Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (92)

Search Parameters:
Keywords = Higgs bosons

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 532 KiB  
Article
g-Factor Isotopic Shifts: Theoretical Limits on New Physics Search
by Dmitry S. Akulov, Rinat R. Abdullin, Dmitry V. Chubukov, Dmitry A. Glazov and Andrey V. Volotka
Atoms 2025, 13(6), 52; https://doi.org/10.3390/atoms13060052 - 13 Jun 2025
Viewed by 621
Abstract
The isotopic shift of the bound-electron g factor in highly charged ions (HCI) provides a sensitive probe for testing physics beyond the Standard Model, particularly through interactions mediated by a hypothetical scalar boson. In this study, we analyze the sensitivity of this method [...] Read more.
The isotopic shift of the bound-electron g factor in highly charged ions (HCI) provides a sensitive probe for testing physics beyond the Standard Model, particularly through interactions mediated by a hypothetical scalar boson. In this study, we analyze the sensitivity of this method within the Higgs portal framework, focusing on the uncertainties introduced by quantum electrodynamics corrections, including finite nuclear size, nuclear recoil, and nuclear polarization effects. All calculations are performed for the ground-state 1s configuration of hydrogen-like HCI, where theoretical predictions are most accurate. Using selected isotope pairs (e.g., He4/6, Ne20/22, Ca40/48, Sn120/132, Th230/232), we demonstrate that the dominant source of uncertainty arises from finite nuclear size corrections, which currently limit the precision of new physics searches. Our results indicate that the sensitivity of this method decreases with increasing atomic number. These findings highlight the necessity of improved nuclear radius measurements and the development of alternative approaches, such as the special differences method, to enable virtually the detection of fifth-force interactions. Full article
(This article belongs to the Section Atomic, Molecular and Nuclear Spectroscopy and Collisions)
Show Figures

Figure 1

16 pages, 22205 KiB  
Article
Properties of Heavy Higgs Bosons and Dark Matter Under Current Experimental Limits in the μNMSSM
by Zhaoxia Heng, Xingjuan Li and Liangliang Shang
Universe 2025, 11(3), 103; https://doi.org/10.3390/universe11030103 - 20 Mar 2025
Cited by 3 | Viewed by 223
Abstract
Searches for new particles beyond the Standard Model (SM) are an important task for the Large Hadron Collider (LHC). In this paper, we investigate the properties of the heavy non-SM Higgs bosons in the μ-term extended Next-to-Minimal Supersymmetric Standard Model (μ [...] Read more.
Searches for new particles beyond the Standard Model (SM) are an important task for the Large Hadron Collider (LHC). In this paper, we investigate the properties of the heavy non-SM Higgs bosons in the μ-term extended Next-to-Minimal Supersymmetric Standard Model (μNMSSM). We scan the parameter space of the μNMSSM considering the basic constraints from Higgs data, dark matter (DM) relic density, and LHC searches for sparticles. And we also consider the constraints from the LZ2022 experiment and the muon anomaly constraint at the 2σ level. We find that the LZ2022 experiment has a strict constraint on the parameter space of the μNMSSM, and the limits from the DM-nucleon spin-independent (SI) and spin-dependent (SD) cross-sections are complementary. Then, we discuss the exotic decay modes of heavy Higgs bosons decaying into SM-like Higgs bosons. We find that for doublet-dominated Higgs h3 and A2, the main exotic decay channels are h3ZA1, h3h1h2, A2A1h1, and A2Zh2, and the branching ratio can reach to about 23%, 10%, 35%, and 10% respectively. Full article
(This article belongs to the Special Issue Search for New Physics Through Combined Approaches)
Show Figures

Figure 1

6 pages, 1598 KiB  
Article
Non-Resonant Di-Higgs Searches at the Large Hadron Collider with the CMS Experiment
by Simona Palluotto
Particles 2025, 8(1), 31; https://doi.org/10.3390/particles8010031 - 6 Mar 2025
Viewed by 644
Abstract
Investigating the production of Higgs boson pairs (HH) at the LHC provides critical insights into the self-interaction properties of the Higgs boson, representing an essential verification of the Standard Model and contributing to our understanding of the Higgs boson properties. This work highlights [...] Read more.
Investigating the production of Higgs boson pairs (HH) at the LHC provides critical insights into the self-interaction properties of the Higgs boson, representing an essential verification of the Standard Model and contributing to our understanding of the Higgs boson properties. This work highlights the latest findings from the CMS collaboration on HH production measurements. These searches include different final states and integrate data collected by the CMS experiment at a center-of-mass energy of 13 TeV. Full article
Show Figures

Figure 1

14 pages, 3424 KiB  
Article
Nonholomorphic Higgsino Mass Term Effects on Muon g − 2 and Dark Matter Relic Density in Flavor Symmetry-Based Minimal Supersymmetric Standard Model
by Sajid Israr, Mario E. Gómez and Muhammad Rehman
Particles 2025, 8(1), 30; https://doi.org/10.3390/particles8010030 - 6 Mar 2025
Cited by 1 | Viewed by 1388
Abstract
We investigate the phenomenological effects of the nonholomorphic (NH) higgsino mass term, μ, within the minimal supersymmetric standard model (MSSM) extended by a non-abelian flavor symmetry, referred to as the sNHSSM. This flavor symmetry enables a substantial reduction in the number [...] Read more.
We investigate the phenomenological effects of the nonholomorphic (NH) higgsino mass term, μ, within the minimal supersymmetric standard model (MSSM) extended by a non-abelian flavor symmetry, referred to as the sNHSSM. This flavor symmetry enables a substantial reduction in the number of free parameters inherent to the MSSM, streamlining them from a large set to just eight. Our study explores the interplay between cold dark matter (CDM) relic density (ΩCDMh2) and the anomalous magnetic moment of the muon, (g2)μ. We study correlations among the theoretical parameters that emerge from this interplay and are further constrained by experimental data such as the Higgs boson mass, B-physics observables, and the charge and color breaking minima constraints. Moreover, our findings reveal that incorporating the NH higgsino mass term opens up new regions of parameter space that were previously inaccessible. Full article
Show Figures

Figure 1

40 pages, 1382 KiB  
Review
Fractional Analytic QCD: The Recent Results
by Ilnur R. Gabdrakhmanov, Nikita A. Gramotkov, Anatoly V. Kotikov, Oleg V. Teryaev, Daria A. Volkova and Ivan A. Zemlyakov
Particles 2025, 8(1), 29; https://doi.org/10.3390/particles8010029 - 5 Mar 2025
Cited by 1 | Viewed by 1071
Abstract
In this work, we present an overview of the recent results, obtained in the framework of the fractional analytic QCD in the space-like (Euclidean) and time-like regions. The Higgs boson decays into a bottom–antibottom pair, and the polarized Bjorken sum rule is considered [...] Read more.
In this work, we present an overview of the recent results, obtained in the framework of the fractional analytic QCD in the space-like (Euclidean) and time-like regions. The Higgs boson decays into a bottom–antibottom pair, and the polarized Bjorken sum rule is considered as an application of the obtained results. Full article
Show Figures

Figure 1

10 pages, 846 KiB  
Article
Higgs Physics at the Muon Collider
by Luca Castelli
Particles 2025, 8(1), 28; https://doi.org/10.3390/particles8010028 - 5 Mar 2025
Viewed by 815
Abstract
A multi-TeV muon collider produces a significant amount of Higgs bosons allowing for precise measurements of its couplings to Standard Model fundamental particles. Moreover, Higgs boson pairs are produced with a relevant cross-section, allowing for the determination of the second term of the [...] Read more.
A multi-TeV muon collider produces a significant amount of Higgs bosons allowing for precise measurements of its couplings to Standard Model fundamental particles. Moreover, Higgs boson pairs are produced with a relevant cross-section, allowing for the determination of the second term of the Higgs potential by measuring the double Higgs production cross-section and therefore the trilinear self-coupling term. This contribution aims to give an overview of the Higgs measurement accuracies expected for the initial stage of the muon collider at s=3TeV with an integrated luminosity of 1ab1 and for the target center-of-mass energy at 10TeV with 10ab1 integrated luminosity. The results are obtained using the full detector simulations which include both physical and machine backgrounds. Full article
Show Figures

Figure 1

28 pages, 23407 KiB  
Article
Confronting the Broken Phase of the N2HDM with Higgs Data
by Maien Binjonaid
Particles 2025, 8(1), 10; https://doi.org/10.3390/particles8010010 - 3 Feb 2025
Viewed by 1154
Abstract
The broken phase of the next-to-two-Higgs-doublet model (N2HDM) constitutes an archetype of extended Higgs sectors. In the presence of a softly broken Z2 symmetry throughout the scalar and Yukawa sectors, as the additional gauge singlet field does not interact with fermions, the [...] Read more.
The broken phase of the next-to-two-Higgs-doublet model (N2HDM) constitutes an archetype of extended Higgs sectors. In the presence of a softly broken Z2 symmetry throughout the scalar and Yukawa sectors, as the additional gauge singlet field does not interact with fermions, the model admits four variants of Yukawa interactions between the doublets and Standard Model fermions. We confront each type with experimental Higgs data, especially those from CMS and ATLAS detectors at the LHC. Interfacing the models with the state-of-the-art package HiggsTools, we perform a statistical χ2 analysis to determine the best-fit points and exclusion limits at the 95% and 68% C.L.’s and identify SM-like Higgs measurements that affect each type the most. We further analyze the exclusion bounds on the additional Higgs bosons at the 95% C.L., paying special attention to searches for hypothetical non-SM Higgs resonances decaying into a pair of bosons or fermions. We show regions where the additional Higgs bosons do not satisfy the narrow-width approximation utilized in most experimental searches. Full article
Show Figures

Figure 1

23 pages, 909 KiB  
Article
Extending the QMM Framework to the Strong and Weak Interactions
by Florian Neukart, Eike Marx and Valerii Vinokur
Entropy 2025, 27(2), 153; https://doi.org/10.3390/e27020153 - 2 Feb 2025
Cited by 1 | Viewed by 1092
Abstract
We extend the Quantum Memory Matrix (QMM) framework, originally developed to reconcile quantum mechanics and general relativity by treating space–time as a dynamic information reservoir, to incorporate the full suite of Standard Model gauge interactions. In this discretized, Planck-scale formulation, each space–time cell [...] Read more.
We extend the Quantum Memory Matrix (QMM) framework, originally developed to reconcile quantum mechanics and general relativity by treating space–time as a dynamic information reservoir, to incorporate the full suite of Standard Model gauge interactions. In this discretized, Planck-scale formulation, each space–time cell possesses a finite-dimensional Hilbert space that acts as a local memory, or quantum imprint, for matter and gauge field configurations. We focus on embedding non-Abelian SU(3)c (quantum chromodynamics) and SU(2)L × U(1)Y (electroweak interactions) into QMM by constructing gauge-invariant imprint operators for quarks, gluons, electroweak bosons, and the Higgs mechanism. This unified approach naturally enforces unitarity by allowing black hole horizons, or any high-curvature region, to store and later retrieve quantum information about color and electroweak charges, thereby preserving subtle non-thermal correlations in evaporation processes. Moreover, the discretized nature of QMM imposes a Planck-scale cutoff, potentially taming UV divergences and modifying running couplings at trans-Planckian energies. We outline major challenges, such as the precise formulation of non-Abelian imprint operators and the integration of QMM with loop quantum gravity, as well as possible observational strategies—ranging from rare decay channels to primordial black hole evaporation spectra—that could provide indirect probes of this discrete, memory-based view of quantum gravity and the Standard Model. Full article
(This article belongs to the Section Astrophysics, Cosmology, and Black Holes)
Show Figures

Figure 1

11 pages, 289 KiB  
Article
Precision Higgs Constraints in U(1) Extensions of the Standard Model with a Light Z′-Boson
by Zoltán Péli and Zoltán Trócsányi
Universe 2025, 11(1), 12; https://doi.org/10.3390/universe11010012 - 3 Jan 2025
Viewed by 803
Abstract
Anomaly-free U(1) extensions of the standard model (SM) predict a new neutral gauge boson Z. When Z obtains its mass from the spontaneous breaking of the new U(1) symmetry by a new complex scalar [...] Read more.
Anomaly-free U(1) extensions of the standard model (SM) predict a new neutral gauge boson Z. When Z obtains its mass from the spontaneous breaking of the new U(1) symmetry by a new complex scalar field, the model also predicts a second real scalar s, and the search for the new scalar and the search for the new gauge boson become intertwined. We present the computation of production cross sections and decay widths of such a scalar s in models with a light Z boson when the decay hZZ may have a sizeable branching ratio. We show how the Higgs signal strength measurement in this channel can provide stricter exclusion bounds on the parameters of the model than those obtained from the total signal strength for Higgs boson production. Full article
Show Figures

Figure 1

37 pages, 2139 KiB  
Article
A Review of the Multiple-Readout Concept and Its Application in an Integrally Active Calorimeter
by Corrado Gatto, Vito Di Benedetto and Anna Mazzacane
Instruments 2024, 8(4), 49; https://doi.org/10.3390/instruments8040049 - 14 Nov 2024
Viewed by 2284
Abstract
A comprehensive multi-jet physics program is anticipated for experiments at future colliders. Key physics processes necessitate detectors that can distinguish signals from W and Z bosons and the Higgs boson. Typical examples include channels with W+W or  [...] Read more.
A comprehensive multi-jet physics program is anticipated for experiments at future colliders. Key physics processes necessitate detectors that can distinguish signals from W and Z bosons and the Higgs boson. Typical examples include channels with W+W or ZoZo pairs and processes involving new physics in those cases where neutral particles must be disentangled from charged ones due to the presence of W or Z bosons in their final states. Such a physics program demands calorimetric energy resolution at or beyond the limits of traditional calorimetric techniques. Multiple-readout calorimetry, which aims to reduce fluctuations in energy measurements of hadronic showers, is a promising approach. The first part of this article reviews dual- and triple-readout calorimetry within a mathematical framework describing the underlying compensating mechanism. The second part proposes a potential implementation using an integrally active and total absorption detector. This model serves as the basis for several Monte Carlo studies, illustrating how the response of a multiple-readout calorimeter depends on construction parameters. Among the layouts considered, one configuration operating in triple-readout mode shows the potential to achieve an energy resolution approaching 20%/E. Full article
Show Figures

Figure 1

39 pages, 18398 KiB  
Review
Higgs Boson Searches at the LHC Beyond the Standard Model
by André Sopczak
Physics 2024, 6(3), 1132-1170; https://doi.org/10.3390/physics6030071 - 19 Sep 2024
Viewed by 2515
Abstract
The latest results of Higgs boson searches beyond the Standard Model from the ATLAS and CMS experiments are reviewed. This includes searches for additional neutral, charged, and double charged Higgs-like bosons, searches for dark matter produced in association with a Higgs boson, and [...] Read more.
The latest results of Higgs boson searches beyond the Standard Model from the ATLAS and CMS experiments are reviewed. This includes searches for additional neutral, charged, and double charged Higgs-like bosons, searches for dark matter produced in association with a Higgs boson, and searches for new physics in Higgs boson production and decay processes. Interpretations are given within the hMSSM, a special parameterization of the Minimal Supersymmetric extension of the Standard Model, in which the mass of the lightest Higgs boson is set to the value of 125 GeV measured at the LHC. Full article
(This article belongs to the Special Issue Precision Physics and Fundamental Physical Constants (FFK 2023))
Show Figures

Figure 1

50 pages, 3558 KiB  
Article
Dark Atoms of Nuclear Interacting Dark Matter
by Vitaly A. Beylin, Timur E. Bikbaev, Maxim Yu. Khlopov, Andrey G. Mayorov and Danila O. Sopin
Universe 2024, 10(9), 368; https://doi.org/10.3390/universe10090368 - 11 Sep 2024
Cited by 3 | Viewed by 1659
Abstract
The lack of positive evidence for Weakly Interacting Massive Particles (WIMPs) as well as the lack of discovery of supersymmetric (SUSY) particles at the LHC may appeal to a non-supersymmetric solution for the Standard Model problem of the Higgs boson mass divergence, the [...] Read more.
The lack of positive evidence for Weakly Interacting Massive Particles (WIMPs) as well as the lack of discovery of supersymmetric (SUSY) particles at the LHC may appeal to a non-supersymmetric solution for the Standard Model problem of the Higgs boson mass divergence, the origin of the electroweak energy scale and the physical nature of the cosmological dark matter in the approach of composite Higgs boson. If the Higgs boson consists of charged constituents, their binding can lead to stable particles with electroweak charges. Such particles can take part in sphaleron transitions in the early Universe, which balance their excess with baryon asymmetry. Constraints on exotic charged species leave only stable particles with charge 2n possible, which can bind with n nuclei of primordial helium in neutral dark atoms. The predicted ratio of densities of dark atoms and baryonic matter determines the condition for dark atoms to dominate in the cosmological dark matter. To satisfy this condition of the dark-atom nature of the observed dark matter, the mass of new stable 2n charged particles should be within reach of the LHC for their searches. We discuss the possibilities of dark-atom binding in multi-atom systems and present state-of-the-art quantum mechanical descriptions of dark-atom interactions with nuclei. Annual modulations in such interactions with nuclei of underground detectors can explain the positive results of DAMA/NaI and DAMA/LIBRA experiments and the negative results of the underground WIMP searches. Full article
Show Figures

Figure 1

12 pages, 1462 KiB  
Article
Searching for Extra Higgs Boson Effects in General Two-Higgs Doublet Model (2HDM)
by George Wei-Shu Hou
Symmetry 2024, 16(8), 1013; https://doi.org/10.3390/sym16081013 - 8 Aug 2024
Viewed by 1264
Abstract
Starting from our current impasse at the LHC, of observing an SM-like Higgs boson but nothing beyond, we focus on the General 2HDM (G2HDM), which possesses extra sets of Yukawa couplings as a likely Next New Physics. After expounding its merits, we [...] Read more.
Starting from our current impasse at the LHC, of observing an SM-like Higgs boson but nothing beyond, we focus on the General 2HDM (G2HDM), which possesses extra sets of Yukawa couplings as a likely Next New Physics. After expounding its merits, we explore our “Decadal Mission of the New Higgs/Flavor era”, reporting on an Academic Summit Project (ASP) in Taiwan that conducts a four-pronged pursuit of G2HDM: CMS and Belle II searches, a lattice study of first-order electroweak phase transition, and phenomenology. The ASP Midterm report is based on ATLAS and CMS searches for cgtH/tAttc¯, where H and A are exotic neutral scalar bosons, and now progressing onto a post-Midterm cgbH+btb¯ search, where H+ is the exotic charged Higgs boson, plus a few other searches at the LHC, all with discovery potential. We then discuss a plethora of flavor observables that can be explored by CMS and Belle II, as well as other dedicated experiments. Finally, we elucidate why G2HDM, providing myriad new dynamics, can remain well hidden so far. This brief report summarizes the progress of the ASP of the NSTC of Taiwan. Full article
(This article belongs to the Special Issue Feature Papers in 'Physics' Section 2024)
Show Figures

Figure 1

8 pages, 241 KiB  
Article
Cosmological Mass of the Photon Related to Stueckelberg and Higgs Mechanisms
by Lorenzo Gallerani Resca
Particles 2024, 7(2), 289-296; https://doi.org/10.3390/particles7020017 - 29 Mar 2024
Viewed by 2025
Abstract
I consider the electro-weak (EW) masses and interactions generated by photons using vacuum expectation values of Stueckelberg and Higgs fields. I provide a prescription to relate their parametric values to a cosmological range derived from the fundamental Heisenberg uncertainty principle and the Einstein–de [...] Read more.
I consider the electro-weak (EW) masses and interactions generated by photons using vacuum expectation values of Stueckelberg and Higgs fields. I provide a prescription to relate their parametric values to a cosmological range derived from the fundamental Heisenberg uncertainty principle and the Einstein–de Sitter cosmological constant and horizon. This yields qualitative connections between microscopic ranges acquired by W± or Z0 gauge Bosons and the cosmological scale and minimal mass acquired by g-photons. I apply this procedure to an established Stueckelberg–Higgs mechanism, while I consider a similar procedure for a pair of Higgs fields that may spontaneously break all U(1) × SU(2) gauge invariances. My estimates of photon masses and their additional parity-breaking interactions with leptons and neutrinos may be detectable in suitable accelerator experiments. Their effects may also be observable astronomically through massive g-photon condensates that may contribute to dark matter and dark energy. Full article
(This article belongs to the Special Issue Feature Papers for Particles 2023)
16 pages, 1048 KiB  
Article
On the Breaking of the U(1) Peccei–Quinn Symmetry and Its Implications for Neutrino and Dark Matter Physics
by Osvaldo Civitarese
Symmetry 2024, 16(3), 364; https://doi.org/10.3390/sym16030364 - 18 Mar 2024
Cited by 1 | Viewed by 1604
Abstract
The Standard Model of electroweak interactions is based on the fundamental SU(2)weak × U(1)elect representation. It assumes massless neutrinos and purely left-handed massive W± and Z0 bosons to which one should add the massless photon. The existence, [...] Read more.
The Standard Model of electroweak interactions is based on the fundamental SU(2)weak × U(1)elect representation. It assumes massless neutrinos and purely left-handed massive W± and Z0 bosons to which one should add the massless photon. The existence, verified experimentally, of neutrino oscillations poses a challenge to this scheme, since the oscillations take place between at least three massive neutrinos belonging to a mass hierarchy still to be determined. One should also take into account the possible existence of sterile neutrino species. In a somehow different context, the fundamental nature of the strong interaction component of the forces in nature is described by the, until now, extremely successful representation based on the SU(3)strong group which, together with the confining rule, give a description of massive hadrons in terms of quarks and gluons. To this is added the minimal U(1) Higgs group to give mass to the otherwise massless generators. This representation may also be challenged by the existence of both dark matter and dark energy, of still unknown composition. In this note, we shall discuss a possible connection between these questions, namely the need to extend the SU(3)strong × SU(2)weak × U(1)elect to account for massive neutrinos and dark matter. The main point of it is related to the role of axions, as postulated by Roberto Peccei and Helen Quinn. The existence of neutral pseudo-scalar bosons, that is, the axions, has been proposed long ago by Peccei and Quinn to explain the suppression of the electric dipole moment of the neutron. The associated U(1)PQ symmetry breaks at very high energy, and it guarantees that the interaction of other particles with axions is very weak. We shall review the axion properties in connection with the apparently different contexts of neutrino and dark matter physics. Full article
(This article belongs to the Special Issue Role of Symmetries in Nuclear Physics)
Show Figures

Figure 1

Back to TopTop