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Abstract: Evolution of a self-consistent joint system (JS), i.e., a quantum system (QS) + thermal bath
(TB), is considered within the framework of the Langevin–Schrödinger (L-Sch) type equation. As
a tested QS, we considered two linearly coupled quantum oscillators that interact with TB. The
influence of TB on QS is described by the white noise type autocorrelation function. Using the
reference differential equation, the original L-Sch equation is reduced to an autonomous form on a
random space–time continuum, which reflects the fact of the existence of a hidden symmetry of JS. It
is proven that, as a result of JS relaxation, a two-dimensional quantized small environment is formed,
which is an integral part of QS. The possibility of constructing quantum thermodynamics from the
first principles of non-Hermitian quantum mechanics without using any additional axioms has been
proven. A numerical algorithm has been developed for modeling various properties and parameters
of the QS and its environment.

Keywords: open quantum system; Langevin–Schrödinger equation; non-Hermitian quantum me-
chanics; functional integral representation; small quantized environment; Bell states; quantum
thermodynamics; numerical simulation of the 2D Fokker–Planck equation

PACS: 03.65.-w; 03.65.Ud; 03.65.Ta; 05.30-d; 05.20-y

1. Introduction

When we try to approach the study of a quantum system (QS) strictly and consistently,
it becomes obvious that its isolation from the environment is an almost non-realizable task.
Note that even if we assume that it is possible to exclude the interaction of QS with the
environment, taking into account the influence of quantum fluctuations of vacuum makes
the QS an open system in any case [1–6]. In other words, a full description of QS also
requires the inclusion of its environment, which is essentially the whole universe. Thus,
the fact that any QS is in a certain sense an open system means that in reality no quantum
state can be a pure state.

In recent years, issues related to taking into account the influence of the environment
on the properties of a quantum system have become the subject of increased interest in con-
nection with the importance of solving a number of fundamental and applied problems of
science and technology. Recall that the solution of such problems can stimulate the further
development of quantum foundations [7,8], discover new possibilities of quantum measure-
ments [9], allow controlling of the processes of dissipation and decoherence [10–13], clarify
the question of how the classical properties forms from the quantum world [14], to better
understand the nature of quantum correlations and quantum discord [15], the peculiarities
of the entanglement at the Bose condensation [16,17], etc.

As a rule, when we speak about the environment, we usually mean a large system
(thermostat or thermal bath (TB)), which is characterized by a finite temperature and distri-
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butions of various physical parameters in a state of thermodynamical equilibrium. Recall
that the theory of open quantum systems [18,19], which is the basis of almost all modern
studies in the field of quantum mechanics and its applications, takes into account the
influence of the thermostat on QS, while the effect of QS on the thermostat is not taken
into account. This assumption underlying the theory of open QS is justified in many cases.
Nevertheless, there are also many cases when the fact of the openness of quantum systems
is not simply impossible to neglect, but, on the contrary, must be taken into account with all
mathematical rigor. Note that this is especially relevant in the field of quantum information
processes, the advantage of which is obvious in comparison with classical information
processing [20]. Mathematically, a more rigorous and consistent formulation of open QS is
very important for studying the relaxation of not only QS, but also the thermostat itself in
order to avoid the loss of information inherent in open systems. In other words, the solution
to this problem is to develop a representation that would allow us to consider an open
system as a closed one.

Recently, when studying the properties of quantum thermodynamics in the frame-
work of model calculations, it was shown that thermal behavior manifests itself even with
sufficiently small entangled quantum systems [7,8]. In particular, calculations show that
micro-canonical and thermal behavior have been observed, including the rapid approach
to micro-canonical equilibrium entropy that is typical to canonical systems. The results
of these numerical simulations are explained theoretically [21], wherein the key role of
quantum entanglement between the system and its environment in attainment of thermo-
dynamic equilibrium in the system has been shown. Moreover, it has been proven that
the basic postulate of statistical mechanics, namely the postulate of a priori equal probability
of statistical states, should be discarded as unnecessary and misleading. In [22], a model
system of coupled quantum oscillators was calculated by way of numerical simulation, which
interacts with a quantum environment.

The goal of this article is to develop a representation that will allow us to self-
consistently study the evolution of JS as a closed, inextricable system depending on time.
The physical idea is that we assume that in the process of evolution JS self-organizes and
comes to the statistical equilibrium. Mathematically, the problem is formulated within
the framework of a complex probabilistic process that satisfies a stochastic differential
equation of the Langevin–Schrödinger (L-Sch) type. Using the L-Sch equation as the first
principle, we in a closed form, that is, in the form of double integrals and solutions of partial
differential equations, construct all the parameters and the corresponding distributions of
QS and environmental fields.

The manuscript is organized as follows:
In Section 2, the problem of coupled quantum oscillators is formulated taking into

account the presence of a random environment. The existence of a hidden symmetry of the
internal motion of the JS is proved, which allows the original equation describing the JS to
lead to an autonomous form. The explicit form of the wave function of the joint system (JS)
“two coupled quantum oscillators + TB ” is obtained by solving the L-Sch equation in the
form of an orthonormal probability processes.

In Section 3, stochastic differential equations (SDE) are obtained that describe the free
evolution of the environment or TB. Using these SDEs, second-order partial differential
equations (PDEs) were obtained that describe distributions of environmental fields for
different scenarios depending on time. To solve these PDFs, the Neumann initial-boundary
conditions are formulated.

In Section 4, on the basis of an equation describing the distribution of environmental
fields is the obtained difference equation. The evolution of the distribution of environmental
fields is simulated for various initial boundary conditions.

In Section 5, a method of stochastic density matrix was developed. It contains the
basic definitions with the help of which different statistical distributions and the average
values of corresponding parameters of the QS and its small environment are constructed.
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Conditions are formulated under which the developed quantum representation can be
non-Hermitian.

In Section 6, we prove the possibility of the formation of a quantized small environ-
ment as a result of the influence of QS on the TB. A number of distributions of the quantized
fields of the small environment are calculated and visualized. This section also presents
visualizations of calculating the probability density of the first few QS states.

Section 7 is devoted to the analytical construction of nonstationary quantum entropy.
In particular, the von Neumann entropy for the “ground state” is analyzed in detail and its
generalization is given.

In Section 8, the energy levels and their populations are constructed in the form of
two-dimensional integral representations.

Section 9 considers the problem of entanglement of two 1D quantum oscillators as
a result of their relaxation in a thermostat. The formation of Bell states is considered in
detail. An equation that describes the evolution of the TB under the influence of QS and
the formation of the so-called small environment is derived.

In Section 10, the amplitudes of the probabilities of transitions between various
asymptotic states of the (in) and (out) channels are constructed.

In Section 11, the obtained results are discussed in detail and further methods of
development of the representation.

If we schematically represent the structure of the study (see Figure 1), then in Sections 2–4
we reduce the problem of coupled linear oscillators with a random environment to the
problem of two separate one-dimensional oscillators with random environments and we
find exact solutions for them. Section 5 contains the basic definitions with the help of
which various statistical distributions and average values of the corresponding parameters
of the QS and its small environment are constructed. In Sections 6–10 various statistical
parameters of the QS and its environment are constructed using the results obtained in
Sections 2–4 and the definitions of Section 5.
  

 

Figure 1. On the diagram, the dotted arrows indicate which sections are necessary to construct one
or the other parameters of the QS and its environment.

2. Formulation of the Problem
2.1. Hidden Dynamical Symmetry and General Solution of the Wave Function of a JS

Let us consider the JS in the framework of the stochastic differential equation (SDE) of
the Langevin–Schrödinger type:

i∂tΨstc = Ĥ
(
x, t; {f}

)
Ψstc, ∂t ≡ ∂/∂t, (1)

where the wave function Ψstc
(
x, t; {f}

)
represents a complex probability process. As for

the operator Ĥ(x, t; {f}) describing the Hamiltonian of the JS, in units of h̄ = m = 1 it has
the following form:

Ĥ
(
x, t; {f}

)
=

1
2

2

∑
l=1

[
− ∂2

∂x2
l
+ ω̆2(t; {f})x2

l

]
+ ω

(
t; {f}

)
x1x2, x = (x1, x2) ∈ R2, (2)
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where ω̆
(
t; {f}

)
and ω

(
t; {f}

)
are arbitrary functions of time, consisting of both regular

and random terms, and {f} denotes some complex stochastic process that will be clearly
defined below (see Equation (16)).

Theorem 1. If the equation of motion of the JS (1) is described by the Hamiltonian (2), then;
a. The motions of the coupled linear oscillators system conditionally can be separated on the motions
of two separate 1D oscillators with random environment;
b. The equation of the 1D oscillator immersed in the TB is reduced to an autonomous form with the
help of a small dimension reference differential equation, which is solved exactly, in the form of the
orthogonal stochastic process.

Proof. For analytical investigation of the problem, it is necessary to bring the JS Hamilto-
nian (2) to a diagonal form.

By performing the following coordinate transformations:

q1 =
x1 − x2√

2
, q2 =

x1 + x2√
2

, q = (q1, q2) ∈ R2, (3)

in Equation (2) we obtain:

Ĥ
(
q1, q2, t; {f}

)
=

1
2

2

∑
l=1

[
− ∂2

∂q2
l
+ Ω2

l
(
t; {f}

)
q2

l

]
, (4)

where Ωl
(
t; {f}

)
denotes the effective random frequency:

Ω2
l
(
t; {f}

)
= ω̆2(t; {f})− (−1)lω

(
t; {f}

)
≥ 0. (5)

As follows from (5), it is necessary to impose a constraint on the function ω
(
t; {f}

)
to

satisfy the inequality
∣∣ω(t; {f})∣∣≤ Re

[
ω̆2(t; {f})].

The general solution of Equations (1) and (2) is naturally represented in a factor-
ized form:

Ψstc(q, t, {ξ}) =
2

∏
l=1

Y(l)
stc (ql , t, {ξl}), (6)

where {ξ} = (ξ1, ξ2) denotes some complex stochastic process, which will be defined
below, and Y(l)

stc (ql , t, {ξl}) is the time-dependent solution—the wave function of the 1D
quantum harmonic oscillator for an arbitrary frequency Ωl(t; {f}).

The explicit form of this wave function is well known (see for example [23]):

Y(l)
stc (ql , t, {ξl}) =

1√
σl

exp
{

i
2

σ̇l
σl

q2
l

}
χl , σ̇l(t) =

dσl(t)
dt

, (7)

where χl is the solution of the 1D autonomous Schrödinger equation for the harmonic oscillator,
but already on a random space–time continuum {yl , τl}:

i
∂χl
∂τl

=
1
2

[
− ∂2

∂y2
l
+ (Ω−l yl)

2
]

χl . (8)

Note that the following notations are made in the Equation (8):

yl =
ql
σl

, ξl(t) = σl(t)eiγl(t), τl =
γl(t)
Ω−l

, γl(t) = Ω−l

∫ t

−∞

dt′

σ2
l (t
′)

, (9)
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where the function ξl(t) is a solution to the classical oscillatory equation:

ξ̈l + Ω2
l
(
t; {f}

)
ξl = 0, ξ̇l = dξl/dt. (10)

Obviously, the Equation (10) (reference equation) and transformations (9), allowing re-
duction of the Langevin–Schrödinger equation with the Hamiltonian (4) to an autonomous
form (8) reflect the fact of the existence of some hidden dynamical symmetry of the internal
motion of JS.

Now, taking into account the expressions (6)–(8), we can construct the wave function
of the JS:

Ψstc(n|q, t; {ξ}) =
2

∏
l=1

Y(l)
stc (nl |ql , t; {ξl}),

where

Y(l)
stc =

(
g−l

2nl nl ! σl

)1/2

exp
{

1
2

(
i σ̇l

σl
− Ω−l

σ2
l

)
q2

l − i
(

nl +
1
2

)
Ω−l

∫ t
−∞

dt′
σ2

l

}
Hnl

(√
Ω−l

ql
σl

)
, (11)

In addition, n = (n1, n2) denotes the vibrational quantum numbers of 1D oscillators,
Ω−l = limt→−∞ Ωl

(
t; {f}

)
= const—the frequency of the 1D oscillator in an asymptomatic

state when the environment is turned off, g−l =
(
Ω−l /π

)1/2 and Hn(x)—the Hermi-
tian polynomial.

The full wave functions Ψstc(n|q, t; {ξ}) describing the JS in the Hilbert space form a
full orthonormal basis:∫

Ψstc(n|q, t; {ξ})Ψ∗stc(m|q, t; {ξ})dq =
2

∏
l=1

δnl ml , (12)

where δnl ml denotes the Kronecker symbol.
Recall that the full wave functions are in fact orthogonal random processes. In

addition, Ψstc(n|q, t; {ξ}) ∈ L2(Ξ), where Ξ ∼= R2 ⊗ R{ξ} is the extended space and
{ξ} = (ξ1(t), ξ2(t)) ∈ R{ξ} denotes some functional space, the measure of which can be
exactly determined (see [4,24]). The theorem is proved.

2.2. Determination of the Asymptotic Conditions of the Problem

For further analytical constructions of the problem, it is necessary to refine the a
asymptotic properties of the wave function of the unified system.

For definiteness, we will represent the effective frequency as a sum:

Ω2
l
(
t; {f}

)
= Ω2

0l(t) + fl(t), {f} =
{

f1(t), f2(t)
}

. (13)

Note that Ω0l(t) is a real regular function while fl(t) = f (r)l (t) + i f (i)l (t) is a random

complex function, where f (r)l and f (i)l (t) denote its real and imaginary parts, respectively.
In other words, the function fl(t) describes the behavior of the TB. Recall that the set of
harmonic oscillators [25–29], which is equivalent to the quantized fields [30,31], is often
used as a model of the environment or a measuring apparatus that is linearly related to the
measured quantum system [32].

Obviously, when the random environment is turn off, the expression (4) is a regular
operator or Hamiltonian of a system of coupled 1D quantum oscillators:

Ĥ0
(
q1, q2, t

)
= Ĥ

(
q1, q2, t; {f}

)∣∣∣
{f}≡ 0

=
1
2

2

∑
l=1

[
− ∂2

∂q2
l
+ Ω2

0l(t)q
2
l

]
, (14)

and, accordingly, we are dealing with the usual problem of a parametric quantum oscillator.
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We suppose that the functions Ω0l(t) and fl(t) satisfy the following asymptotic conditions:

lim
t→∓∞

Ω0l(t) = Ω∓l = const∓ > 0, lim
t→−∞

fl(t) = 0. (15)

In addition, we assume that f (υ)l (t), υ = (r, i), is an independent Gaussian process
with zero mean value and a delta-like correlation function [33]:

E
[

f (υ)l (t)
]
= 0, E

[
f (υ)l (t) f (υ)l (t′)

]
= 2ε

(υ)
l δ(t− t′), (16)

where E
[
. . .
]

denotes the mathematical expectation of a random variable.

Note that ε
(υ)
l denotes the fluctuations power of the environment fields or TB fluctua-

tions. Recall that for ordinary condensed media it is natural to assume that the constant
ε
(r)
l = ε̄l = kTl characterizes elastic collisions in TB, where k and Tl are the Boltzmann

constant and the temperature of TB, respectively. As regards the constant ε
(i)
l = µε

(r)
l = µε̄l ,

then it characterizes dissipation processes or inelastic collisions in TB. It is assumed that
µ is a positive constant. In the case when ε1 6= ε2 and εl =

(
ε
(r)
l , ε

(i)
l
)
, in thermodynamic

equilibrium the TB can be characterized by two temperatures.
Obviously, the solution to the Equations (1) and (2) in the limit t→ −∞ or in the (in)

asymptotic channel can be represented in the factorized form:

Φin(n|q, t) =
2

∏
l=1

e−i(nl+1/2)Ω−l tφnl (ql), nl = 0, 1, . . . , (17)

where n ≡ (n1, n2) and q ≡ (q1, q2), in addition:

φnl (ql) =

(
g−l

2nl nl !

)1/2

exp
{
−1

2
Ω−l q2

l

}
Hnl

(√
Ω−l ql

)
, g−l =

(
Ω−l
π

)1/2

. (18)

Recall that φnl (ql) is the wave function of a 1D stationary quantum harmonic oscillator.

3. Fields Equations and Formulation of Their Initial-Boundary Conditions
3.1. Distribution of Fields in the Limit of Statistical Equilibrium

As we saw above, the reference Equation (10), which describes the stochastic fields of
the environment, plays a key role in bringing the equation of motion to an autonomous
form, but it is not clearly formulated in this form.

Theorem 2. If the random forces in the system of stochastic Equation (22) satisfy white noise
correlation relations (16), then;
a. The environmental fields will be described by two two-dimensional Fokker–Planck equations (in
the case of independent sources), and, accordingly,
b. All four fields will be described by one four-dimensional Fokker–Planck equation, when f (r)1 =

f (r)2 and f (i)1 = f (i)2 , i.e., the source of random forces is the same for both oscillators.

Proof. The solution of the classical Equation (10) can be represented in the form:

ξl(t) =

{
ξ0l(t), t ≤ t0,

ξ0l(t0) exp
{

Θl(t)
}

, t > t0,
(19)

where ξ0l(t) is the solution of the classical oscillator Equation (10) for the regular frequency
Ω0l(t) and Θl(t) =

∫ t
t0

φl(t′) dt′. Furthermore, for certainty, we will assume that the turn-on
time of the random environment or TB is equal to t0 = 0.
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Substituting (19) into (10), we obtain the following nonlinear complex SDE:

φ̇l + φ2
l + Ω2

0l(t) + fl(t) = 0, (20)

where φ̇l = dφl/dt and φl(t0) = iΩ−l .
Let us represent the complex function φl(t) as a sum:

φl(t) = u(l)
1 (t) + iu(l)

2 (t), (21)

where the fields
{

u(l)
1 (t), u(l)

2 (t)
}
∈ R2

• ≡ (−∞,+∞)× (0, ∞).
Using (21) and (20), we can write the following system of nonlinear SDEs:{

u̇(l)
1 =

(
u(l)

2
)2 −

(
u(l)

1
)2 −Ω2

0l(t)− f (r)l (t),
u̇(l)

2 = −2u(l)
1 u(l)

2 − f (i)l (t),
(22)

where the environmental fields u(t) =
{
[u(1)

1 (t), u(1)
2 (t)]; [u(2)

1 (t), u(2)
2 (t)]

}
satisfy the fol-

lowing asymptotic conditions:

u̇(l)
1 (t0) = Re[ξ̇l(t0)/ξl(t0)] = 0, u̇(l)

2 (t0) = Im[ξ̇l(t0)/ξl(t0)] = Ω−l .

Note that depending on the character of random forces f1(t) and f2(t), the proba-
bilistic processes (fields) φ1(t) and φ2(t) can be implemented by two different scenarios.
Using stochastic differential Equation (22), we can find the probability distribution of the
environment fields:

a. When the fields are generated by one source of random forces {f} and, accordingly;
b. When fields are generated by two independent sources of random forces f1(t)

and f2(t).
Let us consider the first scenario. In this case, it is obvious that the distribution of TB

fields should be represented as follows (see in detail [34,35]):

P(u, t|u0, t0) =

〈 2

∏
l=1

2

∏
j=1

δ
(
u(l)

j (t)− u(l)
0j
)〉

, (23)

where u(l)
0j = u(l)

j (t0) is the field component in the (in) state.
To simplify the notation, the superscripts of the random fields are omitted in the

equations below.
Using the stochastic differential equations in (22) for the probability distribution of

the environmental fields, we can find the following Fokker–Planck equation:

∂tP =
2

∑
l=1

L̂l
(
Ω0l(t), εl |u1, u2, t

)
P , (24)

where the evolution operator L̂l
(
Ω0l(t), εl |u1, u2, t

)
has the form:

L̂l = ε̄l

(
∂ 2

∂u2
1
+ µ

∂ 2

∂u2
2

)
+

∂

∂u1

(
u2

1 − u2
2 + Ω2

0l(t)
)
+ 2u1

∂

∂u2
u2.

Recall that in the Equation (24) u1 and u2 are equilibrium fields of the environment or
just coordinates that are defined in the following limits u1 ∈ (−∞,+∞) and u2 ∈ (0,+∞).

To solve the Equation (24), it will be naturally to formulate the Dirichlet problem with
the following initial-boundary conditions:

P(u, u0, t0) =
2

∏
l=1

2

∏
j=1

δ
(
u(l)

j (t)− u(l)
0j
)
, P(u, u0, t)

∣∣
||u||→∞ → 0, (25)
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where ||u|| =
√

∑2
l=1
{(

u(l)
1
)2
+
(
u(l)

2
)2}, in addition, the functionP(u, u0, t) makes sense of

the probability distribution of the environmental fields and, accordingly, can be normalized
to unity.

In the case of the second scenario, it is natural to assume that the fields distributions
will be factorized:

P(u, t|u0, t0) =
2

∏
l=1

Pl =
2

∏
l=1

〈 2

∏
j=1

δ
(
u(l)

j (t)− u(l)
0j
)〉

, (26)

where the following Fokker–Planck equation for the field distribution can be obtained in a
standard way:

∂tPl = L̂l
(
Ω0l(t), εl |u1, u2, t

)
Pl . (27)

The theorem is proved.

Thus, at the limit of statistical equilibrium, four additional dimensions arise that de-
scribe the fields of the environment and, accordingly, then the original problem becomes
six-dimensional R2 ⊗R 4

c , where R 4
c is a compact space and

(
u(1)

1 , u(1)
2 , u(2)

1 , u(2)
2
)
∈ R 4

c .

3.2. Neumann Initial-Boundary Conditions

Now let us dwell in detail on the question of setting the initial-boundary value problem
for solving Equation (27).

Let, at the initial moment of time t0 = 0, the probability distribution of free fields of
the environment be described by the Dirac delta functions:

Pl(u1, u2, t0) =
2

∏
j=1

δ(uj − u0j). (28)

As for the boundary conditions, then, based on the fact that the QS in TB can be subject
to both elastic and inelastic collisions, it is useful to use Neumann conditions of the form:

∂

∂u2
Pl(u1, u2, t)

∣∣
u2=0= 1Pl(u1, t) 6= 0,

∂

∂u1
Pl(u1, u2, t)

∣∣
u1=0= 2Pl(u2, t) 6= 0. (29)

As we will see below, the conditions (29) lead to the fulfilment of two different
equations on the axes u1 and u2, respectively. In particular, taking into account that
the Equation (27) is invariant under the transformation u2 → −u2, near the axis u1 ∈
(−∞,+∞) the solution to the equation can be represented as:

Pl(u1, u2, t)
∣∣
u2∼0∼

(
a0 + a1u2 + a2u2

2 + . . .
)
e−u2

2/2
1Pl(u1, t), (30)

where a0, a1 and a2 are some unknown constants that will be determined below based on
physical considerations.

Substituting (30) into (27) in the limit u2 → 0, we can obtain the following second-order
partial differential equation:

∂

∂t 1Pl =

{
ε̄l

∂ 2

∂u2
1
+
(
u2

1 + Ω2
0l(t)

) ∂

∂u1
+

[
4u1 − µε̄l

(
2a2

a0
− 1
)]}

1Pl . (31)

Note that the symmetry condition for the Equation (27) with respect to the replacement
u2 → −u2 leads to the following conditions:

∂

∂ū2
Pl(ū1, ū2, t)

∣∣
ū2= 0= a1 · 1Pl(ū1, t) = 0, (32)

from which, in particular, it follows that a1 = 0.
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Recall that the following notations are used in the condition (32) and below:

t̄ = ε̄1/3
l t, ū1 = u1/ε̄1/3

l , ū2 = u2/ε̄1/3
l , Ω̄ 0l(t) = Ω0l(t)/ε̄1/3

l . (33)

Proceeding from the fact that the boundary conditions on the perpendicular axes u1
and u2 describe the probability distributions of elastic and inelastic collisions independent
of each other, it is natural to assume that the term of inelastic collision in Equation (31)
should be identically equal to zero. The latter means that 2a2/a0 − 1 = 0 and, accord-
ingly, Equation (31) can be written in dimensionless form:

∂

∂t̄ 1Pl =

{
∂ 2

∂ū2
1
+
(
ū2

1 + Ω̄2
0l(t)

) ∂

∂ū1
+ 4ū1

}
1Pl . (34)

For this equation, the following initial-boundary value problem can be formulated:

1Pl(ū1, t̄ )
∣∣
t̄= 0 = δ(ū1), (35)

and, accordingly:
1Pl(ū1, t̄ )

∣∣
ū1=s′ = 0, 1Pl(ū1, t̄ )

∣∣
ū1=s′′ = 0, (36)

where s′ and s′′ are sufficiently remote points from the origin point 0. Obviously, if we state
a0 = 1, then the following equality will be take place:

1Pl(ū1, t̄ ) = Pl(ū1, ū2, t̄ )
∣∣
ū2=0. (37)

Finally, we can define the second Neumann condition on the axis u2 ∈
[
0,+∞

)
. It

is easy to see that Equation (27) is anti-symmetric under the transformation u1 → −u1
and, therefore, its solution near the axis u2 must be an odd function. To do this, we can
represent the full solution in the form:

Pl(u1, u2, t)
∣∣
u1∼ 0∼

(
b0 + b1u1 + b2u2

1 + . . .
)
e−u2

1/2
2Pl(u2, t), (38)

where b0, b1 and b2 are constants that we will define below.
Substituting (38) into Equation (27) in the limit u1 → 0, we obtain the following

dimensionless equation for the second Neumann condition:

∂

∂t̄ 2Pl =

{
µ

∂ 2

∂ū2
2
+ b̄1

(
Ω̄2

0l(t)− ū2
2
)
+

(
2b2

b0
− 1
)}

2Pl , b̄1 = b1ε̄1/3
l . (39)

Assuming that 2b2/b0 − 1 = 0 and representing the solution of Equation (39) in the form:

2Pl(ū2, t̄) = exp
{

b̄1

∫ t̄

0

[
Ω̄2

0l(t
′)− (Ω̄+

0l)
2] dt̄

′
}

2Pl(ū2),

from (39) we can obtain the following ODE:

d 2

dū2
2

2Pl +
b̄1

µ

[
(Ω̄+

0l)
2 − ū2

2
]

2Pl = 0. (40)

Solving Equation (40), we obtain the following Gaussian distribution function:

2Pl(ū2) =

(
1

2π

√
b̃1

)1/2

exp
{
−1

2

√
b̃1ū2

2

}
, b̃1 = b̄1/µ, b̄1 = µ/(Ω̄+

0l)
4. (41)
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Now, with b0 = 1, it is easy to find the second Neumann condition:

∂

∂ū1
Pl(ū1, ū2, t̄)

∣∣
ū1= 0= 2Pl(ū2, t̄). (42)

As follows from formulas (37) and (42) the functions 1Pl(ū1, t̄) and 2Pl(ū2, t̄) coincide
at the origin (ū1 = 0, ū2 = 0), i.e., 1Pl(ū1, t̄)

∣∣
ū1→ 0= 2Pl(ū2, t̄)

∣∣
ū2→ 0.

Finally, we can write the equation for the fields’ distribution (27) in dimension-
less form:

∂

∂t̄
Pl =

{
∂ 2

∂ū2
1
+ λ

∂ 2

∂ū2
2
+
(
ū2

1 − ū2
2 + Ω̄2

0l(t̄ )
) ∂

∂ū1
+ 2ū1ū2

∂

∂ū2
+ 4ū1

}
Pl , (43)

where Ω̄0l(t̄ ) is the dimensionless frequency, which for certainty we will assume has the form:

Ω̄2
0l(t̄ ) =

(
Ω̄−l
)2 − (−1)l

ν

(
1 + tanh(αt̄ )

)
. (44)

Note that constants Ω̄−l , ν and α in (44) define a specific dynamical system; in addition,
the time scale of the processes occurring in the system is 1ps = 10−12 s.

Since the function Pl(ū1, ū2, t̄) is the probability density of free fields, it can be normal-
ized to unity. In particular, if we define the probability density in the form:

P̄l(ū1, ū2, t̄) =
Pl(ū1, ū2, t̄)

C(v)
l (t)

, C(v)
l (t) =

∫ ∫
R2•

Pl(ū1, ū2, t̄)dū1dū2, (45)

then, obviously, the following equality holds:∫ ∫
R2•

P̄l(ū1, ū2, t̄)dū1dū2 = 1.

Thus, Equations (23) and (26) describe the distributions of free classical fields of the
environment in the case of the first and second scenarios, respectively. In addition, these
distributions describe the formation of the so-called small classical environment (SCE).

4. Features of the Numerical Calculation of the Distributions of Environmental Fields

An equation of the form (43), as well as its generalization (61), is a second-order
partial differential equation of parabolic type with a source term. Note that the numerical
calculation of this equation causes significant difficulties due to its characteristic features.
Recall that in Equation (61) the term of the form κPl , where κ takes the values κ = [4−
(2n+ 1)]ū1, can be both a source and a sink depending on the value of the quantum number
n = 0, 1, . . .. In particular, starting from n > 0, over the course of time, the perturbed region
and, consequently, the computational region expands significantly, sometimes exceeding
the reasonable capabilities of the computer. This becomes especially noticeable when n > 1.
For such quantum numbers, the term κPl in ū1 < 0 becomes a source and causes an
explosive growth of the distribution Pl in the left half-plane. In this case, the transfer of
disturbances along the coordinate ū1 to the left of zero is carried out at a rate of the order
of ū2

1. Obviously, with increasing distance, the term ū2
1∂Pl/∂ū1 tends to a singularity of the

type ∞ · 0. For n > 1, such carry-over of perturbations also enhances the effect of expanding
the computational domain to a conditional infinite. In problems with convective transport,
this situation is solved by setting the conditions for free flow through the boundaries of the
computational domain. In our case, such a condition cannot be set. Therefore, the Dirichlet
condition Pl = 0 is imposed on the boundaries. In view of the above, we stopped at the
approximation of Equation (43) using an explicit finite-difference scheme of the second
order of accuracy in coordinates and of the first order in time. In some cases, the flow
correction procedure is used [36]. The continuous space–time region for (43) is replaced
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with the discrete computational grid:
[
(ū1)min, (ū1)max

]
×
[
(ū2)min, (ū2)max

]
×
[
0, T

]
. In

the computational domain, a uniform difference grid is specified in time t̄ and in spatial
coordinates ū1 and ū2:

(ū1)j = j∆ū1, j ∈ [1, M], (ū1)min = (ū1)j=1, (ū1)max = (ū1)j=M,

(ū2)k = k∆ū2, k ∈ [1, L] , (ū2)min = (ū2)k=1, (ū2)max = (ū2)k=L,

t̄ n = n∆t̄, n = 0, 1, 2, . . . , T/∆t̄− 1, (46)

where ∆ū1 and ∆ū2 are steps in spatial coordinates, ∆t̄ is the time step as well as integers
M, L� 1. Using (61) on the constructed grid, we can write the following difference equation:

Pn+1
j,k = Pn

j,k + r1
[
Pn

j+1,k − 2Pn
j,k + Pn

j−1,k
]
+ r2

[
Pn

j,k+ − 2Pn
j,k + P

n
j,k−1

]
+

∆t̄
2∆ū1

×

[
(ū2

1)j − (ū2
2)k −Ωn](Pn

j+1,k −P
n
j−1,k

)
+

∆t̄
∆ū2

(ū1)j(ū2)k
(
Pn

j,k+1 −P
n
j,k−1

)
+ ∆t̄κPn

j,k, (47)

where the following notations are made:

P = Pl , Ω = Ω̄2
0l , r1 = ∆t̄/∆ū2

1, r2 = ∆t̄/∆ū2
2.

Difference equations on the coordinate axes, which determine the Neumann condi-
tions (29), are derived in a similar way.

As for the initial probability of the fields distribution at the moment t̄ = 0, then,
instead of the Dirac delta function P(ū1, ū2, 0) = δ(ū1) · δ(ū2), at the moment t̄0 � 1 we
use the following approximation for it:

P(ū1, ū2, 0) ≈ P(ū1, ū2, t̄0) =
1

π2
t̄ 2
0

(ū2
1 + t̄ 2

0 )(ū
2
2 + t̄ 2

0 )
. (48)

Note that the integral of this function over the half-plane R2
• (see (21)) is normalized

to unity:
t̄ 2
0

π2

∫ ∫
R2•

dū1dū2

(ū2
1 + t̄ 2

0 )(ū
2
2 + t̄ 2

0 )
= 1.

However, in this case, for a sufficiently accurate representation of such a distribution,
it is necessary to take small steps in the coordinate space

(
∆ū1, ∆ū2

)
, which leads to a

large value of required memory. In this regard, we chose the Gaussian function as the
initial distribution:

P(ū1, ū2, 0) ≈ σ exp
{
−v

( ū2
1

a2 +
ū2

2
b2

)}
,

where σ, v > 0, a = b. Note that these parameters were chosen in such a way that the
normalization condition for the Gaussian function was exactly satisfied at σ = 500.

To illustrate the effectiveness of the numerical algorithm, we consider the scenario b,
when the oscillators are acted upon by external independent stochastic forces.

Let us consider solutions of Equation (43) using conditions (29) for the next two sets
of characteristic data (see Tables 1 and 2).

Table 1. Initial data for numerical simulation the distribution of environmental fields.

α λ ν Ω+
1,2 ∆t̄ ∆ū1 = ∆ū2 Gaussian Distribution b1

1.0 10−3 10 1.0954 10−5 0.025 a = b = 0.5, σ = 500 6.94× 10−4

1.0 10−3 −10 0.8944 10−5 0.025 a = b = 0.5, σ = 500 1.56× 10−3
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Table 2. Initial data for numerical simulation the distribution of environmental fields.

α λ ν Ω+
1,2 ∆t̄ ∆ū1 = ∆ū2 Gaussian Distribution b1

1.0 2.5 10 1.0954 2×10−5 0.025 a = b = 0.5, σ = 500 1.736

1.0 2.5 −10 0.8944 2×10−5 0.025 a = b = 0.5, σ = 500 3.906

Recall that the data in Table 1 correspond to two coupled 1D linear oscillators im-
mersed in a vacuum with fluctuations, conditionally called a quantum vacuum, and Table 2
shows the initial data describing coupled oscillators in a medium at a finite temperature.
For clarity, we considered Equation (43) for a 1D oscillator depending on time, when
λ = (0.001, 2.5), ν = 10 and l = 1 (see the first lines of Tables 1 and 2), i.e., the distribution
P̄1 is specifically calculated. We used difference Equation (47), which for κ = 4ū1 approxi-
mates Equation (43) on a discrete lattice and performed calculations based on the data in
Tables 1 and 2.

As can be seen from the comparison of the images of the (a) and (b) columns (see
Figure 2), the larger the parameter λ, the more intense relaxation occurs and, accordingly,
the faster a small classical environment is formed.

                   

 

                    

 

                    

 

(a)                                                       (b) 

Figure 2. The column (a) shows different phases (t = 0.1 ps, t = 0.7 ps and t = 2 ps) of the evolution
of the distribution of free classical fields P̄1 practically without dissipation (vacuum conditions) and
the formation of a small classical environment in it. The column (b) shows the same stages in the
evolution of classical fields with allowance for elastic and inelastic processes in an environment that
lead to the formation of a bulk SCE in it.
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5. Definition of Thermodynamic Potentials and Mean Values of Statistical Parameters

To study irreversible processes in quantum systems, the representation of a non-
stationary density matrix developed in the framework of the Liouville–von Neumann
equation is often used [37]. However, there is an important limitation associated with
the application of this representation, which in number of cases can strongly distort the
described phenomena and expected results. It is important to note that the developed
representation will be consistent and rigorous if it takes into account both the environmental
impact on QS and the QS impact on the environment. As noted above, this can lead to
the formation of the so-called small environment, which will have interesting physical
properties and have a specific geometric and topological features. Unfortunately, both the
standard representation for the density matrix and many modern approaches describing
relaxation processes occurring in open systems do not allow achievement the specified
rigor of description. To eliminate this flaw in the theory, we propose a new approach,
the stochastic density matrix method, which allows us to describe a JS, taking into account
the self-consistency between its parts. In other words, we consider and study JS as a closed
system that is impossible to implement within the framework of other approaches.

Definition 1. Let the stochastic density matrix be defined as a bilinear form:

$stc(q, t; {ξ}|q′, t′; {ξ′}) = ∑
n

wn$
(n)
stc (q, t; {ξ}|q′, t′; {ξ′}), (49)

where $
(n)
stc = Ψstc(n|q, t; {ξ})Ψ∗stc(n|q ′, t′; {ξ′}); in addition, wn = wn1,n2 = w(1)

n1 w(2)
n2 denotes

the initial population of the levels of two noninteracting quantum harmonic oscillators that, in the
(in) asymptotic state, respectively, possess energies:

En1 = (n1 + 1/2)Ω−1 and En2 = (n2 + 1/2)Ω−2 .

It is important to note that when integrating over the extended space Ξ, the order of
integration is important. In particular, if we first integrate stochastic density matrix over
the Euclidean space R2 and then over the functional space R{ξ}, we obtain:

∞

∑
n1,n2= 0

wn1,n2 = 1, 0 ≤ wn1,n2 ≤ 1. (50)

Note that expression (50) is actually a condition for normalizing population levels. It
also means that the conservation laws are satisfied on the extended space Ξ.

In the case when the integration is carried out in reverse order, that is, first by the
functional space, and then on the Euclidean space, we obtain:

∑
n

wn$̄n(T1, T2) = 1, $̄n(T1, T2)) ≤ 1, (51)

where $̄n(T1, T2) = Trq
{

Tr{ξ}
[
$
(n)
stc (q, t; {ξ}|q′, t′; {ξ′})

]}
denotes the population of the

corresponding quantum levels at temperatures of environment T1 and T2; in addition, Tr{ξ}
and Trq denote integration operations over functional and Euclidean spaces, respectively
(see below (53) and (54)).

The latter means that the conservation laws in the space R2 as a whole are violated,
and only in the limit of statistical equilibrium can we speak about the preservation of their
mean values.

Now we will define the mathematical expectation of various random variables.

Definition 2. The reduced density matrix is defined as the mean value of the random density matrix:

$(q, t|q′, t′) = E
[
$stc
]
= Tr{ξ}

[
$stc(q, t; {ξ}|q′, t′; {ξ′})

]
, (52)
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where E
[
. . .
]

denotes the mathematical expectation of a random variable, and Tr{ξ} denotes the
functional integration over the environmental fields (see in detail [24]):

Tr{ξ}
[
K(q, t; {ξ}|q′, t′; {ξ′})

]
=
∫

K(q, t; {ξ}|q′, t; {ξ}) D{ξ}. (53)

Definition 3. The average value of the eigenvalue of the operator Â(q, t; {ξ}|q′, t′; {ξ′}) in the
quantum state defined by numbers n = (n1, n2) is written as:

An = lim
t→+∞

{
N−1

n (t)Trq
[
Tr{ξ} Â$

(n)
stc
]}

, (54)

where Nn(t) = Trq
[
Tr{ξ}

(
$
(n)
stc (q, t; {ξ}|q′, t′; {ξ′})

)]
, in addition:

Trq
[
K(q, t; {ξ}|q′, t′; {ξ′})

]
=
∫

K(q, t; {ξ}|q′, t; {ξ′})dq, dq = dq1dq2. (55)

As is known, entropy characterizes the measure of randomness of a statistical ensem-
ble, which can be used to find all thermodynamic potentials of the ensemble.

Definition 4. The von Neumann entropy of a quantum system is determined as [37]:

ΛN(t) = −Trq
{

$(q, q′, t) ln $(q, q′, t)
}

, (56)

where $(q, q′, t) ≡ $(q, t|q′, t′)|t=t′ denotes the reduced density matrix.

Definition 5. The entropy of a quantum subsystem interacting with a random environment can
be defined as follows:

ΛG(t) = −Trq
{

Tr{ξ}[$stc(q, t; {ξ}|q′, t′; {ξ′}) ln $stc(q, t; {ξ}|q′, t′; {ξ′})]
}

. (57)

Obviously, the definition of entropy (57) is rigorous and more consistent and will differ
from the value of von Neumann’s entropy when QS interacts strongly with the environment.

Finally, consider the question of the nature of the developed representation from the
point of view of fundamental quantum mechanics. As is known, standard quantum me-
chanics is Hermitian, an important feature of which occurs in the following equalities [38]:

〈Ψ|ĤΦ〉 = 〈ĤΨ|Φ〉 = 〈ĤΨ|Φ〉, (58)

where Ψ and Φ are eigenfunctions of the operator Ĥ, in addition, 〈· 〉-scalar product of
functions by Dirac’s notation, and 〈· 〉 denotes its complex conjugation. The peculiarity
of the developed approach is that the functions Ψ = Ψstc(n|q, t, {ξ}) ∈ L2(Ξ) and Φ =
Ψstc(m|q, t, {ξ}) ∈ L2(Ξ) are defined in the extended space Ξ ∼= R2 ⊗ R{ξ}. The latter
means that, in the case under consideration, 〈· 〉 denotes two types of integration: over the
configuration space R2 and over the function space R{ξ}. From a physical point of view,
the integration will make sense if its state will tend to a statistical equilibrium. Based on
the above, it is obvious that first of all we must perform integration over the functional
space, since this procedure takes into account the JS self-organizing processes. If we assume
that the wave functions in (58) are different, then the values of the functional integrals
in 〈Ψ|ĤΦ〉 and 〈ĤΨ|Φ〉 will be different and, accordingly, all equalities in (58) will be
violated. In other words, the evolution operator (2) is not Hermitian and, accordingly,
the developed quantum representation is also non-Hermitian. It is important to note that a
direct consequence of the non-Hermitian quantum mechanics is the violation of the detailed
balance of transitions between two quantum levels, as well as spontaneous transitions in
QS (see Section 10 below).
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6. Formation of a Quantized Small Environment under the Influence of QS

Let us consider the evolution of the probability density of a specific quantum state of
two coupled 1D linear oscillators in a random environment. We will assume that all the
initial populations of the energy levels, except for one wn = wn1n2 = wn1 wn2 6= 0, are equal
to zero. In this case the stochastic density matrix (49) can be represented in the form:

$
(n)
stc (q, q′, t; {ξ}) =

2

∏
l=1

$
(nl)
stc (ql , q′l , t; {ξl}), (59)

where $
(nl)
stc
(
ql , q′l , t; {ξl}

)
denotes the random probability density of the 1D oscillator. Its

explicit representation is as follows:

$
(nl)
stc
(
ql , q′l , t; {ξl}

)
=

g−l
2nl nl !

exp
{

iu1(t)
2

(
q2

l − q′l
2)− u2(t)

2
(
q2

l + q′l
2)− ∫ t

0
u1(t′)dt′

}
×

×H2
nl

(√
Ω−l exp

{
−
∫ t

0
u1(t′)dt′

}
ql

)
.

Taking into account the probability distribution of free classical environmental fields (26)
and (27), we can construct a continuous measure of the functional space R{ξ} (see [24]) and,
accordingly, write a functional integral representation for the mathematical expectation of
the elements of the density matrix E

[
$
(n)
stc
]

(see in detail (52) and (53)). Furthermore, using
the generalized Feynman–Kac theorem [24], we can calculate the functional integral and
reduce it to a double integral representation. In particular, calculating the elements of the
density matrix for the first three quantum levels of the 1D oscillator, we obtain:

$(0)
(
ql , ql

′, t
)
= g−l

∫ +∞

−∞
du1

∫ ∞

0
Q(0)

l (u1, u2, t) exp
{

Al
(
u1, u2|ql , q′l

)}
du2,

$(1)
(
ql , ql

′, t
)
= 2g−l Ω−l q2

l

∫ +∞

−∞
du1

∫ ∞

0
Q(1)

l (u1, u2, t) exp
{

Al
(
u1, u2|ql , q′l

)}
du2,

$(2)
(
ql , ql

′, t
)
= (g−l /2)

∫ +∞

−∞
du1

∫ ∞

0
Q(0)

l (u1, u2, t) exp
{

Al
(
u1, u2|ql , q′l

)}
du2 −

2g−l Ω−l q2
l

∫ +∞

−∞
du1

∫ ∞

0
Q(1)

l (u1, u2, t) exp
{

Al
(
u1, u2|ql , q′l

)}
du2 +

2g−l (Ω
−
l q2

l )
2
∫ +∞

−∞
du1

∫ ∞

0
Q(2)

l (u1, u2, t) exp
{

Al
(
u1, u2|ql , q′l

)}
du2, (60)

where
Al
(
u1, u2|ql , q′l

)
=

iu1

2
(
q2

l − q′l
2)− u2

2
(
q2

l + q′l
2).

In addition, the function Q(n)
l (u1, u2, t) is a solution to the following second-order PDE:

∂tQ
(n)
l =

{
L̂l
(
Ω0l(t), εl |u1, u2, t

)
− (2n + 1)u1

}
Q(n)

l , n = 0, 1, 2, . . . . (61)

Recall that this equation satisfies the Neumann initial-boundary conditions (see (29)).
Because the solution Q(n)

l (u1, u2, t) has the meaning of a probability density, it should be
normalized to unity.

Now consider the Equation (61). As we can see, it depends on the vibrational quantum
number n of the one-dimensional quantum oscillator, and therefore it can be interpreted as
an equation describing the probability distribution of the quantized fields of the environ-
ment. In other words, the quantum system extracts a small region from TB and quantizes
it. Below, we will call this formation a small quantized environment (SQE).

To model these quantum formations, we used the difference Equation (47), which
for κ =

[
4− (2n + 1)

]
ū1, where n = 0, 1, 2, .. approximates the quantum equation of the
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environment (61) and the data of Tables 1 and 2. The Equation (47), as in the case of fields
of a free environment, is solved as an initial-boundary value problem of Neumann.

Using the first rows of Tables 1 and 2, we calculated and constructed a series of images
showing the probability density of quantized environmental fields at time t = 2 ps (see
Figure 3). Note, as numerical calculations show, these distributions are practically close
to the limits of their statistical equilibrium. In particular, we see that starting from the
quantum number n = 2, the nature of the solution of Equation (61) changes significantly,
which is clearly seen from the images of the field distributions (see the last images in the
(a) and (b) columns).

                    

                                                                                 n=0 

 

                    

                                                      n=1 

 

              

                                                      n=2 

(a)                                                              (b) 

Figure 3. The column (a) shows snapshots of the probability distributions of the SQE in a quantum
vacuum at the time t = 2ps, for the quantum numbers n = 0, n = 1 and n = 2, respectively. Column
(b) shows the probability distributions of SQE in TB, consisting of a dense medium at the same
quantum numbers and time t = 2ps. It is easy to see from these images that the distributions of the
environmental fields differ greatly depending on the quantum number n.
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With the elements of the reduced density matrix of the 1D quantum oscillator, we
can construct the reduced density matrix of the coupled 2D oscillator. In addition, using
expressions (60), we can construct the various probability distributions of 2D oscillator:

ρ(00)(q1, q2, t
)
, ρ(01)(q1, q2, t

)
, ρ(10)(q1, q2, t

)
, ρ(11)(q1, q2, t

)
, . . . (62)

where ρ(n)
(
q1, q2, t

)
= $(n)

(
q, q′, t

)∣∣
q=q′ , in addition, n = (n1, n2) and q = (q1, q2).

Using the data in Tables 1 and 2, we calculated quantum distributions for various
states (62) without scaling, when t = 10 ps, i.e., when all quantum distributions tend to
their statistical equilibrium states (see Figure 4). As we can see in the pictures, the quantum
distributions ρ(01)(q1, q2, t

)
and ρ(10)(q1, q2, t

)
are very similar; however, they are different

and the degree of difference increases with decreasing ν. Recall that the left column contains
snapshots of the corresponding quantum distributions of coupled 1D oscillators in a
quantum vacuum, and the right column contains snapshots of these quantum distributions
in a medium depending on the temperature, which is determined by the λ parameter.

tqq ,,
21

00
  

 

 

 

tqq ,,
21

10
 

 

 

tqq ,,
21

10
 

 

 

 

tqq ,,
21

11
  

Figure 4. The first column shows snapshots of the steady-state probability distributions of various
quantum states of a 2D oscillator in a quantum vacuum. The second column shows the stationary
probability distributions of a 2D oscillator when the environment is dense matter. We performed
calculations up to the time t = 10 ps and made sure that all distributions reached their limits of
statistical equilibrium.



Symmetry 2021, 13, 1546 18 of 28

7. Entropy of the Ground State

Below we consider the features of relaxation immersed in a random environment of a
QS. In this sense, the study of the behavior of the entropy of the QS as a function of time
can be very important and informative. In this section, we will define the entropy of QS in
two different ways.

7.1. The Von Neumann Entropy

Let us consider the reduced density matrix of coupled oscillators in the ground state:

$(0, 0)(q, q′, t
)
=

2

∏
l=1

$(0)
(
ql , q′, t

)
. (63)

To construct the von Neumann entropy, we must substitute (63) into the definition (56)
and calculate the trace of an integral:

ΛN(t) = −N(0)
1 (t)Λ(2)N(t)− N(0)

2 (t)Λ(1)N(t), (64)

where the following notations are made:

N(0)
l (t) = (Ω−l )

1/2
∫ +∞

−∞
du1

∫ ∞

0
Q(0)

l (u1, u2, t)
du2√

u2
,

and, respectively,

Λ(l)N(t) =
∫ +∞

−∞
ρ(0)(ql , t) ln

(
ρ(0)(ql , t)

)
dql .

As for the function ρ(0)(ql , t), then it has to be the following form:

ρ(0)(ql , t) =
∫ +∞

−∞
du1

∫ ∞

0
Q(0)

l (u1, u2, t) exp
{
−u2q2

l
}

du2. (65)

Since the integration over the coordinate ql in the expression for the function $(0)(ql , t)
cannot be performed analytically, further study of the properties of the von Neumann
entropy ΛN(t) can be realized numerically.

7.2. Entropy of a Quantum State Taking into Account Self-Organization of a JS

Now we can calculate the expectation value of the entropy according to the definition (57).
Substituting (63) into expression (57) and performing simple calculations, we obtain the
following expression (see [4]):

Λ(0,0)
G (t) = −N(0)

1 (t)Λ(0)
(2)(t)− N(0)

2 (t)Λ(0)
(1)(t), (66)

where

Λ(0)
(l) (t) = (Ω−l )

1/2
∫ +∞

−∞
du1

∫ ∞

0
Dl(u1, u2, t)

du2√
u2

.

Notice that the function Dl(λl , u1, u2, t) is a solution of the equation:

∂tDl = L̂l Dl − u1Q(0)
l . (67)

Recall that to solve the Equation (67) it is necessary to use the Neumann initial-
boundary conditions. It is obvious that in the limit of thermodynamic equilibrium the
entropy should move towards the stationary limit:

Λ(0,0)
G (ε̄l) = lim

t→+∞
Λ(0,0)

G (t), ε̄l = (ε̄1, ε̄2). (68)
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If we assume that in the limit t → +∞ the interaction between two coupled 1D
oscillators vanishes, i.e., when ω → 0, then ε̄1 = ε̄2. However, this does not mean at
all that the parameters N(0)

1 with N(0)
2 and Λ1 with Λ2 in this case coincide. Moreover,

as follows from the expression (60), if these oscillators have ever interacted, then the
specified parameters will obviously not be the same.

To summarize, note that in both definitions of entropy (64) and (66), the entanglement
of the states of two separate 1D oscillators is obvious. In addition, it is necessary to note that
when the parameter ε̄l = (ε̄1, ε̄2)→ 0, then the functions N(0)

1 (t) and N(0)
2 (t) tend towards

unity and, accordingly, the entropy of separate oscillators of the QS as a whole should tend
towards zero, which will satisfy the condition that the environment is switching off.

8. Energy Levels and Their Occupancy after Relaxation in TB

The energy spectrum is an important characteristic of a quantum system. Below we
will study the energy levels of a 1D oscillator after switching on the TB and establishing
thermodynamic equilibrium in the QS. For the example, we will calculate the first several
energy levels. Taking into account (54), it is easy to obtain the mathematical expectations
of the energy levels. In particular, for the energy level of the ground state we obtain:

E0(λl , µ) =
1
2
[
1 + K0(λl , µ)

]
Ω+

l , (69)

where

K0(λl , µ) =
∫ +∞

−∞
dū1

∫ ∞

0

(
−1 +

1 + ū2
1 + ū2

2
2ū2dl

)
Q̃(0)

l (λl , µ; ū1, ū2)
dū2√

ū2
.

Recall that dl =
√

Ω+
l /Ω−l ; in addition, the distribution function Q̃(0)

l is a solution of
stationary dimensionless Equation (61), which is formed in the limit t̄→ +∞. Obviously,
in the limit λl → 0 and µ = 0 for the energy level of the ground state we should obtain
the result:

lim
λl→ 0

E0(λl , 0) =
1
2

Ω+
l .

The latter, in turn, means that the distribution function Q̃(0)
l in this limit should have

the following form:

lim
λl→ 0

Q̃(0)
l (λl , 0; ū1, ū2) = δ(ū1)δ(ū2 − ū02), (70)

where ū02 = dl ±
√

d 2
l − 1.

In the case when dl > 1, obviously there are two solutions Q̃(0−)
l and Q̃(0+)

l and,
therefore, two energy levels characterizing the ground state, which we will denote with
E−0 (λl , µ) and E+0 (λl , µ), respectively.

Similarly, we can calculate the mathematical expectation of the energy level of the first
excited state:

E1(λl , µ) =
3
2
[
1 + K1(λl , µ)

]
Ω+

l , (71)

where

K1(λl , µ) =
∫ +∞

−∞
dū1

∫ ∞

0

(
−1 +

1 + ū2
1 + ū2

2
2ū2dl

)
Q̃(2)

l (λl , µ; ū1, ū2)
dū2

ū2
√

ū2
.

It is easy to verify that when dl > 1, in this case also the energy level is split into
two sub-levels E−1 (λl , µ) and E+1 (λl , µ), respectively. Note that even in the case dl = 1,
when all the sublevels disappear or, more precisely, merge, the spectrum of the quantum
oscillator in the case under consideration is fundamentally different from the spectrum of
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an oscillator without an environment. In particular, the equidistance between energy levels
is violated in this case.

Finally, in the limit of statistical equilibrium, we can calculate the populations of
different quantum levels as a function of temperature:

Mn(λl , µ) = Trql

[
Trξl

{
$(n)(ql , t; {ξl}|q′l , t′; {ξ ′l})

}]
.

In particular, using the previous formula for the ground state population level, we find
the following expression:

N(0)
l (t) = M0(λl , µ) =

∫ +∞

−∞
dū1

∫ ∞

0
Q(0)

l (λl , µ; ū1, ū2)
dū2√

ū2
, (72)

and for the first excited state, respectively:

M1(λl , µ) =
∫ +∞

−∞
dū1

∫ ∞

0
Q(2)

l (λl , µ; ū1, ū2)
dū2

ū2
√

ū2
. (73)

9. Quantum Entanglement of States Caused by Random Environment

Performing coordinate transformations (3), the original problem of coupled oscillators
is reduced to the problem of two noninteracting oscillators in a random environment. Let
the numbers one and two, as indicated above, denote noninteracting oscillators in a random
environment whose wave states in the Hilbert spaces H1(R1 ⊗Rξ1) and H2(R1 ⊗Rξ2) are

denoted by the functions Ψ(1)
stc ∈ L2(R1 ⊗Rξ1) and Ψ(2)

stc ∈ L2(R1 ⊗Rξ2), respectively.
The Hilbert space of the composite system is the tensor product H⊗ = H1 ⊗H2, while

the state of the composite system is defined as:

Ψ(1)
stc ⊗Ψ(2)

stc =
(
∑
n

c1
n|n〉1

)
⊗
(
∑
m

c2
m|m〉2

)
∈ H⊗. (74)

In (74) the vectors |n〉1 = Y(1)
stc (n|q1, t; {ξ1}) and |m〉2 = Y(2)

stc (m|q2, t; {ξ2}) denote the
exact states of 1D quantum oscillators in the random environment (see expression (11)),
in addition, c1

n and c2
m are some complex numbers with absolute values, |c1

n|, |c2
m| ≤ 1.

Obviously, each set of functions {|n〉1} and {|m〉2} forms an orthonormal basis in the
Hilbert spaces H1 and H2, respectively.

If the numbers c1
n and c2

m are not equal to zero, then in general the separable states can
be represented as a direct product:

ΨJS = ∑
n,m

cnm|n〉1 ⊗ |m〉2, cnm = n1
nc2

m. (75)

where ΨJS denotes the wave function of JS.
Based on the properties (1)–(16), it is easy to show that in the extended space Ξ ∼=

R2 ⊗R{ξ} the wave state ΨJS is separable. However, a reasonable question arises: what
happens if the wave function ΨJS is averaged over the functional space R{ξ}? Obviously,
from a physical point of view, this would mean calculating the mathematical expectation
of the wave function of coupled quantum oscillators taking into account the influence of a
random environment:

Ψ̄QS(q, t) = E[ΨJS] = ∑
n,m

cnm|n〉1 ⊗ |m〉2, n, m = 0, 1, 2 . . . , (76)

where Ψ̄QS = E[ΨJS] = 〈ΨJS〉R{ξ} denotes the functional integration over the space R{ξ}.
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For definiteness, consider the case cnm = 0 for n+m ≥ 1, i.e., when both oscillators are
in ground states or one of them is in the ground state, and the other is in the first excited state.
In this case, from (76) for the wave function of QS we obtain the following expression:

Ψ̄QS(q, t|0, 0) = |0〉1 ⊗ |0〉2, (77)

where

|0〉l = (g−l )
1/2

∫ +∞

−∞
du1

∫ ∞

0
Υ( 1

2 , 1
2 )

l (u1, u2, t) exp
{

1
2
(
iu1 − u2

)
q2

l

}
du2, (78)

describes the l-th oscillator ground state entangled with the environment. As for the complex

function Υ( 1
2 , 1

2 )
l (u1, u2, t), it satisfies the following PDE:

∂tΥ
(p,k)
l =

{
L̂l − (pu1 + iku2)

}
Υ(p,k)

l , (79)

for the case p, k = 1/2.
Obviously, the complex function Υ(p,k)

l (u1, u2, t) cannot have the meaning of a prob-
ability density. Rather, it can be interpreted as a wave function of forming the small
environment that is closely related or, more accurately, entangled with QS. In other words,
the SE under the influence of QS is quantized and therefore the value |Υ(p,k)

l (u1, u2, t)|2
should be interpreted as a probability distribution of SE corresponding to the certain
quantum state of the QS. It is easy to show that for any values (p, k) ∈ (0, ∞) the integral:

|Cl(p, k; t)|−2 =
∫ +∞

−∞
du1

∫ ∞

0
|Υ(p,k)

l (u1, u2, t)|2du2 < ∞,

and therefore the function Ῡ(p,k)
l (u1, u2, t) can be normalized to unity.

The Equation (79) can be represented as a system of two real equations:{
∂tR

(p,k)
l = L̂l R

(p,k)
l −

(
pu1R(p,k)

l − ku2 I(p,k)
l

)
,

∂t I(p,k)
l = L̂l I(p,k)

l −
(

pu1 I(p,k)
l + ku2R(p,k)

l
)
,

where Υ(p,k)
l (u1, u2, t) = R(p,k)

l (u1, u2, t) + iI(p,k)
l (u1, u2, t).

It is easy to see that the system of Equation (81) is symmetric with respect to per-
mutations R(p,k)

l → I(p,k)
l and I(p,k)

l → −R(p,k)
l . On the other hand, this means that these

solutions transit to each other as a result of coordinate transformations. In particular, we
can establish the following general properties, which these solutions should possess:

R(p,k)
l (u1, u2, t) = I(p,k)

l (−u1, u2, t) = −I(p,k)
l (u1, u2, t),

I(p,k)
l (u1, u2, t) = R(p,k)

l (−u1, u2, t) = −R(p,k)
l (u1, u2, t). (80)

Given the properties (80), we can separate the equations by writing them in a mutually
independent form:

∂tR
(p,k)
l = L̂l R

(p,k)
l −

(
pu1 + ku2

)
R(p,k)

l ,

∂t I(p,k)
l = L̂l I(p,k)

l −
(

pu1 − ku2
)

I(p,k)
l . (81)

To solve each of these partial differential equations, one can use initial and boundary
conditions of the type (28) or (29).
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For quantum communications, entangled states consisting of various vector states are
of particular interest. In particular, we can construct a quantum gate with the following
four Bell states:

Ψ∓JS =
1√
2

{
|0〉1 ⊗ |0〉2 ∓ |1〉1 ⊗ |1〉2

}
,

Φ∓JS =
1√
2

{
|0〉1 ⊗ |1〉2 ∓ |1〉1 ⊗ |0〉2

}
. (82)

By performing functional integration over these states, we obtain mathematical expec-
tations for the following entangled Bell states:

Ψ̄∓QS(q1, q2, t) = E
[
Ψ∓JS

]
=

1√
2

{
|0〉1 ⊗ |0〉2 ∓ |1〉1 ⊗ |1〉2

}
,

Φ̄∓QS(q1, q2, t) = E
[
Φ∓JS

]
=

1√
2

{
|0〉1 ⊗ |1〉2 ∓ |1〉1 ⊗ |0〉2

}
, (83)

where Ψ̄∓QS(q1, q2, t) = 〈Ψ∓JS〉R{ξ} and Φ̄∓QS(q1, q2, t) = 〈Φ∓JS〉R{ξ} , in addition:

|1〉l = 2(g−l )
1/2ql

∫ +∞

−∞
du1

∫ ∞

0
Ῡ( 3

2 , 3
2 )

l (u1, u2, t) exp
{

1
2
(
iu1 − u2

)
q2

l

}
du2. (84)

Recall that the wave function Ῡ( 3
2 , 3

2 )
l (u1, u2, t) is a solution of Equation (79) for the case

p, k = 3/2, which is normalized to unity.
Note that the states (84) differ from ordinary Bell states in that their constructions

include nonorthogonal basis functions of the corresponding Hilbert spaces as a result of
additional integration over TB:

|0〉1, |1〉1 ∈ H̄(1)
1 (R1) =

〈
H1(R1 ⊗Rξ1)

〉
Rξ1

,

and, correspondingly,

|0〉2, |1〉2 ∈ H̄(2)
1 (R1) =

〈
H2(R1 ⊗Rξ2)

〉
Rξ2

.

Note that an important feature of the developed representation is the presence of a
number of parameters that allow organization of effective external control over the QS.

10. Transitions Probabilities between Different Asymptotic Quantum States

Let us consider the evolution of the QS under the influence of a random environment,
taking into account possible quantum transitions. Let the fluctuations in the environment
continue for a finite time. We assume that, in the time interval t ∈ (t0, t′0], the random
force fl(t) acts on QS, and on the time interval t ∈ [t′0,+∞) this influence disappears,
i.e., fl(t) ≡ 0. It follows from the above that in the t → +∞ limit the wave function
Ψout(m|q, t) has the form:

Ψstc(n|q, t; {ξ}) = ∑
m

Cnm(t; {ξ})Ψout(m|q, t), (85)

where Ψout(m|q, t) is the stationary wave function QS in the asymptotic state (out), which
describes the quantum state of coupled oscillators for times t > t0, which can be represented
as follows:

Ψout(m|q, t) =
2

∏
l=1

e−i(ml+1/2)Ω+
l tφml (ql), (86)
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where

φml (ql) =

(
g+l

2ml ml !

)1/2

e−(Ω
+
l q2

l )/2Hml

(√
Ω+

l ql

)
, g+l = (Ω+

l /π)1/2. (87)

Definition 6. The mathematical expectation of the probability of transition between the asymptotic
channels (in) and (out) will be determined by the following formula:

Wn→m = lim
t→+∞

E
[∣∣Snm(q, t; {ξ})

∣∣2] = lim
t→+∞

∣∣Tr{ξ}Trq
[
Snm(q, t; {ξ})

]∣∣2, (88)

where Snm(q, t; {ξ}) = Ψstc(n|q, t; {ξ})Ψ∗out(m|q, t) denotes a random S-matrix element.

To perform analytical calculations, we can use the generating functions method, but
now for random processes (see [23]):

Ψstc(α|q, t; {ξ}) =
2

∏
l=1

∞

∑
nl=0

α nl
√

nl !
Ystc(nl |ql , t; {ξl}), (89)

and

Ψout(β|q, t) =
2

∏
l=1

∞

∑
ml=0

β ml
√

ml !
e−i(ml+1/2)Ω+

l tφml (ql), (90)

where α = (α1, α2) and β = (β1, β2) are auxiliary complex variables.
Calculating the sum in the representation (89) leads to an expression that is the product

of two Gaussian wave packets:

Ψstc(α|q, t; {ξ}) =
2

∏
l=1

(g−l )
1/2 exp

{
−1

2
(
alq2

l − 2blql + cl
)}

, (91)

where al , bl and cl are random variables, which are defined by the following expressions:

al = −iξ̇lξ
−1
l , bl =

√
2Ω−l αlξl

−1, cl = ξ∗l ξ−1
l α2

l + ln ξl . (92)

It is easy to see that the random wave packet (91) in the (in) asymptotic state transits
a determined quantum state:

Ψstc(α|q, t; {ξ})
∣∣
t→−∞= Ψin(α|q, t) =

2

∏
l=1

(g−l )
1/2 exp

{
−1

2

(
Ω−l q2

l − 2
√

2Ω−l αlqle−i Ω−l t + α2
l e−i 2Ω−l t + i Ω−l t

)}
. (93)

Obviously, the generating function Ψout(β|q, t) can be easily found from the expres-
sion (93) by making the following substitutions Ω−l → Ω+

l and αl → βl .
Now we consider the following integral:

Jstc(α, β | t; {ξ}) =
∫

Ψstc(α|q, t; {ξ})Ψ∗out(β |q, t)dq. (94)

Performing simple calculations, we obtain:

Jstc(α, β | t; {ξ}) =
2

∏
l=1

(Ω−l Ω+
l )

1/4
√

āl
exp

{
b̄2

l
4āl
− c̄l

}
, (95)

where the following notations are used:

āl =
1
2
(
al + Ω+

l
)
, b̄l = bl +

√
2Ω+

l βleiΩ+
l t, c̄l =

1
2
(
cl + β2

l ei2Ω+
l t − i Ω+

l t
)
.
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For further calculations, it is useful to represent the generating function (95) as the
following decomposition:

Jstc(α, β | t; {ξ}) =
2

∏
l=1

∞

∑
nl ,ml=0

α
nl
l√
nl !

Cl
nlml

(t; {ξl})
β

ml
l√
ml !

, Cnm =
2

∏
l=1

Cl
nl ml

,

from which it follows, that:

2

∏
l=1

Cl
nlml

(t, {ξl}) =
2

∏
l=1

1√
nl !ml !

∂nl+ml

∂α
nl
l ∂β

ml
l

Jstc(α, β | t; {ξ})
∣∣∣
αl=βl=0

. (96)

Using (95) and (96), we can write the transition probability in the following form:

Wn→m = lim
t→+∞

{ 2

∏
l=1

∣∣Tr{ξl}
[
Cl

nl ml
(t; {ξl})

]∣∣2}. (97)

It is easy to verify that the transition probability (97) formally is a product of the
transitions probabilities of two 1D oscillators. In other words, we can represent the
Equation (97) in a factored form:

Wn→m =
2

∏
l=1

w(l)
nl→ml , W(l)

nl→ml = lim
t→+∞

∣∣Tr{ξl}
[
Cl

nlml
(t; {ξl})

]∣∣2. (98)

Thus, by calculating the transition probabilities of 1D quantum oscillator, we can
construct the corresponding transitions of 2D oscillator.

As an example, let us calculate a series of transition probabilities between (in) and
(out) asymptotic channels. Taking into account (92), (95) and (97), we can construct explicit
form of the functional integral and calculate it using the generalized Feynman–Kac theorem
(see [24]). In particular, for the transition probability between the ground states of the (in)
and (out) asymptotic channels, we obtain the following integral representation:

W(l)
0→ 0 = κl

∣∣∣∣∣
∫ +∞

−∞
dū1

∫ +∞

0

Ῡ( 1
2 , 1

2 )
l (λl , µ; ū1, ū2)

(1 + ū2 − iū1)
1
2

dū2

∣∣∣∣∣
2

, (99)

where the following notations are used:

λl = ε̄l/(Ω
+
l )

3, κl = 2(Ω−l /Ω+
l )

1/2, ū1 = u1/Ω+
l , ū2 = u2/Ω+

l .

As for the stationary wave function Ῡ( 1
2 , 1

2 )
l (λl , ū1, ū2), then it is the solution of the

Equation (79) in the limit t̄→ +∞, which in the dimensionless form is written as:

∂ t̄Ῡ
(p,k)
l =

{ ¯̂Ll − (p ū1 + ik ū2)
}

Ῡ(p,k)
l , t̄ = Ω+

l t, (100)

where

¯̂Ll = λl

( ∂ 2

∂ū2
1
+ µ

∂ 2

∂ū2
2

)
+

∂

∂ū1

(
ū2

1 − ū2
2 + Ω̄2

0l(t)
)
+ 2ū1

∂

∂ū2
ū2, Ω̄0l(t) =

Ω0l(t)
Ω+

l
.

Similarly, we can calculate probabilities of other transitions of the 1D oscillator. In par-
ticular the first few transitions can be represented in the form:
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W(l)
1→ 1 = κ3

l

∣∣∣∣∣
∫ +∞

−∞
dū1

∫ ∞

0

Ῡ( 3
2 , 3

2 )
l (λl , µ; ū1, ū2)

(1 + ū2 − iū1)
3
2

dū2

∣∣∣∣∣
2

,

W(l)
0→ 2 = κl

∣∣∣∣∣
∫ +∞

−∞
dū1

∫ ∞

0

1− ū2 + iū1

(1 + ū2 − iū1)
3
2

Ῡ( 1
2 , 1

2 )
l (λl , µ; ū1, ū2)dū2

∣∣∣∣∣
2

,

W(l)
2→ 0 = κl

∣∣∣∣∣
∫ +∞

−∞
dū1

∫ ∞

0

[
κ2

l
Ῡ(2,2)

l (λl , µ; ū1, ū2)

(1 + ū2 − iū1)
3
2
−

Ῡ(2,0)
l (λl , µ; ū1, ū2)

(1 + ū2 − iū1)
1
2

]
dū2

∣∣∣∣∣
2

, (101)

where the wave function Ῡ(p,k)
l (λl , µ; ū1, ū2) denotes the stationary solution of the Equation (100)

in the limit t̄→ +∞.
In particular, as follows from the expressions of transition probabilities (101), only

transitions between states with the same parity are possible. However, the most important
and unexpected result is the violation of the detailed balance of transitions between the
quantum levels Wnm 6= Wmn, which is the cornerstone of standard quantum mechanics.
In particular, we can verify this by comparing the following two transition amplitudes
W(l)

0→ 2 and W(l)
2→ 0.

Now it is important to show that, when the medium is turned off, the amplitude
of the transition probability coincides with the transition amplitude of the parametric
oscillator. For the example, let us rewrite the expression for the “ground state-ground state"
transition (99) in the form:

W(l)
0→ 0 = κl

∫ +∞

−∞
dū1

∫ ∞

0

[
1− $(ū1, ū2)

]1/4 Ῡ( 1
2 , 1

2 )
l (λl , µ; ū1, ū2)e−iϕ(ū1,ū2)dū2, (102)

where

$(ū1, ū2) = 1−
ū2

1 + ū2
2 + 2ū2

ū2
1 + (1 + ū2)2

, ϕ(ū1, ū2) =
1 + ū2√

ū2
1 + (1 + ū2)2

, 0 ≤ $(ū1, ū2) ≤ 1.

To consider to the well-known 1D problem of a parametric oscillator, it is obviously
necessary to put µ = 0 and λl → 0. The latter, in turn, implies that the imaginary part of

the solution Υ( 1
2 , 1

2 )
l is zero and, consequently, it is necessary to replace Υ( 1

2 , 1
2 )

l → R( 1
2 , 1

2 )
l and,

in addition, the stationary solution R( 1
2 , 1

2 )
l (λl , µ; ū1, ū2) must satisfy the condition:

lim
λl→ 0

R( 1
2 , 1

2 )
l (λl , µ; ū1, ū2) = λ−1

l δ(ū1)δ(ū2 − ū02), ū02 = −1 +
1√

1− ρ
, (103)

where ρ =
∣∣C(l)

2 /C(l)
1

∣∣2.

Recall that the coefficients C(l)
1 and C(l)

2 are found from the solution of the clas-
sical Equation (10) with the regular frequency Ω0l(t), in the limit t → +∞. In this
case, the classical oscillator goes to the (out) channel, and the solution takes the form;
ξ0l(t) ∼ C(l)

1 eiΩ+
l t − C(l)

2 e−iΩ+
l t.

Finally, substituting (103) into (102), we obtain a well-known result for the transition
probability of the 1D parametric oscillator; W(l)

0→ 0 =
√

1− ρ. Note that in the same way as
for λl → 0, we can pass to the known regular values (see [23]) for other transitions (101).

It should be noted that the probabilities of 1D transitions are important for calculating
the mathematical expectation of Bell states (see Section 9).

11. Conclusions

The main goal of the study was to develop a representation that allows exploration of
the evolution of the "QS + environment (universe)" as a single self-organizing system. To
implement this idea, we postulated an equation of the Langevin–Schrödinger type as the
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basic equation for describing the JS, for which the Schrödinger equation plays the role of
the principle of local correspondence. Recall that this is equivalent to the condition when in
certain short time intervals, between two random environmental influences, the QS would
be described by the Schrödinger equation. It should be noted that precisely constructed
models’ QS with a random environment can be very informative and useful for a deeper
understanding of the problems of quantum foundations, including for the development of
quantum thermodynamics from the first principles of non-Hermitian quantum mechanics.

For a consistent mathematical construction of this problem, we considered the task
of two linearly coupled 1D quantum oscillators immersed in a random environment or
TB. Recall that this model, despite its apparent simplicity, can describe the basic properties
of a quantum reacting molecular gas, which is very important for the development of
modern technologies. In addition, within the framework of this model, various questions
of quantum optics and quantum communications can be investigated.

We rigorously proved that, within the framework of this model, all statistical parame-
ters of the QS can be mathematically constructed in a closed form using two-dimensional
integral representations and second-order PDE solutions. One of the most important results
of the research is the proof of the formation of a quantized small environment as a result of
JS self-organization processes. Note that the physical meaning of QSE can be interpreted
as a continuation of the quantum subsystem or, more precisely, its quantum halo that is
entangled with QS and contains information about it.

The paper calculates the time-dependent quantum entropy for two coupled 1D quan-
tum oscillators in the ground state. It is shown that the von Neumann quantum entropy and
its generalized version, which takes into account the JS self-organization process (see (66)),
are, generally speaking, different. As the analysis shows, both expressions of entropy
coincide only when the influence of the environment on QS is negligible. It should be noted
that from the expression of generalized entropy (66) it follows that the environment makes
the quantum subsystem inseparable. In particular, when QS decays into two independent
1D oscillators, which are outgoing to infinity, a non-potential interaction arises between
them, which is characteristic of entangled quantum states. The considered representation
makes it possible to study in detail and deeply the role of the random environment in the
entanglement phenomenon of spatially isolated quantum subsystems and suggests possi-
bility of organizing efficient control of the entanglement properties through the parameters
of the environment. We expect that a simulation of expressions (78) can give important
information on a role of entangling in the process of thermal relaxation of an environment
and the degree of violation of the basic principle of statistical physics on the equiprobability of
statistical states [21].

The probabilities of transitions between different asymptotic states of a 1D quantum
oscillator are calculated explicitly taking into account the influence of TB. In particular,
from the expression (101) it follows that W02 6= W20, i.e., one of the fundamental principle of
quantum mechanics, namely, the detailed balance of transitions between two pure states is
violated even in vacuum taking into account quantum fluctuations. On the other hand, this
result is a direct consequence of the non-Hermitian character of the operator Ĥ

(
x, t; {f}

)
(see expression (2)), which is typical for non-Hermitian quantum mechanics [39,40]. Note
that the derivation of expressions for quantum transitions allows one to construct kinetic
equations and directly simulate the population of the energy levels of the QS, which is
very important for testing the hypothesis of a micro-canonical distribution in a quantum
ensemble under thermal equilibrium conditions.

It should be noted that this study may also shed new light on some fundamental
problems of the quantum foundations and quantum statistical mechanics. In particular, re-
garding the possibilities of changing and effectively controlling the fundamental properties
of quantum mechanics, such as the Heisenberg uncertainty principles, the energy spectrum
of the QS, the properties of entanglement between quantum states, etc. In addition, this
study makes it possible to clearly answer the question of the possibility of violating a
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number of laws of thermodynamics, in particular, the second law of thermodynamics,
when quantum fluctuations are taken into account [41–43].

Finally, it is fundamentally important to carry out research in order to find a set of
external parameters at which it would be possible to significantly violate the detailed
equilibrium between the quantum transitions by making W02 > W20. Recall that this
would allow us to seriously think about the possibility of extracting energy from the
quantum vacuum.
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