Prospects for Heavy Neutral SUSY HIGGS Scalars in the hMSSM and Natural SUSY at LHC Upgrades
Abstract
:1. Introduction
An observable is natural if all independent contributions to are comparable to or less than .
- The superpotential parameter enters directly, leading to GeV. This implies that for heavy Higgs searches with , then SUSY decay modes of should typically be open. If these additional decay widths to SUSY particles are large, then the branching fraction to the discovery mode can be substantially reduced.
- For , then sets the heavy Higgs mass scale () while sets the mass scale for . Then naturalness requires [14]
2. The Natural SUSY Higgs Search Plane
2.1. Some Previous SUSY Higgs Benchmark Studies
2.2. Status of Run 2 LHC Searches
2.3. Some Previous LHC Upgrade SUSY Higgs Reach Studies
2.4. The Higgs Search Benchmark
- (1)
- The 2,3,4-extra parameter non-universal Higgs models NUHM2,3,4 which characterize what might be expected from dominant gravity-mediated SUSY breaking [9],
- (2)
- natural anomaly-mediated SUSY breaking [28] (nAMSB) wherein non-universal bulk soft terms allow for naturalness while maintaining GeV and
- (3)
3. Production and Decay of in the Scenario
3.1. H and A Production Cross Sections in the Scenario
3.2. H and A Branching Fractions in the Scenario
4. Signal from Back-to-Back via
5. Signal from Acollinear via
6. Reach of LHC3 and HL-LHC for
6.1. Exclusion Plane
6.2. Discovery Plane
6.3. Comparing Reach Results to Expectations from the String Landscape
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Carena, M.; Heinemeyer, S.; Stål, O.; Wagner, C.E.M.; Weiglein, G. MSSM Higgs Boson Searches at the LHC: Benchmark Scenarios after the Discovery of a Higgs-like Particle. Eur. Phys. J. C 2013, 73, 2552. [Google Scholar] [CrossRef]
- Djouadi, A.; Maiani, L.; Moreau, G.; Polosa, A.; Quevillon, J.; Riquer, V. The post-Higgs MSSM scenario: Habemus MSSM? Eur. Phys. J. C 2013, 73, 2650. [Google Scholar] [CrossRef] [Green Version]
- Djouadi, A.; Maiani, L.; Polosa, A.; Quevillon, J.; Riquer, V. Fully covering the MSSM Higgs sector at the LHC. JHEP 2015, 6, 168. [Google Scholar] [CrossRef] [Green Version]
- Bagnaschi, E.; Bahl, H.; Fuchs, E.; Hahn, T.; BHeinemeyer, S.; Liebler, S.; Patel, S.; Slavich, P.; BStefaniak, T.; Wagner, C.E.; et al. MSSM Higgs Boson Searches at the LHC: Benchmark Scenarios for Run 2 and Beyond. Eur. Phys. J. C 2019, 79, 617. [Google Scholar] [CrossRef] [Green Version]
- Bahl, H.; Bechtle, P.; Heinemeyer, S.; Liebler, S.; Stefaniak, T.; Weiglein, G. HL-LHC and ILC sensitivities in the hunt for heavy Higgs bosons. Eur. Phys. J. C 2020, 80, 916. [Google Scholar] [CrossRef]
- Baer, H.; Barger, V.; Martinez, D.; Salam, S. Fine-tuned vs. natural supersymmetry: What does the string landscape predict? J. High Energy Phys. 2022, 2022, 125. [Google Scholar] [CrossRef]
- Baer, H.; Barger, V.; Savoy, M. Upper bounds on sparticle masses from naturalness or how to disprove weak scale supersymmetry. Phys. Rev. D 2016, 93, 035016. [Google Scholar] [CrossRef] [Green Version]
- Baer, H.; Tata, X. Weak Scale Supersymmetry: From Superfields to Scattering Events; Cambridge University Press: Cambridge, MA, USA, 2006. [Google Scholar]
- Baer, H.; Barger, V.; Huang, P.; Mickelson, D.; Mustafayev, A.; Tata, X. Radiative natural supersymmetry: Reconciling electroweak fine-tuning and the Higgs boson mass. Phys. Rev. D 2013, 87, 115028. [Google Scholar] [CrossRef] [Green Version]
- Baer, H.; Barger, V.; Martinez, D. Comparison of SUSY spectra generators for natural SUSY and string landscape predictions. Eur. Phys. J. C 2022, 82, 172. [Google Scholar] [CrossRef]
- Dedes, A.; Slavich, P. Two loop corrections to radiative electroweak symmetry breaking in the MSSM. Nucl. Phys. B 2003, 657, 333–354. [Google Scholar] [CrossRef]
- Baer, H.; Barger, V.; Huang, P.; Mustafayev, A.; Tata, X. Radiative natural SUSY with a 125 GeV Higgs boson. Phys. Rev. Lett. 2012, 109, 161802. [Google Scholar] [CrossRef] [Green Version]
- Bae, K.J.; Baer, H.; Barger, V.; Sengupta, D. Revisiting the SUSY μ problem and its solutions in the LHC era. Phys. Rev. D 2019, 99, 115027. [Google Scholar] [CrossRef] [Green Version]
- Bae, K.J.; Baer, H.; Barger, V.; Mickelson, D.; Savoy, M. Implications of naturalness for the heavy Higgs bosons of supersymmetry. Phys. Rev. D 2014, 90, 075010. [Google Scholar] [CrossRef] [Green Version]
- Baer, H.; Barger, V.; Salam, S.; Sengupta, D.; Sinha, K. Status of weak scale supersymmetry after LHC Run 2 and ton-scale noble liquid WIMP searches. Eur. Phys. J. ST 2020, 229, 3085–3141. [Google Scholar] [CrossRef]
- Slavich, P.; Heinemeyer, S.; Bagnaschi, E.; Bahl, H.; Goodsell, M.; Haber, H.E.; Hahn, T.; Harlander, R.; Hollik, W.; Lee, G.; et al. Higgs-mass predictions in the MSSM and beyond. Eur. Phys. J. C 2021, 81, 450. [Google Scholar] [CrossRef]
- Atlas Collaboration; Aaboud, M.; Aad, G.; Abbott, B.; Abdallah, J.; Abdinov, O.; Abeloos, B.; Aben, R.; AbouZeid, O.S. Search for squarks and gluinos in final states with jets and missing transverse momentum using 139 fb-1 of √s =13 TeV pp collision data with the ATLAS detector. JHEP 2021, 2, 143. [Google Scholar] [CrossRef]
- The CMS Collaboration; Sirunyan, A.M.; Tumasyan, A.; Adam, W.; Ambrogi, F.; Bergauer, T.; Brandstetter, J.; Dragicevic, M.; Erö, J.; Valle, A.E.D.; et al. Search for supersymmetry in proton-proton collisions at 13 TeV in final states with jets and missing transverse momentum. JHEP 2019, 10, 244. [Google Scholar] [CrossRef] [Green Version]
- Branco, G.C.; Ferreira, P.M.; Lavoura, L.; Rebelo, M.N.; Sher, M.; Silva, J.P. Theory and phenomenology of two-Higgs-doublet models. Phys. Rep. 2012, 516, 1–102. [Google Scholar] [CrossRef] [Green Version]
- Gunion, J.F.; Haber, H.E. The CP conserving two Higgs doublet model: The Approach to the decoupling limit. Phys. Rev. D 2003, 67, 075019. [Google Scholar] [CrossRef] [Green Version]
- Carena, M.; Low, I.; Shah, N.R.; Wagner, C.E.M. Impersonating the Standard Model Higgs Boson: Alignment without Decoupling. JHEP 2014, 4, 15. [Google Scholar] [CrossRef]
- Arcadi, G.; Djouadi, A.; He, H.J.; Kneur, J.L.; Xiao, R.Q. The hMSSM with a Light Gaugino/Higgsino Sector:Implications for Collider and Astroparticle Physics. arXiv 2022, arXiv:2206.11881. [Google Scholar]
- Aad, G.; Abbott, B.; Abbott, D.C.; Abud, A.A.; Abeling, K.; Abhayasinghe, D.K.; Abidi, S.H.; AbouZeid, O.S.; Abraham, N.L.; Abramowicz, H.; et al. Search for heavy Higgs bosons decaying into two tau leptons with the ATLAS detector using pp collisions at √s=13 TeV. Phys. Rev. Lett. 2020, 125, 051801. [Google Scholar] [CrossRef]
- Barger, V.D.; Martin, A.D.; Phillips, R.J.N. Sharpening Up the W→ T b¯ Signal. Phys. Lett. B 1985, 151, 463–468. [Google Scholar] [CrossRef] [Green Version]
- CMS Collaboration. Search for additional neutral MSSM Higgs bosons in the ττ final state in proton-proton collisions at s= 13 TeV. JHEP 2018, 9, 7. [Google Scholar] [CrossRef] [Green Version]
- Cepeda, M.; Gori, S.; Ilten, P.; Kado, M.; Riva, F. Report from Working Group 2: Higgs Physics at the HL-LHC and HE-LHC. CERN Yellow Rep. Monogr. 2019, 7, 221–584. [Google Scholar] [CrossRef]
- Bahl, H.; Liebler, S.; Stefaniak, T. MSSM Higgs benchmark scenarios for Run 2 and beyond: The low tan β region. Eur. Phys. J. C 2019, 79, 279. [Google Scholar] [CrossRef] [Green Version]
- Baer, H.; Barger, V.; Sengupta, D. Anomaly mediated SUSY breaking model retrofitted for naturalness. Phys. Rev. D 2018, 98, 015039. [Google Scholar] [CrossRef] [Green Version]
- Baer, H.; Barger, V.; Serce, H.; Tata, X. Natural generalized mirage mediation. Phys. Rev. D 2016, 94, 115017. [Google Scholar] [CrossRef] [Green Version]
- Choi, K.; Falkowski, A.; Nilles, H.P.; Olechowski, M. Soft supersymmetry breaking in KKLT flux compactification. Nucl. Phys. B 2005, 718, 113–133. [Google Scholar] [CrossRef] [Green Version]
- Kachru, S.; Kallosh, R.; Linde, A.D.; Trivedi, S.P. De Sitter vacua in string theory. Phys. Rev. D 2003, 68, 046005. [Google Scholar] [CrossRef] [Green Version]
- Broeckel, I.; Cicoli, M.; Maharana, A.; Singh, K.; Sinha, K. Moduli Stabilisation and the Statistics of SUSY Breaking in the Landscape. JHEP 2020, 10, 15. [Google Scholar] [CrossRef]
- Ellis, J.R.; Olive, K.A.; Santoso, Y. The MSSM parameter space with nonuniversal Higgs masses. Phys. Lett. B 2002, 539, 107–118. [Google Scholar] [CrossRef] [Green Version]
- Baer, H.; Mustafayev, A.; Profumo, S.; Belyaev, A.; Tata, X. Direct, indirect and collider detection of neutralino dark matter in SUSY models with non-universal Higgs masses. JHEP 2005, 7, 65. [Google Scholar] [CrossRef] [Green Version]
- Baer, H.; Barger, V.; Sengupta, D. Landscape solution to the SUSY flavor and CP problems. Phys. Rev. Res. 2019, 1, 033179. [Google Scholar] [CrossRef] [Green Version]
- Paige, F.E.; Protopopescu, S.D.; Baer, H.; Tata, X. ISAJET 7.69: A Monte Carlo event generator for pp, anti-p p, and e+e- reactions. arXiv 2003, arXiv:hep-ph/0312045. [Google Scholar]
- Baer, H.; Chen, C.H.; Munroe, R.B.; Paige, F.E.; Tata, X. Multichannel search for minimal supergravity at pp¯ and e+e- colliders. Phys. Rev. D 1995, 51, 1046–1050. [Google Scholar] [CrossRef] [Green Version]
- Aalbers, J.; Akerib, D.S.; Akerlof, C.W.; Al Musalhi, A.K.; Alder, F.; Alqahtani, A.; Alsum, S.K.; Amarasinghe, C.S.; Ames, A.; Anderson, T.J.; et al. First Dark Matter Search Results from the LUX-ZEPLIN (LZ) Experiment. arXiv 2022, arXiv:2207.03764. [Google Scholar]
- Aprile, E.; Aalbers, J.; AAgosti, F.; Alfonsi, M.; AAlthueser, L.; Amaro, F.D.; Anthony, M.; Arneodo, F.; Baudis, L.; Bauermeister, B.; et al. Dark Matter Search Results from a One Ton-Year Exposure of XENON1T. Phys. Rev. Lett. 2018, 121, 111302. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cui, X.; AAbdukeri, A.; Chen, W.; Chen, X.; Chen, Y.; Dong, B.; AFang, D.; Au, C.; Giboni, K.; Giuliani, F.; et al. Dark Matter Results From 54-Ton-Day Exposure of PandaX-II Experiment. Phys. Rev. Lett. 2017, 119, 181302. [Google Scholar] [CrossRef] [Green Version]
- Baer, H.; Barger, V.; Serce, H. SUSY under siege from direct and indirect WIMP detection experiments. Phys. Rev. D 2016, 94, 115019. [Google Scholar] [CrossRef] [Green Version]
- Bae, K.J.; Baer, H.; Lessa, A.; Serce, H. Coupled Boltzmann computation of mixed axion neutralino dark matter in the SUSY DFSZ axion model. JCAP 2014, 10, 82. [Google Scholar] [CrossRef] [Green Version]
- Bae, K.J.; Baer, H.; Barger, V.; Deal, R.W. The cosmological moduli problem and naturalness. JHEP 2022, 2, 138. [Google Scholar] [CrossRef]
- Gelmini, G.B.; Gondolo, P. Neutralino with the right cold dark matter abundance in (almost) any supersymmetric model. Phys. Rev. D 2006, 74, 023510. [Google Scholar] [CrossRef]
- Bisset, M.A. Detection of Higgs Bosons of the Minimal Supersymmetric Standard Model at Hadron Supercolliders. Ph.D. Thesis, University of Hawaiʻi at Mānoa, Honolulu, HI, USA, 1995. [Google Scholar]
- Pierce, D.M.; Bagger, J.A.; Matchev, K.T.; Zhang, R.j. Precision corrections in the minimal supersymmetric standard model. Nucl. Phys. B 1997, 491, 3–67. [Google Scholar] [CrossRef] [Green Version]
- Carena, M.; Haber, H.E. Higgs Boson Theory and Phenomenology. Prog. Part. Nucl. Phys. 2003, 50, 63–152. [Google Scholar] [CrossRef] [Green Version]
- Bahl, H.; Hahn, T.; Heinemeyer, S.; Hollik, W.; Paßehr, S.; Rzehak, H.; Weiglein, G. Precision calculations in the MSSM Higgs-boson sector with FeynHiggs 2.14. Comput. Phys. Commun. 2020, 249, 107099. [Google Scholar] [CrossRef] [Green Version]
- Harlander, R.V.; Liebler, S.; Mantler, H. SusHi: A program for the calculation of Higgs production in gluon fusion and bottom-quark annihilation in the Standard Model and the MSSM. Comput. Phys. Commun. 2013, 184, 1605–1617. [Google Scholar] [CrossRef] [Green Version]
- Kunszt, Z.; Zwirner, F. Testing the Higgs sector of the minimal supersymmetric standard model at large hadron colliders. Nucl. Phys. B 1992, 385, 3–75. [Google Scholar] [CrossRef] [Green Version]
- Baer, H.; Dicus, D.; Drees, M.; Tata, X. Higgs Boson Signals in Superstring Inspired Models at Hadron Supercolliders. Phys. Rev. D 1987, 36, 1363. [Google Scholar] [CrossRef]
- Gunion, J.F.; Haber, H.E.; Drees, M.; Karatas, D.; Tata, X.; Godbole, R.; Tracas, N. Decays of Higgs Bosons to Neutralinos and Charginos in the Minimal Supersymmetric Model: Calculation and Phenomenology. Int. J. Mod. Phys. A 1987, 2, 1035. [Google Scholar] [CrossRef]
- Gunion, J.F.; Haber, H.E. Higgs Bosons in Supersymmetric Models. 3. Decays Into Neutralinos and Charginos. Nucl. Phys. B 1988, 307, 445. [Google Scholar] [CrossRef]
- Eriksson, D.; Rathsman, J.; Stal, O. 2HDMC: Two-Higgs-Doublet Model Calculator Physics and Manual. Comput. Phys. Commun. 2010, 181, 189–205. [Google Scholar] [CrossRef] [Green Version]
- Bae, K.J.; Baer, H.; Nagata, N.; Serce, H. Prospects for Higgs coupling measurements in SUSY with radiatively-driven naturalness. Phys. Rev. D 2015, 92, 035006. [Google Scholar] [CrossRef]
- Baer, H.; Barger, V.; Jain, R.; Kao, C.; Sengupta, D.; Tata, X. Detecting heavy Higgs bosons from natural SUSY at a 100 TeV hadron collider. Phys. Rev. D 2022, 105, 095039. [Google Scholar] [CrossRef]
- Baer, H.; Kraml, S.; Kulkarni, S. Yukawa-unified natural supersymmetry. JHEP 2012, 12, 66. [Google Scholar] [CrossRef] [Green Version]
- Sjostrand, T.; Mrenna, S.; Skands, P.Z. A Brief Introduction to PYTHIA 8.1. Comput. Phys. Commun. 2008, 178, 852–867. [Google Scholar] [CrossRef] [Green Version]
- de Favereau, J.; Delaere, C.; Demin, P.; Giammanco, A.; Lemaître, V.; Mertens, A.; Selvaggi, M. DELPHES 3, A modular framework for fast simulation of a generic collider experiment. JHEP 2014, 2, 57. [Google Scholar] [CrossRef] [Green Version]
- Read, A.L. Presentation of search results: The CLs technique. J. Phys. G 2002, 28, 2693. [Google Scholar] [CrossRef]
- Cowan, G.; Cranmer, K.; Gross, E.; Vitells, O. Asymptotic formulae for likelihood-based tests of new physics. Eur.Phys. J. C 2011, 71, 1554. [Google Scholar] [CrossRef] [Green Version]
- Douglas, M.R. Statistical analysis of the supersymmetry breaking scale. arXiv 2004, arXiv:hep-th/0405279. [Google Scholar]
- Agrawal, V.; Barr, S.M.; Donoghue, J.F.; Seckel, D. Anthropic considerations in multiple domain theories and the scale of electroweak symmetry breaking. Phys. Rev. Lett. 1998, 80, 1822–1825. [Google Scholar] [CrossRef] [Green Version]
- Baer, H.; Barger, V.; Salam, S.; Serce, H.; Sinha, K. LHC SUSY and WIMP dark matter searches confront the string theory landscape. JHEP 2019, 4, 43. [Google Scholar] [CrossRef]
Parameter | |
---|---|
5 TeV | |
1.2 TeV | |
−8 TeV | |
10 | |
250 GeV | |
2 TeV | |
2830 GeV | |
5440 GeV | |
5561 GeV | |
4822 GeV | |
1714 GeV | |
3915 GeV | |
3949 GeV | |
5287 GeV | |
4746 GeV | |
5110 GeV | |
5107 GeV | |
261.7 GeV | |
1020.6 GeV | |
248.1 GeV | |
259.2 GeV | |
541.0 GeV | |
1033.9 GeV | |
124.7 GeV | |
0.016 | |
(pb) | |
(pb) | |
(cm3/s) | |
22 |
Process | Back-to-Back (BtB) | Acollinear |
---|---|---|
0.197 | 0.024 | |
0.222 | 0.027 | |
0.140 | 0.017 | |
0.162 | 0.020 | |
23.33 | 0.586 | |
19.95 | 2.112 | |
0.663 | 0.069 | |
43.94 | 2.767 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baer, H.; Barger, V.; Tata, X.; Zhang, K. Prospects for Heavy Neutral SUSY HIGGS Scalars in the hMSSM and Natural SUSY at LHC Upgrades. Symmetry 2022, 14, 2061. https://doi.org/10.3390/sym14102061
Baer H, Barger V, Tata X, Zhang K. Prospects for Heavy Neutral SUSY HIGGS Scalars in the hMSSM and Natural SUSY at LHC Upgrades. Symmetry. 2022; 14(10):2061. https://doi.org/10.3390/sym14102061
Chicago/Turabian StyleBaer, Howard, Vernon Barger, Xerxes Tata, and Kairui Zhang. 2022. "Prospects for Heavy Neutral SUSY HIGGS Scalars in the hMSSM and Natural SUSY at LHC Upgrades" Symmetry 14, no. 10: 2061. https://doi.org/10.3390/sym14102061
APA StyleBaer, H., Barger, V., Tata, X., & Zhang, K. (2022). Prospects for Heavy Neutral SUSY HIGGS Scalars in the hMSSM and Natural SUSY at LHC Upgrades. Symmetry, 14(10), 2061. https://doi.org/10.3390/sym14102061