The Quasar CTD 135 Is Not a Compact Symmetric Object
Abstract
:1. Introduction
2. Observational Data
2.1. High-Frequency VLBI Imaging
2.2. Spectral Energy Distribution
2.3. Radio Variability
2.4. -Ray Variability
2.5. Infrared Colours and Variability
2.6. VLBI and Gaia Positions
3. Summary—The Classification of CTD 135 as a Blazar
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CSO | compact symmetric object |
EDR3 | Gaia Early Data Release 3 |
FSRQ | flat-spectrum radio quasar |
LAT | Large Area Telescope (of the Fermi satellite) |
mas | milliarcsecond |
MJD | Modified Julian Date |
MSO | medium-sized symmetric object |
MOJAVE | Monitoring of Jets in Active Galactic Nuclei with VLBA Experiments |
QPO | quasi-periodic oscillation |
SED | spectral energy distribution |
VLBA | Very Long Baseline Array |
VLBI | very long baseline interferometry |
WISE | Wide-field Infrared Survey Explorer |
References
- Wilkinson, P.N.; Polatidis, A.G.; Readhead, A.C.S.; Xu, W.; Pearson, T.J. Two-sided Ejection in Powerful Radio Sources: The Compact Symmetric Objects. Astrophys. J. Lett. 1994, 432, L87–L90. [Google Scholar] [CrossRef] [Green Version]
- Urry, C.M.; Padovani, P. Unified Schemes for Radio-Loud Active Galactic Nuclei. Publ. Astron. Soc. Pac. 1995, 107, 803. [Google Scholar] [CrossRef] [Green Version]
- Fanti, C.; Fanti, R.; Dallacasa, D.; Schilizzi, R.T.; Spencer, R.E.; Stanghellini, C. Are compact steep-spectrum sources young? Astron. Astrophys. 1995, 302, 317. [Google Scholar]
- Owsianik, I.; Conway, J.E. First detection of hotspot advance in a Compact Symmetric Object. Evidence for a class of very young extragalactic radio sources. Astron. Astrophys. 1998, 337, 69–79. [Google Scholar]
- Taylor, G.B.; Marr, J.M.; Pearson, T.J.; Readhead, A.C.S. Kinematic Age Estimates for Four Compact Symmetric Objects from the Pearson-Readhead Survey. Astrophys. J. 2000, 541, 112–119. [Google Scholar] [CrossRef] [Green Version]
- An, T.; Baan, W.A. The Dynamic Evolution of Young Extragalactic Radio Sources. Astrophys. J. 2012, 760, 77. [Google Scholar] [CrossRef] [Green Version]
- Abdollahi, S.; Acero, F.; Ackermann, M.; Ajello, M.; Atwood, W.B.; Axelsson, M.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; et al. Fermi Large Area Telescope Fourth Source Catalog. Astrophys. J. Suppl. Ser. 2020, 247, 33. [Google Scholar] [CrossRef] [Green Version]
- Stawarz, Ł.; Ostorero, L.; Begelman, M.C.; Moderski, R.; Kataoka, J.; Wagner, S. Evolution of and High-Energy Emission from GHz-Peaked Spectrum Sources. Astrophys. J. 2008, 680, 911–925. [Google Scholar] [CrossRef] [Green Version]
- Kino, M.; Ito, H.; Kawakatu, N.; Nagai, H. New prediction of extragalactic GeV γ-ray emission from radio lobes of young AGN jets. Mon. Not. R. Astron. Soc. 2009, 395, L43–L47. [Google Scholar] [CrossRef]
- Migliori, G.; Siemiginowska, A.; Kelly, B.C.; Stawarz, Ł.; Celotti, A.; Begelman, M.C. Jet Emission in Young Radio Sources: A Fermi Large Area Telescope Gamma-Ray View. Astrophys. J. 2014, 780, 165. [Google Scholar] [CrossRef] [Green Version]
- An, T.; Lao, B.Q.; Zhao, W.; Mohan, P.; Cheng, X.P.; Cui, Y.Z.; Zhang, Z.L. Parsec-scale jet properties of the gamma-ray quasar 3C 286. Mon. Not. R. Astron. Soc. 2017, 466, 952–959. [Google Scholar] [CrossRef] [Green Version]
- O’Dea, C.P.; Saikia, D.J. Compact steep-spectrum and peaked-spectrum radio sources. Astron. Astrophys. Rev. 2021, 29, 3. [Google Scholar] [CrossRef]
- Migliori, G.; Siemiginowska, A.; Sobolewska, M.; Loh, A.; Corbel, S.; Ostorero, L.; Stawarz, Ł. First Detection in Gamma-Rays of a Young Radio Galaxy: Fermi-LAT Observations of the Compact Symmetric Object PKS 1718-649. Astrophys. J. Lett. 2016, 821, L31. [Google Scholar] [CrossRef] [Green Version]
- Principe, G.; Migliori, G.; Johnson, T.J.; D’Ammando, F.; Giroletti, M.; Orienti, M.; Stanghellini, C.; Taylor, G.B.; Torresi, E.; Cheung, C.C. NGC 3894: A young radio galaxy seen by Fermi-LAT. Astron. Astrophys. 2020, 635, A185. [Google Scholar] [CrossRef] [Green Version]
- An, T.; Cui, Y.Z.; Gabányi, K.É.; Frey, S.; Baan, W.A.; Zhao, W. Radio properties of the γ-ray emitting CSO candidate 2234+282. Astron. Nachr. 2016, 337, 65. [Google Scholar] [CrossRef] [Green Version]
- Shaw, M.S.; Romani, R.W.; Cotter, G.; Healey, S.E.; Michelson, P.F.; Readhead, A.C.S.; Richards, J.L.; Max-Moerbeck, W.; King, O.G.; Potter, W.J. Spectroscopy of Broad-line Blazars from 1LAC. Astrophys. J. 2012, 748, 49. [Google Scholar] [CrossRef]
- Phillips, R.B.; Mutel, R.L. On symmetric structure in compact radio sources. Astron. Astrophys. 1982, 106, 21–24. [Google Scholar]
- Readhead, A.C.S.; Kiehlmann, S.; Lister, M.L.; O’Neill, S.; Pearson, T.J.; Sheldahl, E.; Siemiginowska, A.; Taylor, G.B.; Wilkinson, P.N. What defines a compact symmetric object? A carefully vetted sample of compact symmetric objects. Astron. Nachr. 2021, 342, 1185–1190. [Google Scholar] [CrossRef]
- Gaia Collaboration; Prusti, T.; de Bruijne, J.H.J.; Brown, A.G.A.; Vallenari, A.; Babusiaux, C.; Bailer-Jones, C.A.L.; Bastian, U.; Biermann, M.; Evans, D.W.; et al. The Gaia mission. Astron. Astrophys. 2016, 595, A1. [Google Scholar] [CrossRef] [Green Version]
- Kovalev, Y.Y.; Petrov, L.; Plavin, A.V. VLBI-Gaia offsets favor parsec-scale jet direction in active galactic nuclei. Astron. Astrophys. 2017, 598, L1. [Google Scholar] [CrossRef] [Green Version]
- Krezinger, M.; Frey, S.; An, T.; Jaiswal, S.; Zhang, Y. J1110+4817—A compact symmetric object candidate revisited. Mon. Not. R. Astron. Soc. 2020, 496, 1811–1818. [Google Scholar] [CrossRef]
- Gan, Y.Y.; Zhang, H.M.; Zhang, J.; Yang, X.; Yi, T.F.; Liang, Y.F.; Liang, E.W. Highly variable γ-ray emission of CTD 135 and implications for its compact symmetric structure. Res. Astron. Astrophys. 2021, 21, 201. [Google Scholar] [CrossRef]
- Lister, M.L.; Aller, M.F.; Aller, H.D.; Hodge, M.A.; Homan, D.C.; Kovalev, Y.Y.; Pushkarev, A.B.; Savolainen, T. MOJAVE. XV. VLBA 15 GHz Total Intensity and Polarization Maps of 437 Parsec-scale AGN Jets from 1996 to 2017. Astrophys. J. Suppl. Ser. 2018, 234, 12. [Google Scholar] [CrossRef]
- Lister, M.L.; Aller, M.F.; Aller, H.D.; Homan, D.C.; Kellermann, K.I.; Kovalev, Y.Y.; Pushkarev, A.B.; Richards, J.L.; Ros, E.; Savolainen, T. MOJAVE: XIII. Parsec-scale AGN Jet Kinematics Analysis Based on 19 years of VLBA Observations at 15 GHz. Astron. J. 2016, 152, 12. [Google Scholar] [CrossRef] [Green Version]
- Lister, M.L.; Homan, D.C.; Kellermann, K.I.; Kovalev, Y.Y.; Pushkarev, A.B.; Ros, E.; Savolainen, T. Monitoring Of Jets in Active Galactic Nuclei with VLBA Experiments. XVIII. Kinematics and Inner Jet Evolution of Bright Radio-loud Active Galaxies. Astrophys. J. 2021, 923, 30. [Google Scholar] [CrossRef]
- Hodge, M.A.; Lister, M.L.; Aller, M.F.; Aller, H.D.; Kovalev, Y.Y.; Pushkarev, A.B.; Savolainen, T. MOJAVE XVI: Multiepoch Linear Polarization Properties of Parsec-scale AGN Jet Cores. Astrophys. J. 2018, 862, 151. [Google Scholar] [CrossRef]
- Cheng, X.P.; An, T.; Frey, S.; Hong, X.Y.; He, X.; Kellermann, K.I.; Lister, M.L.; Lao, B.Q.; Li, X.F.; Mohan, P.; et al. Compact Bright Radio-loud AGNs. III. A Large VLBA Survey at 43 GHz. Astrophys. J. Suppl. Ser. 2020, 247, 57. [Google Scholar] [CrossRef]
- Shepherd, M.C.; Pearson, T.J.; Taylor, G.B. DIFMAP: An interactive program for synthesis imaging. Bull. Am. Astron. Soc. 1994, 26, 987–989. [Google Scholar]
- Kim, J.Y.; Trippe, S. VIMAP: An Interactive Program Providing Radio Spectral Index Maps of Active Galactic Nuclei. J. Korean Astron. Soc. 2014, 47, 195–199. [Google Scholar] [CrossRef] [Green Version]
- Readhead, A.C.S. Equipartition Brightness Temperature and the Inverse Compton Catastrophe. Astrophys. J. 1994, 426, 51. [Google Scholar] [CrossRef]
- Wright, E.L.; Eisenhardt, P.R.M.; Mainzer, A.K.; Ressler, M.E.; Cutri, R.M.; Jarrett, T.; Kirkpatrick, J.D.; Padgett, D.; McMillan, R.S.; Skrutskie, M.; et al. The Wide-field Infrared Survey Explorer (WISE): Mission Description and Initial On-orbit Performance. Astron. J. 2010, 140, 1868–1881. [Google Scholar] [CrossRef]
- Cutri, R.M.; Wright, E.L.; Conrow, T.; Fowler, J.W.; Eisenhardt, P.R.M.; Grillmair, C.; Kirkpatrick, J.D.; Masci, F.; McCallon, H.L.; Wheelock, S.L.; et al. VizieR Online Data Catalog: AllWISE Data Release (Updated Versio); VizieR Online Data Catalog II/328; IPAC/Caltech: Pasadena, CA, USA, 2021. [Google Scholar]
- Massaro, F.; D’Abrusco, R.; Ajello, M.; Grindlay, J.E.; Smith, H.A. Identification of the Infrared Non-thermal Emission in Blazars. Astrophys. J. Lett. 2011, 740, L48. [Google Scholar] [CrossRef] [Green Version]
- D’Abrusco, R.; Álvarez Crespo, N.; Massaro, F.; Campana, R.; Chavushyan, V.; Landoni, M.; La Franca, F.; Masetti, N.; Milisavljevic, D.; Paggi, A.; et al. Two New Catalogs of Blazar Candidates in the WISE Infrared Sky. Astrophys. J. Suppl. Ser. 2019, 242, 4. [Google Scholar] [CrossRef] [Green Version]
- Mainzer, A.; Bauer, J.; Cutri, R.M.; Grav, T.; Masiero, J.; Beck, R.; Clarkson, P.; Conrow, T.; Dailey, J.; Eisenhardt, P.; et al. Initial Performance of the NEOWISE Reactivation Mission. Astrophys. J. 2014, 792, 30. [Google Scholar] [CrossRef] [Green Version]
- Jiang, N.; Zhou, H.Y.; Ho, L.C.; Yuan, W.; Wang, T.G.; Dong, X.B.; Jiang, P.; Ji, T.; Tian, Q. Rapid Infrared Variability of Three Radio-loud Narrow-line Seyfert 1 Galaxies: A View from the Wide-field Infrared Survey Explorer. Astrophys. J. Lett. 2012, 759, L31. [Google Scholar] [CrossRef] [Green Version]
- Anjum, A.; Stalin, C.S.; Rakshit, S.; Gudennavar, S.B.; Durgapal, A. Mid-infrared variability of γ-ray emitting blazars. Mon. Not. R. Astron. Soc. 2020, 494, 764–774. [Google Scholar] [CrossRef] [Green Version]
- Charlot, P.; Jacobs, C.S.; Gordon, D.; Lambert, S.; de Witt, A.; Böhm, J.; Fey, A.L.; Heinkelmann, R.; Skurikhina, E.; Titov, O.; et al. The third realization of the International Celestial Reference Frame by very long baseline interferometry. Astron. Astrophys. 2020, 644, A159. [Google Scholar] [CrossRef]
- Gaia Collaboration; Brown, A.G.A.; Vallenari, A.; Prusti, T.; de Bruijne, J.H.J.; Babusiaux, C.; Biermann, M.; Creevey, O.L.; Evans, D.W.; Eyer, L.; et al. Gaia Early Data Release 3. Summary of the contents and survey properties. Astron. Astrophys. 2021, 649, A1. [Google Scholar] [CrossRef]
- Liu, N.; Lambert, S.B.; Charlot, P.; Zhu, Z.; Liu, J.C.; Jiang, N.; Wan, X.S.; Ding, C.Y. Comparison of multifrequency positions of extragalactic sources from ICRF3 and Gaia EDR3. Astron. Astrophys. 2021, 652, A87. [Google Scholar] [CrossRef]
- Schinzel, F.K.; Petrov, L.; Taylor, G.B.; Edwards, P.G. Radio Follow-up on All Unassociated Gamma-Ray Sources from the Third Fermi Large Area Telescope Source Catalog. Astrophys. J. 2017, 838, 139. [Google Scholar] [CrossRef] [Green Version]
- D’Ammando, F.; Orienti, M.; Giroletti, M.; Fermi Large Area Telescope Collaboration. The Fermi-LAT view of young radio sources. Astron. Nachr. 2016, 337, 59. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Frey, S.; Gabányi, K.É.; An, T. The Quasar CTD 135 Is Not a Compact Symmetric Object. Symmetry 2022, 14, 321. https://doi.org/10.3390/sym14020321
Frey S, Gabányi KÉ, An T. The Quasar CTD 135 Is Not a Compact Symmetric Object. Symmetry. 2022; 14(2):321. https://doi.org/10.3390/sym14020321
Chicago/Turabian StyleFrey, Sándor, Krisztina É. Gabányi, and Tao An. 2022. "The Quasar CTD 135 Is Not a Compact Symmetric Object" Symmetry 14, no. 2: 321. https://doi.org/10.3390/sym14020321
APA StyleFrey, S., Gabányi, K. É., & An, T. (2022). The Quasar CTD 135 Is Not a Compact Symmetric Object. Symmetry, 14(2), 321. https://doi.org/10.3390/sym14020321