LA22U4RBH>N2_ + MoyM, T; + TSRNZ] Sy,
and V; (i =1,6), T; (i = 1,8) are arbitrary matrices over H, with appropriate sizes.
Proof. (1) < (2): Itis easy to know that Equation (1) can be written as follows:
A1X1B1 4+ A1XBy + ApX3By = C. — Ap Xy Bs. (21)

Clearly, Equation (1) is solvable if—and only if—Equation (21) is consistent. By Lemma 1,
we obtain that (21) is solvable if—and only if—there exists X4 in (21) such that we obtain
the following:

Ra,Ra, [(Ce — A2XyB3)Lp, + Ra, (Cc — ArX4B3)| =0,
[(Ce — A2XyB3)Lp, + Ra, (Cc — A2X4B3)| Lp, Ly = 0,
Ras, [(CC — A2X4B3)L32 + Ry, (C. — A2X4B3)] Lg, =0,
Ra, [(Cc — A2 X4B3)Lp, + Ra, (Cc — A2 X4B3)|Lp, =0,

ie.,
R4, Ra,Caq =0, (22)
AiiXyBii = Cii (i=1,2), (23)

and
Az3XyBsz = Cs3, (24)

respectively. Moreover, when (21) is solvable, we obtain the following:
X1 = Al_ [(CC — A2X4B3)L32 + RAl (CC — A2X4B3)] B4_ + LAl Vi + VaRg,,

X = Ay (Co — A1X1By — AyX3By — AyX4B3)By + VaRg, — Ly, Vi,
X3 = M~ [(Cc — A2X4B3)Lp, + Ra, (Cc — A2X4B3) | By + LyVs + VgRp,,

where By, Bs, A3z and M are defined by (7), V; (i = 1,6), which are arbitrary matrices over
H, with appropriate sizes.

Hence, the matrix Equation (21) is solvable if—and only if—(22) holds, and there exists
Xy, such that both (23) and (24) are solvable.

Next, we consider the common solution of (23) and (24). On the ond hand, by Lemma 3,
the system (23) is solvable if—and only if—the following is true:

R4, Cii =0, CiLp,=0(i=1,2), Ry CiLn, =0, (25)
in which case, the general solution of (23) can be expressed as follows:

Xg=¢+ La, Ly Uy + URn, Ry, + La, UsRpy, + La,UsRp,,, (26)
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where A;; (i =1,2), My, Ny and C; are given by (7), and U; (i = 1,4) are arbitrary matrices
over H, with appropriate sizes. On the other hand, in view of Lemma 6, (24) is solvable
if—and only if—the following is true:

Ra3,Cs3 =0, Ca3Lp,, =0, (27)
in which case, the general solution of (24) can be expressed as follows:
Xy = A:;,)C33B373 + LA33 Us + U6R333, (28)

where Aszz, B3z and Cs3 are given by (7), and Us and Uy are arbitrary matrices over H, with
appropriate sizes.

Clearly, the matrix Equations (23) and (24) have a common solution if—and only
if—X4 of (26) is equal to X4 of (28). Letting X4 of (26) be the one of (28), yielding
the following:

u RniR
(LAHLMV LA33) <—Ll[5> + (Uz, U6)< I\I[{lB%Bll) + LA11 U3R322 + LA22U4RB“ = Ey,
ie.,
u
M, (_&5) + (Up, —Ug)Nz + La, UsRp,, + La,,UsRp,, = Ei. (29)

It follows from Lemma 5 that Equation (29) has a solution if—and only if—the follow-
ing is true:
RAELp =0, RyR4E=0, ELgLy =0, RcELgp=0. (30)

In this case, the general solution to (29) can be expressed as follows:

Uy = S [My (Ey — La, UsRp,, — La,UsRp,, ) — My TyNp + Ly, T,

Uy = [Ry, (E1 — La, UsRp,, — La,UsRp, )Ny + MyM; Ty + TsRy, | Sa,
U= A"EB~ — A"CM~R4EB~ — A~SC ELygN DB~ — A~ST3;RyDB~
£ LuT, + ToRp,

Uy = M R4ED~ + LyyS—SC~ELgN~ + LyLsTy + LyTsRy + TsRp,

Us = —S3[Mj (Ey — La, UsRp,, — La, UsRp,,) — My TyNp + Ly, T,

Us = —[Ra, (E1 — Lay, UsRp,, — La, UsRp,, )Ny + MoM; T7 + TgRy, | Sa,

where My, Ma, N1, N2, A, B, D, E, S, M, N are defined as (7), and T; (j = 1,8) are arbitrary
matrices over H, with appropriate sizes.

So far, we have shown that Equation (21) is solvable if—and only if—(22), (25), (27),
and (30) hold. In this case, the general solution of (21) can be expressed as (20).

We now show that RA33C33 =0& RA33RA1C44 =0and RA22C22 =0« RAH Ci1=0.

In fact, it follows from Lemma 2 that we obtain the following:

RA33C33 =0& T’(RA33C33) =0« Y(ng, A33) = T(A33)

C. Ay A 31)
<~ T(RAl CCLBZ, RAlAZ) = T’(RAIAz) <~ 1’( B; 02 01 ) = T(Az, A1) + T’(Bz)
and
RA33RA1C44 =0« r<RA33RA1(CCLBZ + RAICC)) =0
& r((CcLp, + Ra,Ce), Az, A1) =1(Ay, Ay) (32)

2C, Ay Ay .
<=>1’< B, 0 0 )—T’(Az, A1)+7’(Bg)

yielding R4,,C33 = 0 < Ry, R4,Cyq = 0.
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On the other hand, we have the following:

Ra,,C11 =04 r(Ra,, Ci1) =0 r(Cy1, Ann) =r(An)
= 7’[(I+ RAl)CcLB4LB5/ (I+ RAl)AZ] = 7‘[(I+ RAl)AZ]

I 0 0 I 0
S =7
(0 (I+RA1)CCLB4LBS (I+RA1)A2) (0 (I—I—RAl)Az)
I —C. —A, 0 33)
o I C, Ay A — I —-A, O . By
0 By 0 0 I A, A By
0 By 0 0

2C. A, A 5
sr| B, 0 0 | =rA, A1)+r<B2>(:>(11).
B 0 0 1

Similarly, we can show that R4,,Co; = 0 < (11). Hence, R4,,C11 = 0 < R4, Cor = 0.

So far, we have proved that (22), (25), (27), and (30) hold if—and only if—(8) and (9) hold.

To sum up, Equation (21), and thus Equation (1), are consistent if—and only if—(8)
and (9) hold.

(2) < (3): We first show that (8) holds if—and only if—(10)—(14) hold. It follows from
(32) and (33) that (22) < (10) and R4,,Cqy1 = 0 < (11). Next, we prove that Cy1Lg,, =0 &
(12). By Lemma 2, as follows:

C
C11LB“ =0& T’(CHLBH) =0& 7’( 11) = T(BH)

B11
I 0
I+ R4 )C
( +BA1) c Bs I (I+Ra)C Bs
&y B3 =r[B, | &r|o0 Bs —r()=r| B,
32 B, 0 B, B,
! 0 B,
I -C. 0
I C A Bs 2150 f(‘)l Bs
<r|0 By 0 |—r(I)=r|By|+r(A) er 33 o | =7 By | +1(A1) < (12).
0 B, O B, B2 0 B,
0 B 0 !

Similarly, we can show that Cy»Lg,, = 0 < (13) and Cz3Lp,, = 0 < (14). Therefore,
(8) holds if—and only if—(10)—(14) all hold.

We now turn our attention to show that (9) holds if—and only if—(15)—(19) hold.
R, C1Ln, = 0 & (15). In fact, it follows from Lemma 2 that the following is true:
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Ci M
sr( ) =rom) )
Cn Ax O Ay
< r| By 0 Bll = I”(A > + V(B22r Bll)
0 Apn —Cin H
CcLp, + RAICC Ay 0
B3L32 0 Bs
P 0 (1+RA])A2 —(I—FRA])CC
BiLg, 0 0
0 0 B4
0 0 B>
BsLp, Bs
o B1L32 0 A Aszz
="l o B +r<(I+RA1)A2 0
0 B>
I 0 0 0
1 CCLBZ + RA] Ce Ay 0
0 B3L32 0 Bs
sr|l 0 (I+Ra)A2 —(I+Ry,)Ce
0 BiLg, 0 0
0 0 0 By
0 0 0 B,
M B 0
=r 1032 B +7r[0 Aj Az
0 Bi I (I+Ra)A 0
I -C. —-A, C. 0 0 0
I C. Ay 0 A, A O B
0 B 0 By 0 0 0 33
ol 0 A4 coo 0 oa|_ |
0 By 0 0 0 0 0| 0
0 0 0 By O 0 0 B
0 0 0 B, 0 0 0 2
0O B, 0 O 0O 0 0
2C. 0 0 A A1 O
B, 0 B3 0 0 0
0 A, 2C. O 0 A
srlB 0 0 o0 o0 o= r<%2 o
0 0 B 0 0 0
0 0 B> 0 0 0
B, 0 0 0 0 0

RMlclLNl =0« 7(RM1C1LN1) =0

ooooof)’>
w

Similarly, we can show that RyjR4E = 0 < (16), ELpgLy =0 < (17), R4ELp =0 &

3.1. Algorithm with a Numerical Example

(18) and RcELp = 0 < (19). The proof is completed. Next, we use an Algorithm 1 for
calculating Equation (1) to illustrate this theorem. [

In this section, we present an algorithm and an example to illustrate Theorem 1.
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Algorithm 1: Algorithm for calculating Equation (1)

(1) Feed the values of A;,

over H.

B;

(2) Compute the symbols in (7).
(3) Check whether (8), (9) or rank equalities in (10)-(19) hold or not. If no, then

return “inconsisten”

(4) Otherwise, compute X; (i = 1,4).

(i=1,2,j =1,3) and C. with conformable shapes

Example 1. Consider the matrix Equation (1). Put the following:

a111 4112

b b b b b
A= | ap am |, B = ( b111 b112 b113 > B, = < bzu b212
4 4 121 Y122 0123 221 U222
131 4132
az11 4212 byr byn  bas C11 C12
Ay = | ax1 axy |, B3= ( b b >, Cc=| e
p 321 b3 b3
231 4232 C31 €32
where
a111 = 0.3181 + 0.5447i 4 0.2187j + 0.3685k, a11» = 0.6456 + 0.7210i + 0.0636j + 0.7720k,
a121 = 0.1192 + 0.6473i + 0.1058] 4 0.7635k, a15 = 0.4795 + 0.5225i + 0.4046] + 0.9329k,
a3; = 0.9398 + 0.5439i + 0.1097j + 0.6279k, a13, = 0.6393 + 0.9937i + 0.4484j + 0.9727Kk,
b111 = 0.1920 + 0.8611i + 0.3477j + 0.2428k, by1o = 0.6963 + 0.3935i + 0.5861j + 0.6878k,

b1 = 0.5254 + 0.7413i + 0.0445j + 0.7363Kk,
b1py = 0.0938 + 0.6714i + 0.2621j + 0.3592Kk,
by11 = 0.6834 + 0.2703i + 0.7691j -+ 0.7904k,
b3 = 0.3309 + 0.8878i + 0.3774j -+ 0.4386k,
bygy = 0.0196 + 0.4299i + 0.7551j + 0.6713Kk,

ay = 0.7689 + 0.5880i + 0.7900j + 0.6787k,
ax = 0.1673 + 0.1548i + 0.3185j + 0.4952k,
a1 = 0.8620 + 0.1999i + 0.5341j + 0.1897k,
b1 = 0.8507 + 0.8790i + 0.5277j + 0.5747Kk,

b313 = 0.5828 + 0.6126i + 0.4981j + 0.2467k,
bapp = 0.6967 + 0.8654i + 0.2278j + 0.5860k,

€11

€13

€22

€31

€33

b1y = 0.1389 + 0.4849i + 0.1500j + 0.4424k,
bips = 0.5303 + 0.5201i + 0.7549j + 0.3947Kk,
b1y = 0.4423 + 0.8217i + 0.8085j -+ 0.3276Kk,
by = 0.7040 + 0.1971i + 0.3968j + 0.9493k,
baps = 0.4243 + 0.3912i + 0.2160j + 0.8335Kk,
1> = 0.9899 + 0.4070i + 0.0900j + 0.4950k,
Ay = 0.5144 + 0.7487i + 0.1117j + 0.1476k,
a3 = 0.8843 + 0.8256i + 0.1363j + 0.0550k,
bs1o = 0.9296 + 0.0005i 4 0.8013j + 0.7386k,
b = 0.5606 + 0.9889i + 0.4795j -+ 0.8452Kk,
bz = 0.8154 + 0.9900i + 0.9009j + 0.6664k,

= —38.7863 + 4.0617i + 0.5536j — 3.4984k, c1p = —35.3609 — 9.0836i — 1.7527j — 6.7689k,
—33.503 — 3.7707i 4- 5.2872j — 6.2708k, cp; = —24.7749 — 3.6921i — 0.5143j — 10.8211k,
—21.0950 — 11.3075i — 3.9522j — 10.8211k, cp3 = —18.9376 — 7.7280i + 1.7134j — 11.9519Kk,
—36.2182 - 5.38771 — 2.8839j — 0.8389k, c3p = —33.9232 — 7.3248i — 4.3221j — 3.9587k,
—31.8026 — 1.6492i + 1.2342j — 6.7683k.

bo13
b3

€13
€23
€33

)

)
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Computing directly yields the following:

2C, Ay A 5
r[ Bi 0 0] =r(A,y A1)+r<B1>:6
B, 0 0 2

~

2C. A, A
1’( Bzc 02 Ol) = T(Az, Al) + r(Bz) =5,
ZBCC 1?)1 Bs
r| 3 =r(A])+r| By | =5,
B, 0 5
B 0 1
2C. Ay A
By 0 0 B3
r 3 = T’(Az, A1) +r| By | =6,
B, 0 0 B
B 0 0 1
C. Ay 5
r[ By 0 —r(A1)+r<B3) _s,
B, O
2C. 0 0 A, A; O
B, 0 By 0 0 0 B;
0 A —-2C. 0 0 A B,
B o0 0 0 0 o0]= (’%2 “(‘)l X X)—i—r B;
0 0 B 0 0 0 2 A 0
0 0 B 0 0 O© 0
B, 0 0 0 0 ©0
0 By By 0 0
—24, 2C. 0 A 0 B; Bs
Ay 0 C 0 Al [0 A 0 B, 0]
"0 B o o ol "4 o a)F"|B o~
0 B 0 0 O 0 B
0 0 By, 0 0
0 0 —-B; By B3 0 0 0 O
0 0 2Cc 0 0 A, 0 A 0
A, 0 0 2Cc 0 0 0 0 A
0 A, 0 0 C. 0 A 0 0
rfo 0o 0 0 B 0 0 0 0
O 0 B, 0O O 0 0 0 0
O 0 B, 0 O 0 0 0 0
o 0 0 B O 0 0 0 ©0
O 0 0 B O 0 0 0 O0
B; B; Bs
Ab Ay, 0 0 0 O gz 8 8
=r[0 0 A A 0 0 |+r 01 5 0| =18
2
0 0 0 0 A A o B 0
0 0 B
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cococoocococoPoooO

coocococooPoocooo

B, 0 0
—B; By 0
2C. 0 0
0 0 0
0 C. A
0 0 0
0 0 0
B, 0 0
B 0 0
0 B, 0
A, 0 0
0 A 0
0 0 A
By By 0
0 0 B;
0 0 0
0 0 0
0 0 0
0 0 C.
0 0 0
0 0 0
B, 0 0
B, 0 0
0 B, 0
0 B, 0
0 0 B
Ay AL O
0 0 0
0 0 A
0 0 0

N
N

cCcoococococoocococo ™o o

o O O

o O O o oo

[uny

—_

coococoococo» oo

Fory

5]
=

cCcoocoococoococoo oo
o coo

cocoococoWFoF

=

O cocococo»ocoo

coF I

o =
=N

o O

oo}
W

o o O

o

o
o8]
N

—_

OOOOOOOO>OOOO

Bs

W ooo

o O O

Bs

Foocoococo

o3

FococoocoococooFo

17,

=24.

All rank equalities in (10)—~(19) hold. Hence, according to Theorem 1, Equation (1) is consistent,
and the general solution to the matrix Equation (1) can be expressed as follows:
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X — 0.500 4+ 3.0117i 4+ 0.0161j + 1.2813k =~ —2.2870 — 5.3594i + 2.8008j — 3.4531k
P\ —0.3281 4 0.1484i + 1.4375j — 1.1836k  2.2500 + 1.9219i + 0.4844j + 7.1406k

v 0.2734 — 0.0010i — 0.0020j — 0.0078k —0.0117 — 0.1328i — 0.0625j — 0.4063k
2\ 0.0508 + 0.1519i + 0.1387j + 0.4042k —0.1973 4- 0.0039i — 0.2617j !

_( 3i+2j 2k+i o X311 X312 _ X0411 X0412
Xz - . o . . ’ X3 - 7 X4 - ’
2j+3i 2i+j X321 X322 X421 Y0422
or
X x
Xy = ( 41 412 ) + T1Us + UsTo, Uy = S1(Uyq — UipT7Uyz + Uiy Ts),
X421 X422

Up11 U212 U213 U214

1 0 u u u u
< T, + Tg| Y220 22 M2 oo | Lo
01 Up3]  U32 U233 Up34

Upq1 Uz4p U243 U4q

Us = <u311 u31z), Uy = <u411 u412>, Us = —S3(Un — Ur2Tylhs + UiaTe),

U,

Uzp] U322 Ugqp1 U422

Uzl U212 U213 U214 1 0 0O
10 Ui Uy U3 Upps 0100

Ug = — T; + T, Sy, Upy = ,
¥ (0 1) T s upmy upss uzs 4 H 0000
Upg1 Uz4p U243 U244 00 0 O

T — 0.2500 + 0.0447i — 0.0938j — 0.2090k ~ —0.1348 4- 0.3086i — 0.0781j + 0.2188k
1=\ —0.0938 — 0.3564i + 0.0313j 4+ 0.3167k  0.4102 — 0.0117i + 0.1094j — 0.2109k  }’

7, _ (00005 +0.0012i +0.0005) +0.0005k  —0.0002 + 0.0005i + 0.0005 — 0.0005k
27\ —0.0005 — 0.0004i — 0.0010j + 0.0010k 0.0012i + 0.0020j -+ 0.0002k, ’
0 0
U — 0 0
171 0.2157 — 0.5625i — 0.5079j + 0.4975k ~ 0.0479 + 0.8423i 4 1.4991j + 0.0312k |’
0.4770 + 2.4543i + 2.5170j + 2.3890k  —2.9781 — 2.4611i — 0.1109j — 4.8836k
0 0
U — 0 0
1271 20941 — 1.8169i — 19.7767j + 7.1464k  4.0003 — 7.6426i — 23.6916j — 12.6004k
35.0358 + 22.9322i — 19.0766j + 62.5683k  50.3227 + 10.8273i — 41.1511j + 44.4639k
0 0
U 0 0
13 = 0.0005 + 0.0012i + 0.0005k —0.0002 4 0.0005i + 0.0005j + 0.0005k |’

—0.0005 — 0.0004i — 0.0010j + 0.0010k 0.0012i + 0.0020j + 0.0002k
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where

X311 = 2.4249 x 101 +9.158 x 101 + 3.6562 x 10'%j — 9.802 x 10'4k,

X312 = 2.8915 x 101 — 3.424 x 101 + 3.6682 x 10'%j + 3.8670 x 10'4k,

X321 = —2.8900 x 10'° — 8.349 x 10 + 4.8121 x 10'%j + 1.3028 x 10%°k,

X300 = —2.876 x 101 +3.0166 x 1011 + 1.3349 x 10'%j + 5.6492 x 10'*k,

X411 = —1.0460 x 10M — 5.5967 x 10'i — 4.5730 x 10'4j +2.5023 x 10'*k,

Xoa12 = 4.0206 x 10 +1.7870 x 101 4 3.5717 x 10 + 1.6691 x 10'*k,

Xoan1 = —1.0061 x 10 4 3.6673 x 104 + 4.9065 x 10'4j — 7.1850 x 10"k,

Xoa11 = —1.0460 x 10 — 55967 x 10™i — 4.5730 x 10'4j +2.5023 x 10'*k,

Xoazp = —2.0371 x 10" —1.9449 x 10" — 6.7917 x 10'j + 3.27 x 10"k,

X412 = —2.5081 x 10'° — 2.526 x 10'*i — 1.8086 x 10'%j — 1.6121 x 10%°k,

X401 = —1.6826 x 10'° +3.233 x 10 + 1.2608 x 10'4j — 5.905 x 104k,

X420 = 3.376 x 10™ — 21855 x 1011 — 2.5144 x 10'%j — 9.287 x 10'4k,

uz;; = —1.093 x 10%° — 9.730 x 10%°i + 1.8576 x 10°%j — 1.9289 x 10°°k,

uz1p = 8.155 x 10%° +9.72 x 10%4i — 1.5978 x 10¢j — 1.5691 x 10°°k,

Uz = —8.932 x 10°° — 1.8508 x 10%°i 4 4.0088 x 10%°j — 4.8557 x 10°°k,

uzpy = 1.5025 x 10%® — 7.623 x 10%%i — 4.0296 x 10%j — 3.3906 x 10k,

g1 = 14764 x 10%° + 4.669 x 1031 — 5.229 x 10*j — 2.3157 x 10k,

g1 = —3.7703 x 103 +2.5079 x 10%%i — 4.3196 x 10%%j + 5.1752 x 10%k,

ugp1 = 1.3750 x 10%° — 1.2281 x 10%°i — 2.4962 x 10%j + 1.7278 x 10k,

gy = 4.310 x 103 + 5.1989 x 10%°1 + 8.0931 x 10°%j + 2.5832 x 10%°k,

Ur11 = 0.9999 + 0.0001j — 0.0001k, 11 = —0.0002 + 0.0001i + 0.0004j,

Uz13 = 0.0025 — 0.0052i — 0.0085j — 0.0084k, 1514 = 0.0052 — 0.0006i — 0.0064j + 0.0067k,
Upp1 = —0.0002 — 0.0001i — 0.0001j — 0.0002K, 11220 = 0.9994 + 0.0001i — 0.0005k,

U3 = 0.0096 — 0.0130i — 0.0134j 4 0.0039K, 1504 = 0.0098 4 0.0104i + 0.0081j + 0.0108k,
U331 = 0.0025 + 0.0052i — 0.0002j — 0.0013k, up3 = 0.0096 + 0.0130i — 0.0014j — 0.0031k,
Up33 = 0.0006 + 0.0001i — 0.0001K, tp34 = —0.0001 4 0.0005i — 0.0001j,

tp41 = 0.0052 + 0.0006i — 0.0040j — 0.0043K, 14 = 0.0098 — 0.0104i + 0.0036j — 0.0096k,
U4z = —0.0001 — 0.0005i + 0.0004j — 0.0001k, 544 = 0.0005 — 0.0002j — 0.0003k,

V, is an arbitrary matrix of order 2 x 2 over quaternion H, Ty is an arbitrary matrix of order
4 x 2 over quaternion H, and T; and Tg are arbitrary matrix of order 2 x 4 over quaternion H,

Si= (L 0), 5= (g),sg_(o b),Ss (g)

3.2. The General Solution to the System (4)

Based on Theorem 1, in this section, we consider the system (4) with the known
matrices E1, Ep, E11, Exp, F, H; (i =1,4), Gj, Fj (j =1,3),and T over H. For convenience,
we define the notation as follows:
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A; = EjiLg, Bj=RgFjj(i=1,2,j=1,3), Cc =T — En(E; F + Lg, hG ) Fiy

— En(Ey B2+ Lg, Ha Gy )Fop — Exn(E; F3 + L, H3Gy ) Fop — Exa(Eqy Fy + L, HyGy ) Fa3,
By = B1Lp,, Bs = ByLp,, A3z = Ra, A2, B3z = B3Lp,,

Cs3 = Ra,CcLp,, A11 = Az + Asz, Cyq = CcLp, + Ra,Cc, By = BsLp,Lp,,

Ci1 = (I 4+ Ry, )CcLp,Lpy, A2y = Ra,, Az, Bop = B3Lp,Lp,, Cop = Ra,,CaslLp,,

My = AxpLa,,, N1 = Rp;; B, C1 = Con — A2nAj;C11B11Ban, D1 = Ry, A,

¢ = A7;C11By; + La, My C1By, — La,, My ApaDy Ryr, C1B3, + Dy Ryr, CiNy R,

M; = [LAllLMl’LA33]’ Ny = { RNl;lBH

D = Ry, Ly, E1 = A3;C33B3 — ¢, E = Ry, E1Ly,, M = R4C, N = DLp, S = CLy,

(34)

:|/ A= RMZLA“/ B= RBZZLN2I C= RMzLAzzr

and

I 0
S] = [IHZ/O}/ 52 = |: On :|/ 53 = [0/ Im]/ 54 = |: I :|
n

Thus, we obtain the following—one of the main result of this paper.

Theorem 2. Consider the system of quaternion matrix Equation (4) with the notation given in (34).
The following statements are equivalent:

(1) The system of matrix Equation (4) is consistent.

(2)
E\Hy; = F1Gy, E1Hy = Gy, ExH3 = F3Gy, ExHy = F4Gs (35)
and
Rg, Fy =0, Rg,F3 =0, HiLg, =0, HoLg, =0, HyLg, =0, (36)
Rp;Rp,Cay =0, Ry, C11 =0, CjiLp, =0(i =1,3), Ry, C1Ln, =0, 37)
RyR4E=0, ELgLy =0, RuELp =0, RcELg=0.
(3)  (35) holds and
r(F, Ep) =r(Ey), r(F3 Ex) =r(Ea),
Hy\ H)\ Hy\ (38)
r<G1) =r(Gy), r(G2> =7(Gy), r<G3) =r(Gs),
v B 5 = r(Pl-) + T’(Qi),i =1,10 (39)
0 Q
where
Ey Eqg 2T 0 Ex»n En
P=|E 0| Q=F G)Si=[2Ww, 0], L=(E 0|, (40)
0 K oW, 0 0 K
r o o 2T 0 2V Fs G3 0 0
Q= 2 S2=|2W, 0 0 |, Q3= (F2 O G2 0|, (41)

2u; 0 0 F; 0 0 G
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Ps =

Q7 =

Sg

Qs

Eg;), S5 = (2w2
Exn En
E2 0 ’ Q4 =
0 E
En
Ey ) % = (
Ex E;1 O
0 0 Exp
E; 0 0
0 Eq 0
0 0 E
0 0 0
Ex Enn O
0 0 Exp
0 0 0
E, 0 0
0 Eq 0
0 0 E
0 0 0
0 0 0
0 0 0
F33 P33 I3
F», O 0
F1 O 0
0 Fp, O
0 F17 O
0 0 Fp
0 2T 0
T 0 T
2T 0 0
U, 0 0
u, 0 U
0 U W
0 2Us 0
U, 0 0
0 2Us O
F3 F3 0
0 F3 Fs3
F», O 0
F1 O 0
0 Fp O
0 F1 O
0 0 Fp

o

™

[y
—_

o O o o

8!

_\
ocllcocof oo
N

o =)
E‘Joooooﬁ”oo
—

Do o

coococof)
cocoocofo
[iny

o O O

cocoocococol) cooococoococoo
cococoocococoo
coococo

cocoococof{o
cocoocofNoo

2V,
, Sa=
0

0 0

GZ 0)/Q5:<
0 &1

F3  F33
Fpr 0
>/ Qs=|F1 O
2T 0 0
0 2T 0
2; 0 0
2Us 0 O
0 2U; 0
0 2Us 0
2T
0
2U,
, S7= 2
0
0
0 0 0
0 0 0
0 0 0
G, 0 0
0 G 0
0 0 G
0 2Vs 2V,
Vy 0 0
2Vy 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
G 0 0
0 G, 0
0 0 G
0 0 0

cCoococoocooXNO

OO OO OO

@)
)

2T 2V,
2Us,
2U,

Gs3
0

O O O OO

2T

2U,
2Us

F33

Fy Gy

o

O O O OO
[N e NNl

S O O O oo
o O O OO

coocolo

0
0
0

).

0

Eqq

0

o O O O

o O o O

S O O O

™
=

o O

(42)

(43)

(44)

(45)

(46)

(47)
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Py =

Qo =

S10 =

ccocoococoocoofoolo

N
~

Coococoo

N
'Sy

S oo
&

o o

N

0 Exp O
0 0 0
0 0 E
E» O 0
0 0 0
E, 0 0
0 E> 0
0 0 E
0 0 0
0 0 0
0 0 0
0 0 0
Fz G3 0
0 0 G
0 0 0
Fo 0 O
F3 F3 0
F33 P33 Fs3
0 0 0
0 0 0
Fr 0 0
0 Fp1 O
0 F, O
0 0 F»
00 0 O
00 0 O
00 0 O
00 T O
00 0 O
00 Uy O
00 0 O
00 0 O
00 W 0
00 0 O
00 0 O
00 0 O
and

Vi = En1Hy, V3 = EpH3, Vo = ExoHy, V4 = Eq1Hy,
Uy = FiFn, Uy = B, Uz = BFy, Uy = FuFs3, Us = BBy

0 E4 0 0
0 0 0 Epy
» 0 0 Ey O
Ex, 0O 0 0 0 En 0
0 0 0 0
0 0 0 0 En 0 En
,Ph=|E 0 0
0 0 0 0
0 E; 0
0 0 0 0 0 o F
Ef 0 0 O 1
0 E; 0 0
0 0 E 0
0 0 0 E
0 o 2T 2T 2V, 2V5 2V,
o 0 o T 0 0 0
o oolS=lo w oo 0o o0
olc 2Us 2U; 0 0 0
2 0 U 0 0 0
G 0 0 0 0 0 0 0
0 GG 0 0 0 0 0 O0
0 0 GG 0 0 0 0 ©
0 0 0 GG 0 0 0 0
0 0 0 0 G 0 0 o]
0 0 0 0 0 G 0 0
0 0 0 0 0 0 Gy 0
0 0 0 0 0 0 0 G
00 2V3 2V, 0 0 0 O
00 0 0O 000 O
00 0 0 000 O
00 0 0 000 W
00 0 0O 000 O
00 0 0O 000 O
00 0 0 000 0}
00 0 O 000 O
00 0 O 000 O
00 0 0O 000 O
00 0 0 000 O
00 0 0O 000 O

Wi = FiFi1 + BFx, Wy = F3Fy + FiFss,
W3 = ExpHy + ExpH3, Wy = Eq1Hy + ExpHj,

(48)

(49)

(50)

(51)

(52)
(53)

In this case, the general solution to the system of the matrix Equation (4) can be expressed as follows:

Xy = E{ Fy + Lg, H1G + Lg, Ui R,
Xy = E{ B+ Lg, HoG, + Lg, U2Rg,,
X3 = Ey B+ Lg, H3Gy + Lg, UsRe,,
Xy = Ey Fy+ Lg, HyGy + L, UsRg,,
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where

Uy = A7 [(Ce — A2XyB3)Lp, + Ra, (Cc — A2 X4B3) | By 4+ La, V1 + VaRgp,,
Uy = A7 (Co — AyX1By — AyX3By — AyX4B3)By + VsRp, — La,Va,

Uz = M~ [(Cc — A2XyB3)Lp, + Ra, (Cc — A2 XyB3)| By + Ly Vs + VeRg,,
Uy = ¢+ La, La, V7 + VeRN, R,y + La, VoRp,, + Lay, VioRp,,,

or

Uy = A33C33B33 — La,, Vi1 — Vi2Rpy,,

V7 = S1[M; (Er — Lay, UsRp,, — Lay,UsRp;, ) — My TyNa + Liv, T,

Vo = [Ri, (E1 = Ly UsRpy, — LayUsRp, )Ny + MoM, T7 + TR, | S,
Vo= A"EB~ — A-CM R4EB~ — A~SC~ELzN~DB~ — A~ ST3RyDB~
+ LATi + ToRp,

Vio=M RJ4ED™ +LpS SC ELgN™ + LpLsTy + LT3Ry + T5Rp,
Vi1 = S3[Mj (E1 — La,,U3Rp,, — La,,UsRp,,) — My TN + L, Tg ),

Vio = [Rum, (E1 — La,,UsRp,, — La,,UsRp, )N, + MM, T7 + TgRn, | Sa,

V; (i = 1,6) are arbitrary matrices over H with appropriate sizes, and T; (i = 1,8) are arbitrary
matrices over H with appropriate sizes.

Proof. (1) < (2) Clearly, the system of matrix Equation (4) is solvable if—and only if—
both of the following are consistent:

EiX1=h, X1G1 = Hy,

EiXo = B, X3Gp = Hy,

(54)
ExX3 = R, X3G, = Hj3,
ExXy = Fy, X4G3 = Hy
and
EnXiFi1+EnXoFn + ExnX3Foy + EnpX4F33 = T. (55)

It follows from Lemma 4 that the system (54) has a solution if—and only if— (35) holds,

and

Rg,Fy =0, Rg,F, = 0, Rg,F3 = 0, Rg,Fy =0, 6
HyLg, =0, HyLg, =0, H3Lg, = 0, HyLg, = 0.

Under these conditions, the expression of general solution to (54) can be expressed

as follows:
X1 =E{ F + Lg,HiG] + Lg,U1Rg,,

Xo=E R+ LE1H2G2_ + Lg, UzRg,,
X3 = E, 3+ Lg,H3G, + Lg,U3Rg,,
X4 = E; Fy+ L, HyGy + LEZU4R(;3,

(57)

where U; (i = 1,4) are arbitrary matrices over H with appropriate sizes.
Next, substituting (57) into (55) yields the following:

AUy By + A Up By + AUz By + AUyBs = Co, (58)
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where A;, B, (i = 1,2,j = 1,3) are defined as (34). By Theorem 1, the matrix Equation
(58) is solvable if—and only if—(37) holds. In this case, the general solution to matrix
Equation (58) can be expressed as follows:

Uy = A7 [(Cec — A2 XyB3)Lp, + Ra, (Cc — A2XyB3)| By + La, Vi + VaRp,,
Uy = A7 (Cc — A1X1B1 — A2X3By — AyXyB3)By + V3Rp, — La, Vi,

Us = M~ [(Cc — ApX4B3)Lp, + Ra, (Cc — A2XyB3)]Bo + Ly Vs + VgRg,,
Uy = ¢+ Lay, Lm, V7 + VeRN Ry + Lay, VoRp,, + La,, VioRp,,,

or Uy = A33Cs3B33 — Lay, Vi1 — ViaRpy,

V7 = S1[M; (Ex — Lay, UsRp,, — Lay, UsRp,, ) — My TyNa + Liv, T,

Vs = [Rm, (E1 — La, UsRp,, — La,UsRp, )Ny + MMy Ty + TgRy;, | So,
Vo=AEB~ — A CM RAEB™ — A"SC ELzN DB~ — A~ ST3RyDB"
+LaTy + ToRp,

Vi = M~ R4ED™ + LyS~SC™ELgN~ + LyLsTy + Ly TRy + TsRp,
Vi1 = S3[M; (Ey — L, U3Rp,, — La,UsRp,,) — M; TyNy + L, Ts],

Vi2 = [Ruy (Br = Lay, UsRpy, — Lay UsRp, )Ny + MaM, T7 + TR, | Sa,

where V; (i = 1,6) are arbitrary matrices over H with appropriate sizes, A;;, Bj;, Ci; (i =
1,3), My, M»,Ny,Np, A,B,D,E,S,M and N are defined as (34), T; (i = 1,8) are arbitrary
matrices over HH, with appropriate sizes.

Hence, the system of matrix Equation (54) and the matrix Equation (55) are consistent
if—and only if—(35), (56), and (37) hold,

Now, we show that (56) < (36). It follows from Lemma 2 that the following is true:

RE1F1 =0& r(Fl, El) = T’(El), RE1F2 =0& I’(FQ, El) = T’(E1>,
RE2F3 =0& 7’(F3, Ez) = T(Ez), RE2F4 =0«& T’(F4, Eg) = T(Ez),

HiLg, =0 < r(H ) =1(Gy), HaLg, =0 & r<H2> =1(Gy), (59)

1
Gy
I‘I3LG2 =0& r(él;’) = r(GZ), H4LG3 =0« r<g‘;) = 7<G3)_

According to (59), we obtain (56) <> (36). To sum up, the system of matrix Equation (54)
and the matrix Equation (55) are consistent if—and only if—(35)~(37) hold.

(2) & (3) In view of (59), we obtain (36) < (38).

Next, we turn our attention to show that (37) holds if—and only if—(39) holds.
According to Theorem 1, we can find that (37) holds if—and only if—(10)-(19) hold. Hence,
we need prove (9+1) < (39) (i = 1,10) when we show that (37) holds if—and only if—(39)
holds. We need to use the following fact to prove (9 + i) < (39) (i = 1,10):

It is easy to know that there exists a solution, according to XY, Xg, Xg, Xg, such that the
following is true:

E: X} =F, XVG, = H,,
E1X9 = F, X3G;, = Hy,
E2 XY = F3, X3G, = H;s, (60)
EX{ = Fy, XYGs = Hy,
EnnXVF11+En X9Fn + EnX3Fo + EnXiFs =T,
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where

X)=E F +LgHiGy, X3 = E{ B+ Lg, HyGy,
X =E, B+ Lg,H3G,, X = Ey Fy+ L, HyG5 .
LetTy=T — (EnX?Fll + E11X3F22 + Eszngz + E22X2F33). We first show the following:

(9+1) & (39) fori =1, (9 + 1) < (39) for i = 2, (9+ i) < (39) for i =3, (9 + i) < (39) for
i=4,and (9+1i) & (39) fori = 5.

In fact, when i = 1, by Lemma 2, (60) and elementary operations, we obtain
the following:
2Ty ExpLg, EqiLg, R E
(9+1i) & r| Rg, Fuu 0 0 =r(EpnLg,, EnLg)+ r(Rchll) o
RG2F22 0 0 Gy 422

2Ty Ex» E;; 0 0
Fr 0 0 G O Exn En F Gi 0

r|Bn 0 0 0 G|=rlE 0 +r<F“ 01 G><:>(39).
0 E, 0 0 0 0 Ep 2 2
0 0 Ey 0 0

Similarly, we can show that (9 +1i) < (39) fori = 2, (9+1i) < (39) fori = 3,
(9+1i) & (39) fori =4and (9 +1i) & (39) for i = 5, where P, Q;,S; and O; (i = 1,5) in
(39) are defined as (40), (41), (42), (43), and (44), respectively, W; (i = 1,3) are defined as
(51), U; (j = 1,5) are defined as (53), and Vi (k = 1,4) are defined as (52).

Second, we show that (9 +1i) < (39) fori =6, (9+1i) < (39) fori =7, (9 +1i) < (39)
fori =8, (9+i) & (39) fori = 9and (9+i) < (39) for i = 10. In fact, when i = 6, it
follows from Lemma 2, (60), and elementary operations, that the following is true:

2T, 0 0  EpLg, EnlLg 0
ReFs 0 RgFs 0 0 0
0  EpLg, 2Ty 0 0 Enlg
(9 + 1) =1 RG1F11 0 0 0 0 0
0 0 RgFi 0 0 0
0 0 RgFn 0 0 0
RgFEn 0 0 0 0 0
Rg,F33  Rg,F33
_ (Ex»Lg, EiniLg, 0 0 Re, Iz 0
= r( 0 0 Ex L EyLr ) +7r RG1 Fiq 0
2 1 0 RG2F22

0 RG1 P11
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2T, 0 0 Exy Ey O 0 O O 0 O
Fs 0 F3 0 0O O G 0 0 0 0
0 Ep 2T, 0 0 Ey O O O O O
[ 0 0 0 O 0 0 G 0 0 0
0 0 F; 0 0 O 0 0 G 0 0
srl 0 0 B, O 0 0 0 0 0 Gy 0
I, 0 0 0 O O 0 0 0 0 G
0O EL 0O 0O 0O O 0 O 0 0 O
0O 0 O E 0O O 0 O 0 0 O
o 0 O O E O 0 0 0 0 O
0o 0 O O 0 E O 0 0 0 O
Egz Eél EO EO Fy3 Fi3 G 0 0 0 0
E, 0 32 51 F, 0 0 G 0 0 0
r +r|F; 0O 0 0 G 0 0 |<@9.
0 Ef 0 0
0 0 E 0 0 F» 0 0 0 Gy 0
0 F;r 0 0 0 0 G

0 0 0 £

Similarly, we can show that (9 +1i) < (39) fori = 7, (9+1i) < (39) fori = §,
(9+1) < (39) fori =9 and (9+1i) & (39) fori = 10, where P;, Q;,S; (i = 6,7,8), and in
(39), are defined as (45), (46), (47), respectively, P;, Q; and S;(i = 9,10) in (39), are defined
as (48), (49), and (50). W; (i = 1,3) are defined as (51), U; (j = 1,5) are defined as (53), and
Vi (k =1,4) are defined as (52). The proof is completed. [

4. Conclusions

We have established some necessary and sufficient conditions for the existence of the
solution to quaternion matrix Equation (1), and derived a formula of its general solution
when it is solvable. As an application of (1), we have investigated some necessary and
sufficient conditions for the system of matrix Equation (4) to be consistent, as well as the
expression of its general solution, and presented a numerical example to emphasize our
main results.
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