Attaching Onto or Inserting Into an Intramolecular Hydrogen Bond: Exploring and Controlling a Chirality-Dependent Dilemma for Alcohols
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Methods
2.2. Computational Methods and Nomenclature
3. Results
3.1. Vibrational Spectra
3.2. Predicted Substitution Trends
3.3. Interconversion Paths
4. Discussion
4.1. Energy Decomposition Analysis
4.2. Experimental Evidence for Metastable Complexes
4.3. Comparison with Other Alcohols and Phenol
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
B | Benzyl alcohol |
C | 4-Chlorobenzyl alcohol |
L | Methyl (S)-(−)-lactate |
G | Methyl glycolate |
P | Phenol |
N | (S)-2-Naphthyl-1-ethanol |
M | Methanol |
CCD | Charge Coupled Device |
L-N2 | Liquid Nitrogen |
DFT | Density Functional Theory |
CREST | Conformer-Rotamer Ensemble Sampling Tool |
B3LYP | Becke 3-parameter Lee-Yang-Parr density functional |
D3 | Third-generation Grimme parametrization of density functional dispersion |
correction | |
BJ | Becke and Johnson damping function for small interatomic distances |
LED | Local energy decomposition |
DLPNO-CCSD(T) | Domain based local pair-natural orbital singles and doubles coupled cluster |
with perturbative triples correction |
References
- Maes, G.; Smets, J. Hydrogen bond cooperativity: A quantitative study using matrix-isolation FT-IR spectroscopy. J. Phys. Chem. 1993, 97, 1818–1825. [Google Scholar] [CrossRef]
- López de la Paz, M.; Ellis, G.; Pérez, M.; Perkins, J.; Jiménez-Barbero, J.; Vicent, C. Carbohydrate Hydrogen-Bonding Cooperativity—Intramolecular Hydrogen Bonds and Their Cooperative Effect on Intermolecular Processes—Binding to a Hydrogen-Bond Acceptor Molecule. Eur. J. Org. Chem. 2002, 2002, 840–855. [Google Scholar] [CrossRef]
- Borho, N.; Suhm, M.A.; Le Barbu-Debus, K.; Zehnacker, A. Intra- vs. intermolecular hydrogen bonding: Dimers of alpha-hydroxyesters with methanol. Phys. Chem. Chem. Phys. 2006, 8, 4449–4460. [Google Scholar] [CrossRef] [PubMed]
- Agreiter, J.; Knight, A.; Duncan, M. ZEKE-PFI spectroscopy of the Al–(H2O) and Al–(D2O) complexes. Chem. Phys. Lett. 1999, 313, 162–170. [Google Scholar] [CrossRef]
- Etter, M.C. Hydrogen bonds as design elements in organic chemistry. J. Phys. Chem. 1991, 95, 4601–4610. [Google Scholar] [CrossRef]
- Wagner, J.P.; Schreiner, P.R. London Dispersion in Molecular Chemistry—Reconsidering Steric Effects. Angew. Chem. Int. Ed. 2015, 54, 12274–12296. [Google Scholar] [CrossRef]
- Melandri, S. “Union is strength”: How weak hydrogen bonds become stronger. Phys. Chem. Chem. Phys. 2011, 13, 13901–13911. [Google Scholar] [CrossRef]
- Scuderi, D.; Le Barbu-Debus, K.; Zehnacker, A. The role of weak hydrogen bonds in chiral recognition. Phys. Chem. Chem. Phys. 2011, 13, 17916–17929. [Google Scholar] [CrossRef] [PubMed]
- Medel, R.; Camiruaga, A.; Saragi, R.T.; Pinacho, P.; Pérez, C.; Schnell, M.; Lesarri, A.; Suhm, M.A.; Fernández, J.A. Rovibronic signatures of molecular aggregation in the gas phase: Subtle homochirality trends in the dimer, trimer and tetramer of benzyl alcohol. Phys. Chem. Chem. Phys. 2021, 23, 23610–23624. [Google Scholar] [CrossRef]
- Hashimoto, M.; Harada, M. Conformational Phase Transitions Associated with Reversal of Hydrogen Bond Direction in 4-Chloro- and 4-Bromobenzyl Alcohols. An X-Ray Study. Z. Naturforsch. A 2003, 58, 63–67. [Google Scholar] [CrossRef]
- Jarmelo, S.; Maria, T.M.R.; Leitão, M.L.P.; Fausto, R. Structural and vibrational characterization of methyl glycolate in the low temperature crystalline and glassy states. Phys. Chem. Chem. Phys. 2000, 2, 1155–1163. [Google Scholar] [CrossRef] [Green Version]
- Meyer, R.; Caminati, W.; Hollenstein, H. Torsional motions in methyl glycolate. J. Mol. Spectrosc. 1989, 137, 87–103. [Google Scholar] [CrossRef]
- Ottaviani, P.; Velino, B.; Caminati, W. Jet cooled rotational spectrum of methyl lactate. Chem. Phys. Lett. 2006, 428, 236–240. [Google Scholar] [CrossRef]
- Borho, N.; Xu, Y. Rotational spectrum of a chiral α-hydroxyester: Conformation stability and internal rotation barrier heights of methyl lactate. Phys. Chem. Chem. Phys. 2007, 9, 1324–1328. [Google Scholar] [CrossRef] [PubMed]
- Asselin, P.; Madebène, B.; Soulard, P.; Georges, R.; Goubet, M.; Huet, T.R.; Pirali, O.; Zehnacker-Rentien, A. Competition between inter- and intra-molecular hydrogen bonding: An infrared spectroscopic study of jet-cooled amino-ethanol and its dimer. J. Chem. Phys. 2016, 145, 224313. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seurre, N.; Le Barbu-Debus, K.; Lahmani, F.; Zehnacker, A.; Borho, N.; Suhm, M.A. Chiral recognition between lactic acid derivatives and an aromatic alcohol in a supersonic expansion: Electronic and vibrational spectroscopy. Phys. Chem. Chem. Phys. 2006, 8, 1007–1016. [Google Scholar] [CrossRef] [PubMed]
- Hong, A.; Moon, C.J.; Jang, H.; Min, A.; Choi, M.Y.; Heo, J.; Kim, N.J. Isomer-Specific Induced Circular Dichroism Spectroscopy of Jet-Cooled Phenol Complexes with (−)-Methyl L-Lactate. J. Phys. Chem. Lett. 2018, 9, 476–480. [Google Scholar] [CrossRef] [PubMed]
- Maué, D.; Strebert, P.H.; Bernhard, D.; Rösel, S.; Schreiner, P.R.; Gerhards, M. Dispersion-Bound Isolated Dimers in the Gas Phase: Observation of the Shortest Intermolecular CH···H–C Distance via Stimulated Raman Spectroscopy. Angew. Chem. Int. Ed. 2021, 60, 11305–11309. [Google Scholar] [CrossRef]
- Shachar, A.; Kallos, I.; de Vries, M.S.; Bar, I. Revealing the Structure and Noncovalent Interactions of Isolated Molecules by Laser-Desorption/Ionization-Loss Stimulated Raman Spectroscopy and Quantum Calculations. J. Phys. Chem. Lett. 2021, 12, 11273–11279. [Google Scholar] [CrossRef]
- Forsting, T.; Gottschalk, H.C.; Hartwig, B.; Mons, M.; Suhm, M.A. Correcting the record: The dimers and trimers of trans-N-methylacetamide. Phys. Chem. Chem. Phys. 2017, 19, 10727–10737. [Google Scholar] [CrossRef] [Green Version]
- Zehnacker, A.; Suhm, M. Chirality Recognition between Neutral Molecules in the Gas Phase. Angew. Chem. Int. Ed. 2008, 47, 6970–6992. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Yang, G.; Losada, M.; Xu, Y. Vibrational absorption, vibrational circular dichroism, and theoretical studies of methyl lactate self-aggregation and methyl lactate-methanol intermolecular interactions. J. Chem. Phys. 2010, 132, 234513. [Google Scholar] [CrossRef] [PubMed]
- Katsyuba, S.A.; Spicher, S.; Gerasimova, T.P.; Grimme, S. Revisiting conformations of methyl lactate in water and methanol. J. Chem. Phys. 2021, 155, 024507. [Google Scholar] [CrossRef] [PubMed]
- Altnöder, J.; Lee, J.J.; Otto, K.E.; Suhm, M.A. Molecular Recognition in Glycolaldehyde, the Simplest Sugar: Two Isolated Hydrogen Bonds Win Over One Cooperative Pair. ChemistryOpen 2012, 1, 269–275. [Google Scholar] [CrossRef]
- Hartwig, B.; Lange, M.; Poblotzki, A.; Medel, R.; Zehnacker, A.; Suhm, M.A. The reduced cohesion of homoconfigurational 1,2-diols. Phys. Chem. Chem. Phys. 2020, 22, 1122–1136. [Google Scholar] [CrossRef] [Green Version]
- Neese, F. Software update: The ORCA program system, version 4.0. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2018, 8, e1327. [Google Scholar] [CrossRef]
- Pracht, P.; Bohle, F.; Grimme, S. Automated exploration of the low-energy chemical space with fast quantum chemical methods. Phys. Chem. Chem. Phys. 2020, 22, 7169–7192. [Google Scholar] [CrossRef]
- Brandenburg, J.G.; Bannwarth, C.; Hansen, A.; Grimme, S. B97-3c: A revised low-cost variant of the B97-D density functional method. J. Chem. Phys. 2018, 148, 064104. [Google Scholar] [CrossRef]
- Becke, A.D. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A 1988, 38, 3098–3100. [Google Scholar] [CrossRef]
- Becke, A.D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 1993, 98, 5648–5652. [Google Scholar] [CrossRef] [Green Version]
- Lee, C.; Yang, W.; Parr, R.G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 1988, 37, 785–789. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Becke, A.D.; Johnson, E.R. A density-functional model of the dispersion interaction. J. Chem. Phys. 2005, 123, 154101. [Google Scholar] [CrossRef] [PubMed]
- Johnson, E.R.; Becke, A.D. A post-Hartree–Fock model of intermolecular interactions. J. Chem. Phys. 2005, 123, 024101. [Google Scholar] [CrossRef]
- Johnson, E.R.; Becke, A.D. A post-Hartree-Fock model of intermolecular interactions: Inclusion of higher-order corrections. J. Chem. Phys. 2006, 124, 174104. [Google Scholar] [CrossRef]
- Grimme, S.; Ehrlich, S.; Goerigk, L. Effect of the damping function in dispersion corrected density functional theory. J. Comp. Chem. 2011, 32, 1456–1465. [Google Scholar] [CrossRef]
- Jeffrey, G.A.; Saenger, W. Hydrogen Bonding in Biological Structures; Springer: Berlin/Heidelberg, Germany, 1991. [Google Scholar]
- Weigend, F.; Ahlrichs, R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. Phys. Chem. Chem. Phys. 2005, 7, 3297–3305. [Google Scholar] [CrossRef]
- TURBOMOLE V7.3 2018, a Development of University of Karlsruhe and Forschungszentrum Karlsruhe GmbH, 1989–2007. 2007. Available online: http://www.turbomole.com (accessed on 16 December 2021).
- Furche, F.; Ahlrichs, R.; Hättig, C.; Klopper, W.; Sierka, M.; Weigend, F. Turbomole. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2014, 4, 91–100. [Google Scholar] [CrossRef]
- Schneider, W.B.; Bistoni, G.; Sparta, M.; Saitow, M.; Riplinger, C.; Auer, A.A.; Neese, F. Decomposition of Intermolecular Interaction Energies within the Local Pair Natural Orbital Coupled Cluster Framework. J. Chem. Theory Comput. 2016, 12, 4778–4792. [Google Scholar] [CrossRef]
- Altun, A.; Neese, F.; Bistoni, G. Local energy decomposition analysis of hydrogen-bonded dimers within a domain-based pair natural orbital coupled cluster study. Beilstein J. Org. Chem. 2018, 14, 919–929. [Google Scholar] [CrossRef] [Green Version]
- Medel, R.; Suhm, M.A. Understanding benzyl alcohol aggregation by chiral modification: The pairing step. Phys. Chem. Chem. Phys. 2020, 22, 25538–25551. [Google Scholar] [CrossRef] [PubMed]
- Ceccarelli, C.; Jeffrey, G.; Taylor, R. A survey of O-H···O hydrogen bond geometries determined by neutron diffraction. J. Mol. Struct. 1981, 70, 255–271. [Google Scholar] [CrossRef]
- Medel, R.; Suhm, M.A. Predicting OH stretching fundamental wavenumbers of alcohols for conformational assignment: Different correction patterns for density functional and wave-function-based methods. Phys. Chem. Chem. Phys. 2021, 23, 5629–5643. [Google Scholar] [CrossRef]
- Le Barbu-Debus, K.; Lahmani, F.; Zehnacker-Rentien, A.; Guchhait, N.; Panja, S.S.; Chakraborty, T. Fluorescence spectroscopy of jet-cooled chiral (±)-indan-1-ol and its cluster with (±)-methyl- and ethyl-lactate. J. Chem. Phys. 2006, 125, 174305. [Google Scholar] [CrossRef] [PubMed]
- Thomas, J.; Sukhorukov, O.; Jäger, W.; Xu, Y. Chirped-Pulse and Cavity-Based Fourier Transform Microwave Spectra of the Methyl Lactate···Ammonia Adduct. Angew. Chem. Int. Ed. 2013, 52, 4402–4405. [Google Scholar] [CrossRef]
- Le Barbu-Debus, K.; Broquier, M.; Mahjoub, A.; Zehnacker-Rentien, A. Chiral recognition in jet-cooled complexes of (1R,2S)-(+)-cis-1-amino-2-indanol and methyl lactate: On the importance of the CH⋯π interaction. Phys. Chem. Chem. Phys. 2009, 11, 7589–7598. [Google Scholar] [CrossRef]
- Mahjoub, A.; Le Barbu-Debus, K.; Zehnacker, A. Structural Rearrangement in the Formation of Jet-Cooled Complexes of Chiral (S)-1,2,3,4-Tetrahydro-3-isoquinolinemethanol with Methyl Lactate: Chirality Effect in Conformer Selection. J. Phys. Chem. A 2013, 117, 2952–2960. [Google Scholar] [CrossRef]
- Saragi, R.T.; Juanes, M.; Pinacho, R.; Rubio, J.E.; Fernández, J.A.; Lesarri, A. Molecular Recognition, Transient Chirality and Sulfur Hydrogen Bonding in the Benzyl Mercaptan Dimer. Symmetry 2021, 13, 2022. [Google Scholar] [CrossRef]
- Thomas, J.; Sukhorukov, O.; Jäger, W.; Xu, Y. Direct Spectroscopic Detection of the Orientation of Free OH Groups in Methyl Lactate–(Water)1,2 Clusters: Hydration of a Chiral Hydroxy Ester. Angew. Chem. Int. Ed. 2014, 53, 1156–1159. [Google Scholar] [CrossRef]
- Schreiner, P.R. Metal-free organocatalysis through explicit hydrogen bonding interactions. Chem. Soc. Rev. 2003, 32, 289–296. [Google Scholar] [CrossRef]
- Seayad, J.; List, B. Asymmetric organocatalysis. Org. Biomol. Chem. 2005, 3, 719–724. [Google Scholar] [CrossRef] [PubMed]
- Taylor, M.S.; Jacobsen, E.N. Asymmetric Catalysis by Chiral Hydrogen-Bond Donors. Angew. Chem. Int. Ed. 2006, 45, 1520–1543. [Google Scholar] [CrossRef] [PubMed]
- Kuwano, S.; Suzuki, T.; Yamanaka, M.; Tsutsumi, R.; Arai, T. Catalysis Based on C–I⋯π Halogen Bonds: Electrophilic Activation of 2-Alkenylindoles by Cationic Halogen-Bond Donors for [4 + 2] Cycloadditions. Angew. Chem. Int. Ed. 2019, 58, 10220–10224. [Google Scholar] [CrossRef] [PubMed]
- Sysoeva, A.A.; Novikov, A.S.; Il’in, M.V.; Suslonov, V.V.; Bolotin, D.S. Predicting the catalytic activity of azolium-based halogen bond donors: An experimentally-verified theoretical study. Org. Biomol. Chem. 2021, 19, 7611–7620. [Google Scholar] [CrossRef]
(B3LYP) | (B3LYP) | (CCSD(T)) | (CCSD(T)) | (LED) | (LED) | (B3LYP) | |
---|---|---|---|---|---|---|---|
BGi | 0 | 0 | 0 | −59.2 | −38.9 | 0.66 | 0 |
BGa | 5.5 | 7.4 | 5.8 | −42.3 | −32.3 | 0.76 | 2.2 |
CGi | 0 | 0 | 0 | −58.9 | −39.7 | 0.67 | 0 |
CGa | 0.7 | 2.1 | 0.9 | −47.2 | −36.7 | 0.78 | −1.2 |
(B3LYP) | (B3LYP) | (CCSD(T)) | (CCSD(T)) | (LED) | (LED) | (B3LYP) | |
---|---|---|---|---|---|---|---|
BLi (hom) | 0 | 0 | 0 | −58.6 | −40.4 | 0.69 | 0 |
BLa (hom) | 2.0 | 3.4 | 3.0 | −44.2 | −33.8 | 0.76 | 2.6 |
BLi (het) | 2.7 | 2.7 | 2.6 | −56.5 | −35.6 | 0.63 | 5.5 |
BLa (het) | 4.0 | 5.8 | 5.5 | −41.7 | −32.7 | 0.78 | 3.3 |
CLa (hom) | 0 | 0 | 0 | −49.6 | −38.0 | 0.77 | 0 |
CLa (het) | 2.0 | 2.3 | 2.3 | −47.0 | −36.5 | 0.78 | 1.3 |
CLi (hom) | 2.8 | 1.8 | 1.9 | −58.5 | −41.4 | 0.71 | 0.5 |
CLi (het) | 5.0 | 3.8 | 4.0 | −57.5 | −36.4 | 0.63 | 5.8 |
Label | Mode | () | System | Label | () |
---|---|---|---|---|---|
This Work | /cm−1 | /cm−1 | |||
BLa | 3503 (OHB) | −7 | PL [17] | i (OHP) | −3 |
BLi | 3461 (OHs) | 0 | PL [17] | i (OHL) | +6 |
BGi | 3497 (OHas) | −4 | PL [17] | a (OHP) | +9 |
BGi | 3453 (OHs) | −4 | PL [17] | a (OHL) | +44 |
CLa | 3497 (OHC) | −5 | NL [16] | SR1,A (OHN) | −1 |
CGa | 3509 (OHC) | −4 | NL [16] | SR1,A (OHL) | +25 |
CGi | 3498 (OHas) | −3 | NG [16] | (OHN) | −1 |
CGi | 3452 (OHs) | −1 | NG [16] | (OHG) | +27 |
ML [3] | 1-Ia (OHM) | −22 | |||
ML [3] | 1-Ib (OHL) | −17 | |||
MG [3] | 0-Ia (OHM) | −25 | |||
MG [3] | 0-Ib (OHG) | −30 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lange, M.; Sennert, E.; Suhm, M.A. Attaching Onto or Inserting Into an Intramolecular Hydrogen Bond: Exploring and Controlling a Chirality-Dependent Dilemma for Alcohols. Symmetry 2022, 14, 357. https://doi.org/10.3390/sym14020357
Lange M, Sennert E, Suhm MA. Attaching Onto or Inserting Into an Intramolecular Hydrogen Bond: Exploring and Controlling a Chirality-Dependent Dilemma for Alcohols. Symmetry. 2022; 14(2):357. https://doi.org/10.3390/sym14020357
Chicago/Turabian StyleLange, Manuel, Elisabeth Sennert, and Martin A. Suhm. 2022. "Attaching Onto or Inserting Into an Intramolecular Hydrogen Bond: Exploring and Controlling a Chirality-Dependent Dilemma for Alcohols" Symmetry 14, no. 2: 357. https://doi.org/10.3390/sym14020357
APA StyleLange, M., Sennert, E., & Suhm, M. A. (2022). Attaching Onto or Inserting Into an Intramolecular Hydrogen Bond: Exploring and Controlling a Chirality-Dependent Dilemma for Alcohols. Symmetry, 14(2), 357. https://doi.org/10.3390/sym14020357