Some Subordination Results for Atangana-Baleanu Fractional Integral Operator Involving Bessel Functions
Abstract
:1. Introduction and Preliminary Results
- 1.
- It is a function that is analytic of both and . The given functions f and B are analytic and the function B is nonzero;
- 2.
- It is identical to the original formula if and in .Thus, it provides the analytic continuation of the Atangana–Baleanu original integral operator to the complex values of z and ν.
2. Main Results
3. Discussion
Author Contributions
Funding
Conflicts of Interest
References
- Hong, W.; Zheng, X. Wellposedness and regularity of the variable-order time-fractional diffusion equations. J. Math. Anal. Appl. 2019, 475, 1778–1802. [Google Scholar]
- Zheng, X.; Wang, H. An optimal-order numerical approximation to variable-order space-fractional diffusion equations on uniform or graded meshes. SIAM J. Numer. Anal. 2020, 58, 330–352. [Google Scholar] [CrossRef]
- Zheng, X.; Wang, H. An Error Estimate of a Numerical Approximation to a Hidden-Memory Variable-Order Space-Time Fractional Diffusion Equation. SIAM J. Numer. Anal. 2020, 58, 2492–2514. [Google Scholar] [CrossRef]
- Baleanu, D.; Mousalou, A.; Rezapour, S. On the existence of solutions for some infinite coefficient-symmetric Caputo-Fabrizio fractional integro-differential equations. Bound. Value Probl. 2017, 2017, 145. [Google Scholar] [CrossRef]
- Baleanu, D.; Rezapour, S.; Saberpour, Z. On fractional integro-differential inclusions via the extended fractional Caputo-Fabrizio derivation. Bound. Value Probl. 2019, 2019, 79. [Google Scholar] [CrossRef]
- Samko, S.G.; Kilbas, A.A.; Marichev, O.I. Fractional Integrals and Derivatives: Theory and Applications; Taylor & Francis: London, UK, 2002. [Google Scholar]
- Cotîrlă, L.; Cătaş, A. Differential sandwich theorem for certain class of analytic functions associated with an integral operator. Stud. Univ. Babes-Bolyai Math. 2020, 65, 487–494. [Google Scholar] [CrossRef]
- Alb Lupaş, A. Properties on a subclass of analytic functions defined by a fractional integral operator. J. Comput.Anal. Appl. 2019, 27, 506–510. [Google Scholar]
- Alb Lupaş, A. Inequalities for Analytic Functions Defined by a Fractional Integral Operator. In Frontiers in Functional Equations and Analytic Inequalities; Anastassiou, G., Rassias, J., Eds.; Springer: Berlin/Heidelberg, Germany, 2020; pp. 731–745. [Google Scholar]
- Alb Lupaş, A.; Oros, G.I. Differential Subordination and Superordination Results Using Fractional Integral of Confluent Hypergeometric Function. Symmetry 2021, 13, 327. [Google Scholar] [CrossRef]
- Oros, G.I. New Conditions for Univalence of Confluent Hypergeometric Function. Symmetry 2021, 13, 82. [Google Scholar] [CrossRef]
- Kanas, S.; Stankiewicz, J. Univalence of confluent hypergeometric function. Ann. Univ. Mariae Curie-Sklodowska 1998, 1, 51–56. [Google Scholar]
- Saxena, R.K.; Purohit, S.D.; Kumar, D. Integral Inequalities Associated with Gauss Hypergeometric Function Fractional Integral Operators. Proc. Natl. Acad. Sci. India Sect. A Phys. Sci. 2018, 88, 27–31. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Bansal, M.; Harjule, P. A study of fractional integral operators involving a certain generalized multi-index Mittag-Leffler function. Math. Meth. Appl. Sci. 2018, 41, 6108–6121. [Google Scholar] [CrossRef]
- Atangana, A.; Baleanu, D. New fractional derivatives with nonlocal and non-singular kernel: Theory and application to heat transfer model. Therm. Sci. 2016, 20, 763–769. [Google Scholar] [CrossRef] [Green Version]
- Abdeljawad, T.; Baleanu, D. Integration by parts and its applications of a new nonlocal fractional derivative with Mittag-Leffler nonsingular kernel. J. Nonlinear Sci. Appl. 2017, 10, 1098–1107. [Google Scholar] [CrossRef] [Green Version]
- Baleanu, D.; Fernandez, A. On some new properties of fractional derivatives with Mittag-Leffler kernel. Commun. Nonlinear Sci. Numer. Simul. 2018, 59, 444–462. [Google Scholar] [CrossRef] [Green Version]
- Djida, J.-D.; Atangana, A.; Area, I. Numerical computation of a fractional derivative with non-local and non-singular kernel. Math. Model Nat.Phenom. 2017, 12, 413. [Google Scholar] [CrossRef]
- Fernandez, A. A complex analysis approach to Atangana–Baleanu fractional calculus, Mathematical Methods in the Applied. Math. Methods Appl. Sci. 2021, 44, 8070–8087. [Google Scholar] [CrossRef] [Green Version]
- Baricz, Á. Geometric properties of generalized Bessel functions. Publ. Math. Debrecen. 2008, 73, 155–178. [Google Scholar]
- Baricz, Á. Geometric Properties of Generalized Bessel Functions, in Generalized Bessel Functions of the First Kind; Springer: Berlin/Heidelberg, Germany, 2010; pp. 23–69. [Google Scholar]
- Miller, S.S.; Mocanu, P.T. Subordinants of differential superordinations. Compelx Var. 2003, 48, 815–826. [Google Scholar] [CrossRef]
- Bulboacă, T. A class of superordination - preserving integral operators. Indag. Math. New Ser. 2002, 13, 301–311. [Google Scholar] [CrossRef] [Green Version]
- Bulboacă, T. Classes of first-order superordinations. Demonstr. Math. 2002, 35, 287–292. [Google Scholar]
- Srivastava, H.M.; Lashin, A.Y. Some applications of the Briot-Bouquet differential subordination. JIPAM J. Inequal Pure Appl. Math. 2005, 6, 41. [Google Scholar]
- Miller, S.S.; Mocanu, P.T. Differential Subordinations: Theory and Applications; Pure and Applied Mathematics, No. 225; Marcel Dekker: New York, NY, USA, 2000. [Google Scholar]
- Alb Lupaş, A.; Cătaş, A. An application of the principle of differential subordination to analytic functions involving Atangana-Baleanu fractional integral of Bessel functions. Symmetry 2021, 13, 971. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cătaş, A.; Lupaş, A.A. Some Subordination Results for Atangana-Baleanu Fractional Integral Operator Involving Bessel Functions. Symmetry 2022, 14, 358. https://doi.org/10.3390/sym14020358
Cătaş A, Lupaş AA. Some Subordination Results for Atangana-Baleanu Fractional Integral Operator Involving Bessel Functions. Symmetry. 2022; 14(2):358. https://doi.org/10.3390/sym14020358
Chicago/Turabian StyleCătaş, Adriana, and Alina Alb Lupaş. 2022. "Some Subordination Results for Atangana-Baleanu Fractional Integral Operator Involving Bessel Functions" Symmetry 14, no. 2: 358. https://doi.org/10.3390/sym14020358
APA StyleCătaş, A., & Lupaş, A. A. (2022). Some Subordination Results for Atangana-Baleanu Fractional Integral Operator Involving Bessel Functions. Symmetry, 14(2), 358. https://doi.org/10.3390/sym14020358