Hidden Dynamical Symmetry and Quantum Thermodynamics from the First Principles: Quantized Small Environment
Abstract
:1. Introduction
2. Formulation of the Problem
2.1. Hidden Dynamical Symmetry and General Solution of the Wave Function of a JS
2.2. Determination of the Asymptotic Conditions of the Problem
3. Fields Equations and Formulation of Their Initial-Boundary Conditions
3.1. Distribution of Fields in the Limit of Statistical Equilibrium
3.2. Neumann Initial-Boundary Conditions
4. Features of the Numerical Calculation of the Distributions of Environmental Fields
5. Definition of Thermodynamic Potentials and Mean Values of Statistical Parameters
6. Formation of a Quantized Small Environment under the Influence of QS
7. Entropy of the Ground State
7.1. The Von Neumann Entropy
7.2. Entropy of a Quantum State Taking into Account Self-Organization of a JS
8. Energy Levels and Their Occupancy after Relaxation in TB
9. Quantum Entanglement of States Caused by Random Environment
10. Transitions Probabilities between Different Asymptotic Quantum States
11. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Davtyan, O.K. Theory of Gravitational-Inertial Field of Universe. IV. The Universe and the Microcosm. Ann. Phys. 1979, 36, 227. [Google Scholar] [CrossRef]
- Davtyan, O.K.; Karamyan, G.G. Theories of Inertial Field’s and of Quantum Correlations. Acad. Sci. ARM 1987, 137. [Google Scholar]
- Milonni, P.W. The Quantum Vacuum: An Introduction to Quantum Electrodynamics. Am. J. Phys. 1994, 62, 1154. [Google Scholar] [CrossRef]
- Gevorkyan, A.S. Exactly constructing model of quantum mechanics with random environment. Phys. Atom. Nucl. 2010, 73, 311–319. [Google Scholar] [CrossRef]
- Gevorkyan, A.S. Nonrelativistic Quantum Mechanics with Fundamental Environment. Found. Phys. 2011, 41, 509–515. [Google Scholar] [CrossRef] [Green Version]
- Gevorkyan, A.S. Quantum Vacuum: The Structure of Empty Space-Time and Quintessence with Gauge Symmetry Group SU(2)xU(1). Particles 2019, 2, 281–308. [Google Scholar] [CrossRef] [Green Version]
- Gemmer, J.; Michel, J.M.; Mahler, G. Quantum Thermodynamics: Emergence of Thermodynamic Behavior Within Composite Quantum Systems (Second Edition). In Lecture Notes in Physics; Springer: Heidelberg, Germany, 2009. [Google Scholar]
- Borowski, P.; Gemmer, J.; Mahler, G. Relaxation into equilibrium under pure Schrödinger dynamics. Eur. Phys. J. B 2003, 35, 255–259. [Google Scholar] [CrossRef] [Green Version]
- Allahverdyan, A.E.; Balian, R.; Nieuwenhuizen, T.M. Understanding quantum measurement from the solution of dynamical models. Phys. Rep. 2013, 525, 1–201. [Google Scholar] [CrossRef] [Green Version]
- Davies, E.B. Quantum Theory of Open Systems; Academic Press: London, UK; New York, NY, USA, 1976. [Google Scholar]
- Exner, P. Open Quantum Systems and Feynman Integrals; Fundamental Theories of Physics Book Series; Springer: Dordrecht, The Netherlands, 1985; Volume 6. [Google Scholar]
- Marquardt, F.; Püttmann, A. Introduction to dissipation and decoherence in quantum systems. arXiv 2008, arXiv:0809.4403v1. [Google Scholar]
- Zurek, W.H. Decoherence from spin environments. Rev. Mod. Phys. 2003, 75, 715. [Google Scholar] [CrossRef] [Green Version]
- Schlosshauer, M.A. Decoherence and the quantum-to-classical transition. In The Frontiers Series; Springer: Berlin/Heidelberg, Germany, 2007. [Google Scholar]
- Zurek, W.H. Decoherence, einselection, and the quantum origins of the classical. Phys. Rev. Lett. 2002, 88, 715. [Google Scholar] [CrossRef] [Green Version]
- Joshi, C.; Hutter, A.; Zimmer, F.; Jonson, M.; Andersson, E.; Öhberg, P. Quantum entanglement of nanocantilevers. Phys. Rev. B 2010, 82, 043846. [Google Scholar] [CrossRef] [Green Version]
- Dunningham, J.A.; Palge, V.; Vedral, V. Entanglement and nonlocality of a single relativistic particle. Phys. Rev. A 2009, 80, 044302. [Google Scholar] [CrossRef] [Green Version]
- Breuer, H.P.; Petruccione, F. The Theory of Open Quantum Systems; Oxford University Press: Oxford, UK, 2002. [Google Scholar]
- Lidar, D.A. Lecture Notes on the Theory of Open Quantum Systems. arXiv 2020, arXiv:1902.00967v2. [Google Scholar]
- Nielsen, M.A.; Chuang, I.L. Quantum Computation and Quantum Information; Cambridge University Press: New York, NY, USA, 2010; 704p. [Google Scholar]
- Popescu, S.; Shor, A.J.; Winter, A. The foundations of statistical mechanics from entanglement: Individual states vs. averages. Nat. Phys. 2006, 2, 754–758. [Google Scholar] [CrossRef] [Green Version]
- Barnes, G.L.; Kellman, M.E. Time Dependent Quantum Thermodynamics of a Coupled Quantum Oscillator System in a Small Thermal Environment. J. Chem. Phys. 2013, 139, 2014108. [Google Scholar] [CrossRef] [Green Version]
- Baź, A.N.; Zeĺdovich, Y.B.; Perelomov, A.M. Scattering Reactions and Decays in Nonrelativistic Quantum Mechanics; Nauka: Moscow, Russia, 1971. (In Russian) [Google Scholar]
- Gevorkyan, A.S.; Udalov, A.A. Exactly solvable models of quantum mechanics including fluctuations in the framework of representation of the wave function by random process. arXiv 2000, arXiv:quant-ph/0007108v1. [Google Scholar]
- Feynman, R.P.; Vernon, F.L. The Theory of a General Quantum System Interacting with a Linear Dissipative System. Ann. Phys. 2000, 281, 547–607. [Google Scholar] [CrossRef] [Green Version]
- Dekker, H. Classical and quantum mechanics of the damped harmonic oscillator. Phys. Rep. 1981, 80, 1–110. [Google Scholar] [CrossRef]
- Caldeira, A.O.; Leggett, A.J. Path integral approach to quantum Brownian motion. Phys. A 1983, 121, 587–616. [Google Scholar] [CrossRef]
- Joos, E.; Zeh, H.D. The emergence of classical properties through interaction with the environment. Z. Phys. B 1985, 59, 223–243. [Google Scholar] [CrossRef]
- Paz, J.P.; Zurek, W.H. Environment-induced decoherence, classicality, and consistency of quantum histories. Phys. Rev. D 1993, 48, 2728. [Google Scholar] [CrossRef] [Green Version]
- Unruh, W.G.; Zurek, W.H. Reduction of a wave packet in quantum Brownian motion. Phys. Rev. 1989, 40, 1071. [Google Scholar] [CrossRef] [Green Version]
- Zurek, W.H. Decoherence, chaos, quantum-classical correspondence, and the algorithmic arrow of time. Phys. Scr. 1998, 76, 186. [Google Scholar] [CrossRef] [Green Version]
- Presilla, C.; Onofrio, R.; Patriarca, M. Classical and quantum measurements of position. J. Phys. A Math. Gen. 1997, 30, 7385–7411. [Google Scholar] [CrossRef]
- Ibe, O.J. Fundamentals of Applied Probability and Random Processes, 2nd ed.; Academic Press: Cambridge, MA, USA, 2014; 431p. [Google Scholar]
- Lifshitz, I.M.; Gredeskul, S.A.; Pastur, L.P. Introduction to the Theory of Disordered Systems; Wiley: New York, NY, USA, 1987. [Google Scholar]
- Gardiner, C.W. Handbook of Stochastic Methods for Physics, Chemistry and Natural Sciences; Springer: Berlin, Germany; New York, NY, USA; Tokyo, Japan, 1985. [Google Scholar]
- Fletcher, C.A.J. Computational Techniques for Fluid Dynamics 1, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 1991; 455p. [Google Scholar]
- von Neumann, J. Mathematical Foundations of Quantum Mechanics; Princeton University Press: Princeton, NJ, USA, 1955. [Google Scholar]
- Arfken, G. Hermitian (Self-Adjoint) Operators. In Mathematical Methods for Physicists, 3rd ed.; Academic Press: Orlando, FL, USA, 1985; pp. 504–506, 510–516. [Google Scholar]
- Moiseyev, N. Non-Hermitian Quantum Mechanics; Cambridge University Press: Cambridge, UK, 2011. [Google Scholar]
- Bender, C.M. Making Sense of Non-Hermitian Hamiltonians. Rep. Progress Phys. 2007, 70, 947–1018. [Google Scholar] [CrossRef] [Green Version]
- Bogdanov, A.V.; Gevorkyan, A.S.; Grigoryan, A.G. Random Motion of Quantum Harmonic Oscillator. Thermodynamics of Nonrelativistic Vacuum. AMS/IP Stud. Adv. Math. 1999, 13, 81–111. [Google Scholar]
- Opatrný, T.; Scully, M.O. Enhancing Otto-mobile efficiency via addition of a quantum Carnot cycle. Fortschr. Phys. 2002, 50, 657. [Google Scholar] [CrossRef]
- Cápek, V. Zeroth and second laws of thermodynamics simultaneously questioned in the quantum microworld. Eur. Phys. J. 2002, 25, 101–113. [Google Scholar] [CrossRef]
Gaussian Distribution | |||||||
---|---|---|---|---|---|---|---|
1.0 | 10 | 1.0954 | 0.025 | ||||
1.0 | −10 | 0.8944 | 0.025 |
Gaussian Distribution | |||||||
---|---|---|---|---|---|---|---|
1.0 | 2.5 | 10 | 1.0954 | 2× | 0.025 | ||
1.0 | 2.5 | −10 | 0.8944 | 2× | 0.025 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gevorkyan, A.S.; Bogdanov, A.V.; Mareev, V.V. Hidden Dynamical Symmetry and Quantum Thermodynamics from the First Principles: Quantized Small Environment. Symmetry 2021, 13, 1546. https://doi.org/10.3390/sym13081546
Gevorkyan AS, Bogdanov AV, Mareev VV. Hidden Dynamical Symmetry and Quantum Thermodynamics from the First Principles: Quantized Small Environment. Symmetry. 2021; 13(8):1546. https://doi.org/10.3390/sym13081546
Chicago/Turabian StyleGevorkyan, Ashot S., Alexander V. Bogdanov, and Vladimir V. Mareev. 2021. "Hidden Dynamical Symmetry and Quantum Thermodynamics from the First Principles: Quantized Small Environment" Symmetry 13, no. 8: 1546. https://doi.org/10.3390/sym13081546
APA StyleGevorkyan, A. S., Bogdanov, A. V., & Mareev, V. V. (2021). Hidden Dynamical Symmetry and Quantum Thermodynamics from the First Principles: Quantized Small Environment. Symmetry, 13(8), 1546. https://doi.org/10.3390/sym13081546